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Abstract. In this works, we consider a system of variational inequality, which can be
regarded as an extension of a primal-dual variational inequality system and involves mul-
tivalued mappings. The system does not possess monotonicity properties and the feasible
set is unbounded in general. To solve the problem, we propose a completely implementable

iterative scheme, whose convergence is proved under certain coercivity type conditions.

1. INTRODUCTION

Let X and Y be nonempty, closed and convex subsets of R” and R™, re-
spectively, moreover,

OGYQRT:{y::(yl,yg,n-,ym)GRm\inO,izl,---,m},

G : X — II(R™) be a convex smooth multi-valued mapping, H : X — R" be
a continuous mapping with convex components H; : X — R,¢i = 1,---,m,
B :Y — II(R™) be a continuous multi-valued mapping, which is the gradient
of some function ¢ : Y = R, i.e., ¢'(y) = B(y). Here and below II(A) denotes
the family of all nonempty subsets of a set A.
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Under these assumptions, in this work, we can define the extended primal-
dual system: finding a pair (z*,y*) € X x Y such that

dg9* € G(z¥), (¢",x — ™)+ (y*, H(z) — H(z¥)) > 0, Vx € X, (1.1)

W € Bly"), (b — H(z*),y—y") 20, vy e Y. (1.2)
Note that, (1.1) can be replaced by the equivalent optimization problem:

g—9 + " H(x)— H(xz")) >0, Vz € X,g € G(x),g" € G(z¥). (1.3)

Then, if Y = R and B is fixed, that is, B(y) = B, and G is the subdifferential
of a convex function, then the system (1.1)-(1.2) (or (1.2)-(1.3)) gives the
necessary and sufficient Karush-Kuhn-Tucker optimality conditions for the
constrained optimization problem:

in —
min — ¢(z),

where D ={z € X | Hi(z) < B;,i=1,--- ,m}.

Various problems can be reduced to system (1.1)-(1.2) (see, [1, 5, 6, 11,
12, 13, 14]), moreover, under the condition that the mapping B is monotone,
system (1.1)-(1.2) reduces to the saddle point problem of a convex concave
function. The more difficult case when B is quite arbitrary was considered
in [7, 8]. Then the main mapping of the variational inequality system (1.1)-
(1.2) is neither monotone nor the gradient mapping of any function, which
means that we have to develop special solution methods for such a problem.
For instance, partial regularization and descent methods were constructed in
2, 3, 9, 10], but their convergence was established under the boundedness of
X and/or Y, which may be quite a restrictive condition for applications. In
the paper, this method is justified for the completely unbounded case.

2. SOLUTIONS OF PERTURBED PROBLEM

Let € > 0 be a fixed regularization parameter. Then we define the perturbed
system: find (z(®),y(®)) € X x Y such that

(¢ +ex'® z— 2N+ H(z)— H@®)) >0, vz e X, ¢ € G, (2.1)
(B(y9) - H(z9),y —y) >0, ¥y e . (2.2)

Again we notice that (2.1) is equivalent to the following optimization prob-
lem with the strongly convex function:

9= 9 +05e(llz]* = |« ©|P) + (4, H(z) — H("))) >0,
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for all z € X,g € G(x),¢9®®) € G(z¥)). which always has a unique solution
denoted by x(5)(3(®)), that is,

:E(E)(y(e)) = argmin{g + 0.55||:1:H2 + <y(€),H(a§)> |z e X,g€ G(z)}.

For any y € Y we also set
SO(y) = —~H@(y)), FEy) = Bly) + 59 (y),

Uiy (y) = —[9 + 0.5e)|2 ()1 + (v, H® ()))], 9 € G(a©(y)),
Do) (y) =) + ¥ )(y).

First of all we see that the assumptions made the mapping y — z(5)(y) is
continuous on Y (for any fixed ¢ > 0), and that S is the gradient of the
function W(.) (see [7], Lemmas 3.2 and 3.3). Further, the dual variational

inequality for system (2.1)-(2.2) is to find a point y(®) € Y such that
(FEYD),y—y9) >0, vyeY. (2.3)

Obviously if 4(®) is a solution of problem (2.3), then the pair (&) (y()), y())
is a solution of system (2.1)-(2.2). Moreover, problem (2.3) is a necessary
optimality condition for the optimization problem

min — Q) (y),

which is not sufficient in general, because the function ¢ is not convex and the
same is true for the function ®(.).

In order to solve problem (2.3) we apply a descent projection type method
[4]. For fix A > 0 and set

2O (y) = myly — AFO) (y))],

where 7y [-] is the projection mapping onto the set Y. Note that the mapping
F(©) is continuous, hence so is the mapping y — 2z() (y). Further, y* is a
solution of problem (2.3) if and only if

y* =y [y — AFO ()], (2.4)
besides

(@) (), 29 (y) —y) < =AM (y) — yl”. (2.5)

To get (2.5) we rewrite the definition of 2() (y) as a solution of the optimization
problem:
2(y) = argmin{||(y - AFE(y)) — 2[* | 2 € Y}

or as the equivalent optimality condition:
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) ey, (FOy) +21 ) —y),u—20() >0, vuey. (26)
Taking v = y in (2.6) gives

(FO), 29 (y) —y) < =212 @) — )%,
that is, (2.5) is satisfied.

Also set d®) (y) = 2®) (y) — y for brevity. Now we describe an algorithm to
solve problem (2.3).

Algorithm 2.1. Choose a point uw € Y and numbers o, € (0,1). At the
k™ iteration, k = 0,1,--- , there is a point uF € Y. Compute 2* = 2(5) (u(9))
and set d* = d© (uF). If d* = 0, then stop. Otherwise find p as the smallest
nonnegative integer such that

Oy (uf + BPd") < By (u”) + afP (P, (u"),d"),
set 0 = BP, uFTt = uF + 0,,d*, the iteration has been completed.

Note that the termination of Algorithm 2.1 means that «” is a solution of
problem (2.3) due to (2.4), that is, (2)(u¥),u*) is then a solution of system
(2.1)-(2.2). Hence it is sufficient to consider the case when Algorithm 2.1
generates an infinite iteration sequence.

First we give the convergence properties of Algorithm 2.1, which follow
from [3, 4, 7]. We also note that its linesearch was also justified in these
works, together with the convergence.

Proposition 2.2. Assume that the level set Wi (u’) = {y € Y | ®(5(y) <
Do (u®)} is bounded, the sequence {u*} is defined by Algorithm 2.1 and v* =
z(®) uF). Then the following statements hold:

d* =0 as k — oo,
uFY has limit points and each of them is a solution of problem (2.3),

{
{(u¥,v¥)} has limit points and each of them is a solution of system
(2.1)- (2.2).

3. PARTIAL REGULARIZATION AND DESCENT METHOD
This method uses a sequence of the perturbed problems (2.1)-(2.2), which

corresponds to a sequence of numbers ¢, — 0. For any v € Y set

2! (y) = argmin{g + 0.5¢¢||z||* + (y, H(x)) | x € X, g € G(z)},
S'y) = —H(z"(y)), F*(y) = B(y) + S*(y),
Uo(y) = —[g" + 0.5l W) II” + (y, H(z" )))]. ¢" € G(2"(y)),
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Dy(y) = ly) + We(y), 2°(y) = 2 (y).

Algorithm 3.1. Step 0: Choose an arbitrary point y° € Y, sequences e —
0,d9¢ — 0, and numbers o, 5 € (0,1), A > 0. Set £ = 1.

Step 1: Set u' —yf Lk=o0.

Step 2: Compute 2% = 2% (ubF) and set dOF = 20k — bk,

Step 3: If ||[d“*| < &, then set y* = u"F £ =041 and go to Step 1.

Step 4: Find p as the smallest nonnegative integer such that

y(y* + BA) < Dy(y"") + afP(@4(y""), d°F),
set O, = AP, ulFtl = bk 4+ 0,d% k =k +1 and go to Step 2.

So, we can see that for any fixed ¢ Steps 2-4 of Algorithm 3.1 contain
Algorithm 2.1 applied to problem (2.3) with ¢ = &,. The index k change
will be referred to as an inner step of Algorithm 3.1. We need the following
additional assumptions.

(A1) There exists a point & € X such that H(z) < 0.
(A2) The mapping H is bounded on the set X.

(A3) It holds that f(z) — +o0 as ||z|| = o0, z € X.
(A4) It holds that (B(y),y) — +oo as |ly|| = o0, y € Y.
(A5) The mapping B is bounded on the set Y. Set

VZ={yeY [2(e)(y) <7}

Theorem 3.2. Assume that the set V7 is bounded for any number v and that
conditions (A1-A5) are satisfied. If the sequence {y'} is defined by Algorithm
3.1 and the sequence {x'} is given by the rule z* = 2*(y*), then

(a) for each fized ¢ the number of inner steps is finite,
(b) the sequence {(z*,y*)} has limit points and each of them is a solution
of system (1.1)-(1.2).

Proof. First of all we show that the set W.,(y*"!) is always bounded. Note
that y'~! € Y by construction. Take an arbitrary point z € We, (yefl) and set
v = ®y(y"1), then

Wge(y ) VI, that is, Uy(2) + ¢(z) <y
Next, for all g(su) € G(z")) we have
Wi (y) = —lg) + 05" o2 + (g, H(@)))
< =g +0.5¢ |2 + (y, H(2))]
< —[¢) +0.5¢ [P + (y, H(z))], vg')) € G
=V (y)-
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If 0 < & < &”. Therefore ¥y(z) + ¢(z) < 7 implies ¥p(z) + ¢(z) < v and
z € V4. Thus, W, (y*~1) C V). But the set V2 is bounded and part (a) holds
true due to Proposition 2.2(a). Set 2¢ = 2/(y%) = 7y [y’ — AF'(y")], then for
any pair (z,y) € X x Y it holds that (cf. (2.1), (2.6))

(g + et —a") + (' H(z) — H(z")) >0, Vg € G(z"),
(B(y") — H(z") + X' (" —¢"),y — =) >0,
12 = y|| < 6. (3.1)
—0

Addition of the first and the second inequality in (3.1) with z = &,y
and ¢’ € G(2%),5 € G(z),¢" € G(a*) gives

0<{¢,z— iL‘Z> + €g<xf,£ - :r£> + (y{H(:T:))
— (", H(z")) — (B(y"),2") + (H(2"),2") = X712 = o, )
<g—g" +ed(lz] - l2°]) + &, H(@)) — (¥ - 25, H(2"))
+ (B, v =) = (BW"), v ) = A2 =y 1P = A =y )
=g—g +edl|(I1z] - |2°]) + " H@) = A (=" = ¢))
— (' =25 H@) + (B, v — 25 — (By), ") — A" =)
— A,

Suppose that ||w’|| — oo as £ — oo, where w’ = (2f, y*). Then the following
three cases are possible.

Case 1:
2] = o0, [ly‘ll = ce.
Then due to (A1)-(A5) we have Ay — —oo, which is a contradiction.

Case 2:
||| = oo, |ly*|l < Ch.
Then due to (A1)-(A5) it holds that
Ap < C—g" +efl2(2] — [12°]) = —oo,

which is a contradiction.

Case 3:
2] < Ca, ly*[| = oo
Then due to (A1)-(A5), it holds that

Ay < C—(B(y"),y") = —o0,
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which is again a contradiction. So, the sequence {(z,y%)} is bounded, hence
it has limit points. Let (z',3) be an arbitrary pair of limit points of {(z¢, y*)}.
Then, taking the corresponding limit in (3.1), we obtain

(¢,x—2")+(y,H(z) — H(2")) >0, Vx € X, ¢ € G(2'),
(B) - H(),y—y) >0, WeY,
that is, (2/,y') is a solution of system (1.1)-(1.2). The proof is complete. [
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