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Abstract. In this paper, a new modified proximal point algorithm involving a finite family

of minimization problem and fixed point for a finite family of demicontractive in Hadamard

spaces is proposed. Some ∆-convergence and strong convergence theorems for the sequence

generated by the algorithm are proved in Hadamard space withr suitable conditions. The

results presented in the paper improve and generalize some recent results.

1. Introduction

Let X be a linear space and g : X → (−∞,+∞] be a proper and convex
function. One of the major problems in optimization theory is to find x ∈ X
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such that

g(x) = min
y∈X

g(y).

In 1970, Martinet [14] introduced the proximal point algorithm for solving
this type of problem. Later on, Rockafellar [18] studied the convergence results
of solution of the convex minimization problem in the framework of Hilbert
space using the proximal point algorithm which can be described as follows:

For a proper, lower semi-continuous and convex function g : X → (−∞,+∞],
the sequence {xn} generated by x1 ∈ X and

xn+1 = Jgλn(xn), ∀n ∈ N, (1.1)

where {λn} is a positive real sequence and Jgλn is the resolvent of g defined by

Jgλn(x) = arg min
y∈X

[g(y) +
1

2λn
||y − x||2], ∀n ∈ N,

for all x ∈ X. He proved that the sequence {xn} defined by (1.1) converges
weakly to its a minimizer of g.

Recently, many convergence results for solving minimization problems have
been extended from the classical linear spaces such as Euclidean spaces, Hilbert
spaces and Banach spaces to the setting of manifolds (see [4], [8], [10], [12],
[15], [17]) and the references therein.

Very recently, Chang [5] gave the following modified proximal point algo-
rithm for solving common solution of the minimization problem and common
fixed point of k-strictly pseudononspreading mappings T1, T2 in Hadamard
spaces: 

un = Jgλ(xn),

yn = (1− βn)xn ⊕ βnK1un,

xn+1 = (1− αn)xn ⊕ αnK2yn,

where Ki(x) := δix⊕ (1−δi)Tix, x ∈ C with k ≤ δi < 1, i = 1, 2. They proved
some convergence theorems under suitable mild conditions.

In 2020, Chang [6] gave an iterative algorithm to approximate a common
solution of a finite family of minimization problem and fixed point for a pair
of demicontractive mappings in Hadamard spaces.

Motived and inspired by the researches going on in this direction, the pur-
pose of this paper is to study the following proximal point algorithm and fixed
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point problem: to find x∗ ∈ C such that
J
gj
λ (x∗) = arg min

y∈X
(gj(y) +

1

2λ
d2(y, x∗)), j = 1, 2, · · · , l,

x∗ = Ti(x
∗), i = 1, 2, · · · ,m,

x∗ = S(x∗),

(1.2)

where (X, d) is a Hadamard space, C is a nonempty and closed convex subset
of X, λ > 0 is a given positive number, gj : C → R, j = 1, 2, · · · , l is a proper
convex and lower semi-continuous function, Ti : C → C, i = 1, 2, · · · ,m and S
are k-demicontractive mappings. Problem (1.2) is equivalent to find a point
x∗ ∈ C such that

x∗ ∈ Fix(S)
⋂(

m⋂
i=1

Fix(Ti)

)⋂ l⋂
j=1

Fix(J
gj
λ )

 , (1.3)

where Fix(Ti) is the set of fixed points of mapping Ti. Denote the solution
set of problem (1.3) by Γ.

In this paper, an iterative algorithm to approximate a common solution of
a finite family of minimization problem and fixed point for a finite family of
demicontractive mappings in Hadamard spaces is proposed. Under suitable
conditions, some ∆-convergence and strong convergence theorems of the se-
quence generated by the algorithm to an element in the intersection of the set
of solutions of such kind of minimization problem and fixed point problem in
Hadamard space are proved. Our results complement and extend some recent
results in literature.

2. Preliminaries

Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y
is an isometry c : [0, d(x, y)]→ X such that c(0) = x and c(d(x, y)) = y. The
image of a geodesic path joining x to y is called a geodesic segment between
x and y. The metric space (X, d) is said to be a geodesic space, if every two
points of X are joined by a geodesic. X is said to be uniquely geodesic space,
if there is exactly one geodesic joining x and y for each x, y ∈ X.

Lemma 2.1. ([9]) A geodesic space X is a CAT(0) space, if and only if the
following inequality

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y) (2.1)

is satisfied for all x, y, z ∈ X and t ∈ [0, 1]. In particular, if x, y, z are points
in a CAT(0) space and t ∈ [0, 1], then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z). (2.2)
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Lemma 2.2. ([3]) Let X be a CAT(0) space, p, q, r, s ∈ X and λ ∈ [0, 1].
Then

d(λp⊕ (1− λ)q, λr ⊕ (1− λ)s) ≤ λd(p, r) + (1− λ)d(q, s).

In the sequel, we denote by
n⊕

m=1

λmxm := λ1x1 ⊕ λ2x2 ⊕ · · · ⊕ λn−1xn−1 ⊕ λnxn. (2.3)

Lemma 2.3. ([7]) Let X be a CAT(0) space. Then for any sequence {λm}nm=1

in [0,1] satisfying Σn
m=1λm = 1 and for any {xm}nm=1 ⊂ X, the following

conclusions hold:

d

(
n⊕

m=1

λmxm, x

)
≤

n∑
m=1

λmd(xm, x), x ∈ X (2.4)

and

d2

(
n⊕

m=1

λmxm, x

)
≤

n∑
m=1

λmd
2(xm, x)−

n∑
i,j=1,i 6=j

λiλjd
2(xi, xj), x ∈ X.

(2.5)

It is well known that any complete and simply connected Riemannian man-
ifold having non-positive sectional curvature is a CAT(0) space.

A complete CAT(0) space is often called a Hadamard space. We write
(1− t)x⊕ ty for the unique point z in the geodesic segment joining from x to y
such that d(x, z) = td(x, y) and d(y, z) = (1−t)d(x, y). We also denote by [x, y]
the geodesic segment joining x to y, that is, [x, y] = {(1− t)x⊕ ty : 0 ≤ t ≤ 1}.
A subset C of a CAT(0) space is convex if [x, y] ⊂ C for all x, y ∈ C.

Let {xn} be a bounded sequence in X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf
x∈X
{r(x, {xn})}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known that in a Hadamard space, A({xn}) consists of exactly one point.
A sequence {xn} ⊂ X is said to ∆-converge to x ∈ X if A({xnk

}) = {x} for
every subsequence {xnk

} of {xn}. In this case, we write ∆− limn→∞ xn = x.
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The concept of ∆-convergence in CAT(0) space is very similar to the weak
convergence in the setting of Banach space.

Lemma 2.4. ([13]) Every bounded sequence in a complete CAT(0) space al-
ways has a ∆-convergent subsequence.

Berg and Nikolaev [2] introduced the concept of quasilinearization as fol-

lows. Let us denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector. Then

quasilinearization is defined as a map 〈·, ·〉 : (X ×X)× (X ×X)→ R defined
by

〈
−→
ab,
−→
cd〉 =

1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), ∀a, b, c, d ∈ X.

It is easily to see that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉 +

〈
−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉 for all a, b, c, d ∈ X. We say that X satisfies the Cauchy-

Schwarz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d), ∀a, b, c, d ∈ X. (2.6)

It is known that a geodesically connected metric space is a CAT(0) space if
and only if it is satisfies the Cauchy-Schwarz inequality.

In the sequel, we always assume that X is a Hadamard space, C is a
nonempty and closed convex subset of X and Fix(T ) is the fixed point set of
a mapping T .

Recall that a mapping T : C → C is said to be

(1) contractive if there exists a k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ C;

If k = 1, then T is said to be nonexpansive;
(2) quasinonexpansive, if F (T ) 6= ∅ and

d(Tx, p) ≤ d(x, p), ∀p ∈ F (T ), x ∈ C;

(3) firmly nonexpansive if

d2(Tx, Ty) ≤ 〈
−−−→
TxTy,−→xy〉, ∀x, y ∈ C; (2.7)

(4) nonspreading if

2d2(Tx, Ty) ≤ d2(Tx, y) + d2(Ty, x), ∀x, y ∈ C;

(5) k-strict pseudononspreading if there exists a constant k ∈ (0, 1) such
that for all x, y ∈ C

d2(Tx, Ty) ≤ d2(x, y)+kd2(Tx, x)+kd2(Ty, y)+2(1−k)〈
−−−→
xT (x),

−−−→
yT (y)〉;
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(6) k-demicontractive if Fix(T ) 6= ∅ and there exists a constant k ∈ [0, 1)
such that

d2(Tx, p) ≤ d2(x, p) + kd2(x, Tx), ∀x ∈ C, p ∈ Fix(T ). (2.8)

Clearly, if T is a nonspreading mapping with F (T ) 6= ∅, then T is a quasi-
nonexpansive mapping, and it is also a 0-demicontractive mapping. If T is
a k-strictly pseudononspreading mapping with Fix(T ) 6= ∅, then it is a k-
demicontractive mapping. But the converse is not true. This shows that the
class of demicontractive mappings is more general than the class of nonspread-
ing mappings and quasinonexpansive mapping.

Recall that a function f : C → (−∞,+∞] defined on a convex subset C
of a CAT(0) space is convex if, for any x and y in C with geodesic segment
[x, y] := {γx,y(λ) : 0 ≤ λ ≤ 1} := {λx ⊕ (1 − λ)y : 0 ≤ λ ≤ 1}, the function
f ◦ γ is convex, that is,

f(γx,y(λ)) := f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Lemma 2.5. Let f : X → (−∞,∞] be a proper convex and lower semi-
continuous function. For any λ > 0, define the Moreau-Yosida resolvent of f
in Hadamard space X as

Jfλ (x) = argminy∈X [f(y) +
1

2λ
d2(y, x)], ∀x ∈ X. (2.9)

Then

(i) the set Fix(Jfλ ) of fixed points of the resolvent of f coincides with the
set argminy∈Xf(y) of minimizers of f , and for any λ > 0, the resolvent

Jfλ of f is a firmly nonexpansive mapping. Hence it is nonexpansive
([1]);

(ii) Since Jfλ is a firmly nonexpansive mapping, if Fix(Jfλ ) 6= ∅, then from
(2.7) we have

d2(Jfλx, p) ≤ d
2(x, p)− d2(Jfλx, x), ∀x ∈ X, p ∈ Fix(Jfλ ). (2.10)

Definition 2.6. Let X be a complete metric space and Q ⊂ X be a nonempty
set. A sequence {xn} ⊂ X is called Fejér monotone with respect to Q if for
any y ∈ Q and n ≥ 1,

d(xn+1, y) ≤ d(xn, y). (2.11)

Lemma 2.7. ([11]) Let X be a complete metric space, Q ⊂ X be a nonempty
set. If {xn} ⊂ X is Fejér monotone with respect to Q, then {xn} is bounded.
Moreover, if a cluster point x of {xn} belongs to Q, then {xn} converges to x.
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Lemma 2.8. ([16]) Let C be a nonempty closed convex subset of a Hadamard
space X and T : C → C be a k-demicontractive mapping. Then Fix(T ) is
closed and convex subset in C.

Lemma 2.9. ([6]) Let C be a nonempty closed convex subset of a Hadamard
space X and T : C → C be a k-demicontractive mapping with k ∈ [0, 1). If
Fix(T ) 6= ∅ and k ≤ δ, then the mapping K : C → C defined by

K := δx⊕ (1− δ)Tx, x ∈ C (2.12)

is quasinonexpansive mapping and Fix(K) = Fix(T ).

3. Main results

Throughout this section, we assume that:

(1) (X, d) is a Hadamard space, C is a nonempty closed convex subset of
X;

(2) gj : C → R, j = 1, 2, · · · , l is a proper convex and lower semi-
continuous function. For given λ > 0, define the Moreau-Yosida resol-
vent of gj in C by

J
gj
λ (x) = argminy∈C

(
gj(y) +

1

2λ
d2(y, x)

)
, j = 1, 2, · · · , l. (3.1)

In the sequel, we denote by

Rkλ := Jgkλ ◦ J
gk−1

λ ◦ · · · ◦ Jg2λ ◦ J
g1
λ , k = 1, 2. · · · , l. (3.2)

(3) Ti : C → C, i = 1, 2, · · · ,m is a ki-demicontractive mapping with
0 ≤ ki ≤ δ < 1, i = 1, 2, · · · ,m, and Ti is demiclosed at zero (i.e.,
for any bounded sequence {xn} in C such that 4 − limxn = p and
limn→∞ d(xn, Tixn) = 0, then Tip = p).

Denote by

Gi(x) := δx⊕ (1− δ)Tix, x ∈ C, i = 1, 2, · · · ,m.

(4) S : C → C is a k-demicontractive mapping with 0 ≤ k ≤ δ < 1, and S
is demiclosed at zero (i.e., for any bounded sequence {xn} in C such
that 4− limxn = p and limn→∞ d(xn, Sxn) = 0, then Sp = p).

Denote by

K(x) := δx⊕ (1− δ)Sx, x ∈ C.
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Theorem 3.1. Let X, C, S, {Ti}mi=1, {Ki}mi=1, {gj}lj=1, {J
gj
λ }

l
j=1, {Rkλ}lk=1

be the same as above. For any given x0 ∈ C, let {xn} be the sequence generated
by 

un = Rlλ(xn),

yn = βn,0un ⊕ (⊕mi=1βn,iG
iun),

xn+1 = (1− αn)un ⊕ αnKyn,
n ≥ 0. (3.3)

where λ > 0, {αn}, {βn,i}mi=0 are sequences in [0,1] with Σm
i=0βn,i = 1 and

0 < a ≤ αn, βn,i < b < 1, for all n ≥ 0, i = 0, 1, 2, · · · ,m. If the solution
set Γ of problem (1.2) is nonempty, then the sequence {xn} defined by (3.3) is
∆-convergent to a point x∗ ∈ Γ which is a common minimization of {gj}lj=1,

as well as it is also a common fixed point of {Ti}mi=1 and S in C.

Proof. (I) It follows from Lemma 2.5, Lemma 2.8 and Lemma 2.9 that:

(1) if p ∈ Γ, then p ∈
⋂m
i=1 Fix(Ti) and p ∈ Fix(S), p is a common

minimizer of {gj}lj=1 and p ∈
⋂l
j=1 Fix(J

gj
λ );

(2) for each i = 1, 2, · · · ,m, Fix(Gi) = Fix(Ti), Fix(Ti) is a closed convex
subset of C and Gi is a quasinonexpansive mapping;

(3) Fix(K) = Fix(S), Fix(S) is a closed convex subset of C and K is a
quasinonexpansive mapping;

(4) Now we prove that for each i = 1, 2, · · · ,m, Gi is demiclosed at zero.
In fact, for any bounded sequence {xn} in C such that 4− limxn = p
and limn→∞ d(xn, Gixn) = 0, then we have

d(xn, Gixn) = d(xn, δxn⊕(1−δ)Tixn) = (1−δ)d(xn, Tixn)→ 0. (3.4)

Since Ti is demiclosed at zero, hence we have Tip = p. Since Fix(Ti) =
Fix(Gi), this implies that Gip = p. Hence Gi is demiclosed at zero.

(5) Now we prove that K is demiclosed at zero.
In fact, for any bounded sequence {xn} in C such that
∆− lim

n→∞
xn = p and lim

n→∞
d(xn,Kxn) = 0, then we have

d(xn,Kxn) = d(xn, δxn ⊕ (1− δ)Sxn) = (1− δ)d(xn, Sxn)→ 0.

Since S is demiclosed at zero, hence we have Sp = p. Since Fix(K) =
Fix(S), we have Kp = p. Hence K is demiclosed at zero.

(II) Next we prove that {xn} is Fejér monotone with respect to Γ.

In fact, by Lemma 2.5, for each j = 1, 2, · · · , l, Jgjλ is nonexpansive, therefore

Rlλ is also nonexpansive. Let q ∈ Γ. Then we have

d(un, q) = d(Rlλ(xn), Rlλ(q)) ≤ d(xn, q). (3.5)

By Lemma 2.9, for each i = 1, 2, · · · ,m, Gi is quasinonexpansive, hence from
(3.3) and (3.5) we have
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d(yn, q) =d (βn,0un ⊕ (⊕mi=1βn,iGiun), q)

≤βn,0d(un, q) +
m∑
i=1

βn,id(Giun, q)

≤βn,0d(un, q) +
m∑
i=1

βn,id(un, q)

=d(un, q) ≤ d(xn, q).

(3.6)

From (3.3), (3.5) and (3.6) we have

d(xn+1, q) =d((1− αn)un ⊕ αnKyn, q)
≤(1− αn)d(un, q) + αnd(Kyn, q)

≤(1− αn)d(un, q) + αnd(yn, q)

≤d(un, q) ≤ d(xn, q), ∀n ≥ 0.

(3.7)

This shows that {d(xn, q)} is decreasing and bounded below. Hence the limit
lim
n→∞

d(xn, q) exists for each q ∈ Γ. This implies that {xn} is Fejér monotone

with respect to Γ. Without loss of generality, we can assume that

lim
n→∞

d(xn, q) = c. (3.8)

Hence the sequence {xn} is bounded. So are the sequences {yn}, {un}, {Kyn}
and {Giun}, i = 1, 2, · · · ,m.

(III) Next we prove that

lim
n→∞

d(xn, un) = 0. (3.9)

In fact, it follows from Lemma 2.5 (ii) and (3.7) that for any given p ∈ Γ we
have

d2(un, R
l−1
λ xn) = d2(Rlλxn, R

l−1
λ xn)

≤ d2(Rl−1λ xn, p)− d2(un, p)
≤ d2(xn, p)− d2(un, p)
≤ d2(xn, p)− d2(xn+1, p).

Therefore

lim
n→∞

d(un, R
l−1
λ xn) = 0.

Similarly, by using the same method, we can prove that

lim
n→∞

d(Rl−jλ xn, R
l−(j+1)
λ xn) = 0, j = 0, 1, 2, · · · l − 1. (3.10)
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Therefore we have

d(un, xn) = d(Rlλxn, xn)

≤ d(Rlλxn, R
l−1
λ xn) + d(Rl−1λ xn, R

l−2
λ xn)

+ · · ·+ d(R2
λxn, R

1
λxn) + d(R1

λxn, xn)→ 0 (n→∞).

The conclusion (3.9) is proved.

(IV) Next we prove that

lim
n→∞

(un, Giun) = 0, ∀i = 1, 2, · · · , m

and

lim
n→∞

d(xn, yn) = 0, lim
n→∞

d(yn,Kyn) = 0.

Indeed, it follows from (3.3) and (2.5) that

d2(yn, q) =d2(βn,0un ⊕ (⊕mi=1βn,iGiun), q)

≤βn,0d2(un, q) +

m∑
i=1

βn,id
2(Giun, q)− βn,0βn,sd2(un, Gsun)

≤βn,0d2(un, q) +

m∑
i=1

βn,id
2(un, q)− βn,0βn,sd2(un, Gsun)

=d2(un, q)− βn,0βn,sd2(un, Gsun), ∀s = 1, 2, · · · , l.

(3.11)

Also it follows from (3.3), (2.5) and (3.11) that

d2(xn+1, q) =d2((1− αn)un ⊕ αnKyn, q)
≤(1− αn)d2(un, q) + αnd

2(Kyn, q)− αn(1− αn)d2(un,Kyn)

≤(1− αn)d2(un, q) + αnd
2(yn, q)− αn(1− αn)d2(un,Kyn)

≤(1− αn)d2(un, q) + αn(d2(un, q)− βn,0βn,sd2(un, Gsun))

− αn(1− αn)d2(un,Kyn)

=d2(un, q)− αnβn,0βn,sd2(un, Gsun)− αn(1− αn)d2(un,Kyn)

≤d2(xn, q)− αnβn,0βn,sd2(un, Gsun)− αn(1− αn)d2(un,Kyn).

After simplifying and by using the condition

0 < a ≤ αn, βn,i < b < 1 (i = 1, 2, · · · ,m),

we have that

a3d2(un, Gsun) + a(1− b)d2(un,Kyn)

≤ αnβn,0βn,id2(un, Gsun) + αn(1− αn)d2(un,Kyn)

≤ d2(xn, q)− d2(xn+1, q)→ 0 (n→∞).
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This implies that

lim
n→∞

d(un,Kyn) = 0 and lim
n→∞

d(un, Giun) = 0 (∀i = 1, 2, · · · ,m). (3.12)

Hence from (3.3) and (3.12) we have

d(yn, un) =d(βn,0un ⊕ (⊕mi=1βn,iGiun), un)

≤
m∑
i=1

βn,id(Giun, un)→ 0 (n→∞).
(3.13)

It follows from (3.9), (3.12) and (3.13) that
d(un, Giun)→ 0 (n→∞) (∀i = 1, 2, · · · ,m),

d(yn,Kyn) ≤ d(yn, un) + d(un,Kyn)→ 0 (n→∞),

d(Rlλ(xn), xn) = d(un, xn)→ 0 (n→∞),

d(xn, yn) ≤ d(xn, un) + d(un, yn)→ 0 (n→∞).

(3.14)

(V) Finally we prove that {xn} is ∆-convergent to some point in Γ.

In fact, in (II) we have proved that {xn} is a bounded sequence in C, and it
is also Fejér monotone with respect to Γ. By Lemma 2.7, in order to prove {xn}
is ∆-convergent to some point in Γ, it suffices to prove that each ∆-sequential
cluster point of {xn} belongs to Γ.

Indeed, let x∗ be a ∆-sequential cluster point of {xn}. Then there exists a
subsequence {xnj} of {xn} such that ∆ − lim

n→∞
xnj = x∗. This together with

(3.9) and (3.13) shows that ∆− lim
n→∞

unj = x∗ and ∆− lim
n→∞

ynj = x∗.

On the other hand, by (3.14) we have

lim
n→∞

d(unj ,Kynj ) = 0, lim
n→∞

d(Rlλ(xnj ), xnj ) = 0

and

lim
n→∞

d(unj , Giunj ) = 0 (∀i = 1, 2, · · · ,m).

Since Rlλ is nonexpansive, it is demiclosed at zero. Also in (I) we have proved
that Gi and K are demiclosed at zero, this implies that

x∗ ∈ Fix(K)
⋂(

m⋂
i=1

Fix(Gi)

)⋂
Fix(Rlλ).

In order to prove that x∗ ∈ Γ, it should be proved that

Fix(Rlλ) =

l⋂
j=1

Fix(J
gj
λ ). (3.15)
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It is obvious that
⋂m
j=1 Fix(J

gj
λ ) j Fix(Rlλ). Next we prove that

Fix(Rlλ) j
l⋂

j=1

Fix(J
gj
λ ). (3.16)

Let q ∈ Fix(Rlλ) and p ∈
⋂l
j=1 Fix(J

gj
λ ), we have

d(q, p) = d(Rlλq, p) = d(Jglλ R
l−1
λ q, Jglλ p) ≤ d(Rl−1λ q, p)

≤ d(Rl−2λ q, p) ≤ · · · ≤ d(R1
λq, p) = d(Jg1λ q, p)

≤ d(q, p).

This implies that

d(q, p) = d(Rlλq, p) = d(Rl−1λ q, p) = d(Rl−2λ q, p)

= · · · = d(R1
λq, p) = d(Jg1λ q, p).

(3.17)

It follows from (3.17) and (2.10) that for each j = 1, 2, · · · , l, we have

d(Rjλq, p) + d(Rjλq,R
j−1
λ q) ≤ d(Rj−1λ q, p) = d(q, p).

Since d(Rjλq, p) = d(q, p), this implies that for each j = 1, 2, · · · , l

d(Rjλq,R
j−1
λ q) = 0, i.e., Rj−1λ q ∈ Fix(J

gj
λ )q. (3.18)

Taking j = 1 in (3.18), we have q = Jg1λ (q). Taking j = 2 in (3.18), we have
that

q = Jg1λ (q) = Jg2λ q.

Taking j = 1, 2, · · · , l in (3.18) we can prove that

q = Jg1λ (q) = Jg2λ q = · · · = J
gl−1

λ q = Jglλ q, i.e., q ∈
l⋂

j=1

Fix(J
gj
λ ).

This completes the proof of Theorem 3.1. �

4. Some strong convergence theorems in Hadamard spaces

Let (X, d) be a Hadamard space and C be a nonempty, closed and convex
subset of X.

Recall that a mapping T : C → C is said to be demi-compact, if for any
bounded sequence {xn} in C such that d(xn, Txn) → 0 (as n → ∞), then
there exists a subsequence {xni} ⊂ {xn} such that {xni} converges strongly
to some point p ∈ C.
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Theorem 4.1. In addition to satisfying the conditions in Theorem 3.1, and
if one of the mappings {Ti}mi=1 or S is demi-compact, then the sequence {xn}
defined by (3.3) converges strongly to a point x∗ ∈ Γ.

Proof. In fact, it follows from (3.14) that

lim
n→∞

d(un, Giun) = 0, lim
n→∞

d(yn,Kyn) = 0, lim
n→∞

d(Rlλ(xn), xn) = 0. (4.1)

Since K = δI ⊕ (1− δ)S and Gi = δI ⊕ (1− δ)Ti(i = 1, 2, · · · ,m), we have

d(yn,Kyn) = d(yn, δyn ⊕ (1− δ)Syn) = (1− δ)d(yn, Syn),

d(un, Giun) = d(un, δun ⊕ (1− δ)Tiun) = (1− δ)d(un, Tiun).

This together with (4.1) implies that

d(un, Tiun) =
1

1− δ
d(un, Giun)→ 0(n→∞),

d(yn, Syn) =
1

1− δ
d(yn,Kyn)→ 0(n→∞).

(4.2)

By the assumption that one of {Ti}mi=1 and S is demi-compact, without loss
of generality, we can assume S is demi-compact. Therefore there exists a
subsequence {ynj} ⊂ {yn} such that {ynj} converges strongly to some point
x∗ ∈ C. Since S is demiclosed at zero, x∗ ∈ Fix(S).

Furthermore, by (3.8) and (3.13), d(xn, un) → 0 and d(un, yn) → 0. These
show that unj → x∗ and xnj → x∗. Since Ti and Rlλ both are demiclosed at
zero, we have

x∗ ∈

(
m⋂
i=1

Fix(Ti)

)⋂
Fix(Rlλ).

From (3.15), we get

x∗ ∈

(
m⋂
i=1

Fix(Ti)

)⋂ l⋂
j=1

Fix(J
gj
λ )

 .

This together with x∗ ∈ Fix(S) implies that x∗ ∈ Γ. Again by (3.8) the limit
lim
n→∞

d(xn, x
∗) exists. Hence we have lim

n→∞
d(xn, x

∗) = 0. This completes the

proof of Theorem 4.1. �

Theorem 4.2. In addition to satisfying the conditions in Theorem 3.1, and if
there exists a nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0, f(r) >
0 for all r > 0, such that

f(d(x,Γ)) ≤ d(x,Rlλx), ∀x ∈ C.
Then the sequence {xn} defined by (3.3) converges strongly to a point x∗ ∈ Γ.
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Proof. In fact, it follows from (3.14) that

lim
n→∞

d(xn, R
l
λxn) = 0. (4.3)

Therefore we have lim
n→∞

f(d(xn,Γ)) = 0. Since f is nondecreasing with f(0) =

0 and f(r) > 0 for all r > 0, we have

lim
n→∞

d(xn,Γ) = 0. (4.4)

This implies that

lim
n,m→∞

d(xn, xm) ≤ lim
n→∞

d(xn,Γ) + lim
m→∞

d(xm,Γ) = 0. (4.5)

This implies that {xn} is a Cauchy sequence in C. Since C is a closed subset
in a Hadamard space X, it is complete. Without loss of generality, we can
assume that {xn} converges strongly to some point x∗ ∈ C. It is easy to see
that Fix(S), Fix(Rlλ) and Fix(Ti), i = 1, 2, · · · ,m all are closed subsets in
C, so is Γ. Since d(x∗,Γ) = lim

n→∞
d(xn,Γ) = 0, we have x∗ ∈ Γ. This completes

the proof of Theorem 4.2. �
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