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Abstract. In this works, we consider a system of variational inequality, which can be

regarded as an extension of a primal-dual variational inequality system and involves mul-

tivalued mappings. The system does not possess monotonicity properties and the feasible

set is unbounded in general. To solve the problem, we propose a completely implementable

iterative scheme, whose convergence is proved under certain coercivity type conditions.

1. Introduction

Let X and Y be nonempty, closed and convex subsets of Rn and Rm, re-
spectively, moreover,

0 ∈ Y ⊆ Rm+ = {y := (y1, y2, · · · , ym) ∈ Rm | yi ≥ 0, i = 1, · · · ,m},
G : X → Π(Rn) be a convex smooth multi-valued mapping, H : X → Rn be
a continuous mapping with convex components Hi : X → R, i = 1, · · · ,m,
B : Y → Π(Rm) be a continuous multi-valued mapping, which is the gradient
of some function ϕ : Y → R, i.e., ϕ′(y) = B(y). Here and below Π(A) denotes
the family of all nonempty subsets of a set A.
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Under these assumptions, in this work, we can define the extended primal-
dual system: finding a pair (x∗, y∗) ∈ X × Y such that

∃g∗ ∈ G(x∗), 〈g∗, x− x∗〉+ 〈y∗, H(x)−H(x∗)〉 ≥ 0, ∀x ∈ X, (1.1)

∃b∗ ∈ B(y∗), 〈b∗ −H(x∗), y − y∗〉 ≥ 0, ∀y ∈ Y. (1.2)

Note that, (1.1) can be replaced by the equivalent optimization problem:

g − g∗ + 〈y∗, H(x)−H(x∗)〉 ≥ 0, ∀x ∈ X, g ∈ G(x), g∗ ∈ G(x∗). (1.3)

Then, if Y = Rm+ and B is fixed, that is, B(y) ≡ B, and G is the subdifferential
of a convex function, then the system (1.1)-(1.2) (or (1.2)-(1.3)) gives the
necessary and sufficient Karush-Kuhn-Tucker optimality conditions for the
constrained optimization problem:

min
x∈D
→ ϕ(x),

where D = {x ∈ X | Hi(x) ≤ Bi, i = 1, · · · ,m}.
Various problems can be reduced to system (1.1)-(1.2) (see, [1, 5, 6, 11,

12, 13, 14]), moreover, under the condition that the mapping B is monotone,
system (1.1)-(1.2) reduces to the saddle point problem of a convex concave
function. The more difficult case when B is quite arbitrary was considered
in [7, 8]. Then the main mapping of the variational inequality system (1.1)-
(1.2) is neither monotone nor the gradient mapping of any function, which
means that we have to develop special solution methods for such a problem.
For instance, partial regularization and descent methods were constructed in
[2, 3, 9, 10], but their convergence was established under the boundedness of
X and/or Y , which may be quite a restrictive condition for applications. In
the paper, this method is justified for the completely unbounded case.

2. Solutions of perturbed problem

Let ε > 0 be a fixed regularization parameter. Then we define the perturbed
system: find (x(ε), y(ε)) ∈ X × Y such that

〈g′ + εx(ε), x− x(ε)〉+〈y(ε), H(x)−H(x(ε))〉 ≥ 0, ∀x ∈ X, g′ ∈ G(x(ε)), (2.1)

〈B(y(ε))−H(x(ε)), y − y(ε)〉 ≥ 0, ∀y ∈ Y. (2.2)

Again we notice that (2.1) is equivalent to the following optimization prob-
lem with the strongly convex function:

g − g(ε) + 0.5ε(‖x‖2 − ‖x(ε)‖2) + 〈y(ε), H(x)−H(x(ε))〉 ≥ 0,
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for all x ∈ X, g ∈ G(x), g(ε) ∈ G(x(ε)). which always has a unique solution

denoted by x(ε)(y(ε)), that is,

x(ε)(y(ε)) = arg min{g + 0.5ε‖x‖2 + 〈y(ε), H(x)〉 | x ∈ X, g ∈ G(x)}.

For any y ∈ Y we also set

S(ε)(y) = −H(x(ε)(y)), F (ε)(y) = B(y) + S(ε)(y),

Ψ(ε)(y) = −[g(ε) + 0.5ε‖x(ε)(y)‖2 + 〈y,H(x(ε)(y))〉], g(ε) ∈ G(x(ε)(y)),

Φ(ε)(y) = ϕ(y) + Ψ(ε)(y).

First of all we see that the assumptions made the mapping y → x(ε)(y) is

continuous on Y (for any fixed ε > 0), and that S(ε) is the gradient of the
function Ψ(ε) (see [7], Lemmas 3.2 and 3.3). Further, the dual variational

inequality for system (2.1)-(2.2) is to find a point y(ε) ∈ Y such that

〈F (ε)(y(ε)), y − y(ε)〉 ≥ 0, ∀y ∈ Y. (2.3)

Obviously if y(ε) is a solution of problem (2.3), then the pair (x(ε)(y(ε)), y(ε))
is a solution of system (2.1)-(2.2). Moreover, problem (2.3) is a necessary
optimality condition for the optimization problem

min
y∈Y
→ Φ(ε)(y),

which is not sufficient in general, because the function ϕ is not convex and the
same is true for the function Φ(ε).

In order to solve problem (2.3) we apply a descent projection type method
[4]. For fix λ > 0 and set

z(ε)(y) = πY [y − λF (ε)(y)],

where πY [·] is the projection mapping onto the set Y . Note that the mapping

F (ε) is continuous, hence so is the mapping y → z(ε)(y). Further, y∗ is a
solution of problem (2.3) if and only if

y∗ = πY [y∗ − λF (ε)(y∗)], (2.4)

besides

〈Φ′(ε)(y), z(ε)(y)− y〉 ≤ −λ−1‖z(ε)(y)− y‖2. (2.5)

To get (2.5) we rewrite the definition of z(ε)(y) as a solution of the optimization
problem:

z(ε)(y) = arg min{‖(y − λF (ε)(y))− z‖2 | z ∈ Y }
or as the equivalent optimality condition:
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z(ε)(y) ∈ Y, 〈F (ε)(y) + λ−1(z(ε)(y)− y), u− z(ε)(y)〉 ≥ 0, ∀u ∈ Y. (2.6)

Taking u = y in (2.6) gives

〈F (ε)(y), z(ε)(y)− y〉 ≤ −λ−1‖z(ε)(y)− y‖2,
that is, (2.5) is satisfied.

Also set d(ε)(y) = z(ε)(y)− y for brevity. Now we describe an algorithm to
solve problem (2.3).

Algorithm 2.1. Choose a point u ∈ Y and numbers α, β ∈ (0, 1). At the

kth iteration, k = 0, 1, · · · , there is a point uk ∈ Y. Compute zk = z(ε)(u(ε))

and set dk = d(ε)(uk). If dk = 0, then stop. Otherwise find p as the smallest
nonnegative integer such that

Φ(ε)(u
k + βpdk) ≤ Φ(ε)(u

k) + αβp〈Φ′(ε)(u
k), dk〉,

set θk = βp, uk+1 = uk + θkd
k, the iteration has been completed.

Note that the termination of Algorithm 2.1 means that uk is a solution of
problem (2.3) due to (2.4), that is, (x(ε)(uk), uk) is then a solution of system
(2.1)-(2.2). Hence it is sufficient to consider the case when Algorithm 2.1
generates an infinite iteration sequence.

First we give the convergence properties of Algorithm 2.1, which follow
from [3, 4, 7]. We also note that its linesearch was also justified in these
works, together with the convergence.

Proposition 2.2. Assume that the level set W(ε)(u
0) = {y ∈ Y | Φ(ε)(y) ≤

Φ(ε)(u
0)} is bounded, the sequence {uk} is defined by Algorithm 2.1 and vk =

x(ε)(uk). Then the following statements hold:

(a) dk → 0 as k →∞,
(b) {uk} has limit points and each of them is a solution of problem (2.3),
(c) {(uk, vk)} has limit points and each of them is a solution of system

(2.1)- (2.2).

3. Partial regularization and descent method

This method uses a sequence of the perturbed problems (2.1)-(2.2), which
corresponds to a sequence of numbers ε` → 0. For any γ ∈ Y set

x`(y) = arg min{g + 0.5ε`‖x‖2 + 〈y,H(x)〉 | x ∈ X, g ∈ G(x)},
S`(y) = −H(x`(y)), F `(y) = B(y) + S`(y),

Ψ`(y) = −[g` + 0.5ε`‖x`(y)‖2 + 〈y,H(x`(y))〉], g` ∈ G(x`(y)),
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Φ`(y) = ϕ(y) + Ψ`(y), z`(y) = z(ε`)(y).

Algorithm 3.1. Step 0: Choose an arbitrary point y0 ∈ Y, sequences ε` →
0, δ` → 0, and numbers α, β ∈ (0, 1), λ > 0. Set ` = 1.
Step 1: Set u`,0 = y`−1, k = 0.
Step 2: Compute z`,k = z`(u`,k) and set d`,k = z`,k − u`,k.
Step 3: If ‖d`,k‖ ≤ δ`, then set y` = u`,k, ` = `+ 1 and go to Step 1.
Step 4: Find p as the smallest nonnegative integer such that

Φ`(y
`,k + βpd`,k) ≤ Φ`(y

`,k) + αβp〈Φ′`(y`,k), d`,k〉,
set θk = βp, u`,k+1 = u`,k + θkd

`,k, k = k + 1 and go to Step 2.

So, we can see that for any fixed ` Steps 2-4 of Algorithm 3.1 contain
Algorithm 2.1 applied to problem (2.3) with ε = ε`. The index k change
will be referred to as an inner step of Algorithm 3.1. We need the following
additional assumptions.

(A1) There exists a point x̄ ∈ X such that H(x̄) < 0.
(A2) The mapping H is bounded on the set X.
(A3) It holds that f(x)→ +∞ as ‖x‖ → ∞, x ∈ X.
(A4) It holds that 〈B(y), y〉 → +∞ as ‖y‖ → ∞, y ∈ Y.
(A5) The mapping B is bounded on the set Y. Set

V γ
ε = {y ∈ Y | Φ(ε)(y) ≤ γ}.

Theorem 3.2. Assume that the set V γ
ε0 is bounded for any number γ and that

conditions (A1-A5) are satisfied. If the sequence {y`} is defined by Algorithm
3.1 and the sequence {x`} is given by the rule x` = x`(y`), then

(a) for each fixed ` the number of inner steps is finite,
(b) the sequence {(x`, y`)} has limit points and each of them is a solution

of system (1.1)-(1.2).

Proof. First of all we show that the set Wε`(y
`−1) is always bounded. Note

that y`−1 ∈ Y by construction. Take an arbitrary point z ∈Wε`(y
`−1) and set

γ = Φ`(y
`−1), then

Wε`(y
`−1) = V γ

ε`
, that is, Ψ`(z) + ϕ(z) ≤ γ.

Next, for all g(ε
′′
) ∈ G(x(ε

′′)) we have

Ψ(ε′)(y) = −[g(ε
′′) + 0.5ε′′‖x(ε′′)‖2 + 〈y,H(x(ε

′′
))〉]

≤ −[g(ε
′′) + 0.5ε′‖x(ε′′)‖2 + 〈y,H(x(ε

′′))〉]

≤ −[g(ε
′) + 0.5ε′‖x(ε′)‖2 + 〈y,H(x(ε

′))〉], ∀g(ε′)) ∈ G(x(ε
′))

= Ψ(ε′)(y).
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If 0 ≤ ε′ ≤ ε′′. Therefore Ψ`(z) + ϕ(z) ≤ γ implies Ψ0(z) + ϕ(z) ≤ γ and
z ∈ V γ

ε0 . Thus, Wε`(y
`−1) ⊆ V γ

ε0 . But the set V γ
ε0 is bounded and part (a) holds

true due to Proposition 2.2(a). Set z` = z`(y`) = πY [y` − λF `(y`)], then for
any pair (x, y) ∈ X × Y it holds that (cf. (2.1), (2.6))

〈g′ + ε`x
`, x− x`〉+ 〈y`, H(x)−H(x`)〉 ≥ 0, ∀g′ ∈ G(x`),

〈B(y`)−H(x`) + λ−1(z` − y`), y − z`〉 ≥ 0,

‖z` − y`‖ ≤ δ`. (3.1)

Addition of the first and the second inequality in (3.1) with x = x̄, y = 0
and g′ ∈ G(x`), ḡ ∈ G(x̄), g` ∈ G(x`) gives

0 ≤ 〈g′, x̄− x`〉+ ε`〈x`, x̄− x`〉+ 〈y`, H(x̄)〉

− 〈y`, H(x`)〉 − 〈B(y`), z`〉+ 〈H(x`), z`〉 − λ−1〈z` − y`, z`〉

≤ ḡ − g` + ε`‖x`‖(‖x̄‖ − ‖x`‖) + 〈y`, H(x̄)〉 − 〈y` − z`, H(x`)〉

+ 〈B(y`), y` − z`〉 − 〈B(y`), y`〉 − λ−1‖z` − y`‖2 − λ−1〈z` − y`, y`〉

= ḡ − g` + ε`‖x`‖(‖x̄‖ − ‖x`‖) + 〈y`, H(x̄)− λ−1(z` − y`)〉

− 〈y` − z`, H(x`)〉+ 〈B(y`), y` − z`〉 − 〈B(y`), y`〉 − λ1‖z` − y`‖2

= ∆`.

Suppose that ‖w`‖ → ∞ as `→∞, where w` = (x`, y`). Then the following
three cases are possible.

Case 1:

‖x`‖ → ∞, ‖y`‖ → ∞.
Then due to (A1)-(A5) we have ∆` → −∞, which is a contradiction.

Case 2:

‖x`‖ → ∞, ‖y`‖ ≤ C1.

Then due to (A1)-(A5) it holds that

∆` ≤ C − g` + ε`‖x`‖(‖x̄‖ − ‖x`‖)→ −∞,
which is a contradiction.

Case 3:

‖x`‖ ≤ C2, ‖y`‖ → ∞.
Then due to (A1)-(A5), it holds that

∆` ≤ C − 〈B(y`), y`〉 → −∞,
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which is again a contradiction. So, the sequence {(x`, y`)} is bounded, hence
it has limit points. Let (x′, y′) be an arbitrary pair of limit points of {(x`, y`)}.
Then, taking the corresponding limit in (3.1), we obtain

〈g′, x− x′〉+ 〈y′, H(x)−H(x′)〉 ≥ 0, ∀x ∈ X, g′ ∈ G(x′),

〈B(y′)−H(x′), y − y′〉 ≥ 0, ∀y ∈ Y,
that is, (x′, y′) is a solution of system (1.1)-(1.2). The proof is complete. �
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