Nonlinear Functional Analysis and Applications Vol. 25, No. 3 (2020), pp. 579-585 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2020.25.03.12 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2020 Kyungnam University Press

PARTIAL REGULARIZATION AND DESCENT METHOD FOR A EXTENDED PRIMAL-DUAL SYSTEM

Jong Kyu Kim¹ and Salahuddin²

¹Department of Mathematics Education, Kyungnam University Changwon, Gyeongnam, 51767, Korea e-mail: jongkyuk@kyungnam.ac.kr

> ²Department of Mathematics, Jazan University Jazan, Kingdom of Saudi Arabia e-mail: salahuddin12@mailcity.com

Abstract. In this works, we consider a system of variational inequality, which can be regarded as an extension of a primal-dual variational inequality system and involves multivalued mappings. The system does not possess monotonicity properties and the feasible set is unbounded in general. To solve the problem, we propose a completely implementable iterative scheme, whose convergence is proved under certain coercivity type conditions.

1. INTRODUCTION

Let X and Y be nonempty, closed and convex subsets of \mathbb{R}^n and \mathbb{R}^m , respectively, moreover,

 $0 \in Y \subseteq \mathbb{R}^{m}_{+} = \{ y := (y_{1}, y_{2}, \cdots, y_{m}) \in \mathbb{R}^{m} \mid y_{i} \ge 0, i = 1, \cdots, m \},\$

 $G: X \to \Pi(\mathbb{R}^n)$ be a convex smooth multi-valued mapping, $H: X \to \mathbb{R}^n$ be a continuous mapping with convex components $H_i: X \to \mathbb{R}, i = 1, \cdots, m$, $B: Y \to \Pi(\mathbb{R}^m)$ be a continuous multi-valued mapping, which is the gradient of some function $\varphi: Y \to \mathbb{R}$, *i.e.*, $\varphi'(y) = B(y)$. Here and below $\Pi(A)$ denotes the family of all nonempty subsets of a set A.

⁰Received August 10, 2019. Revised November 20, 2019. Accepted November 22, 2019.

⁰2010 Mathematics Subject Classification: 90C33, 65J20, 65K15, 47J20.

⁰Keywords: Extended primal-dual systems, non-monotone variational inequalities, unbounded feasible set, partial regularization method, descent method.

⁰Corresponding author: J. K. Kim(jongkyuk@kyungnam.ac.kr).

J. K. Kim and Salahuddin

Under these assumptions, in this work, we can define the extended primaldual system: finding a pair $(x^*, y^*) \in X \times Y$ such that

$$\exists g^* \in G(x^*), \ \langle g^*, x - x^* \rangle + \langle y^*, H(x) - H(x^*) \rangle \ge 0, \ \forall x \in X, \tag{1.1}$$

$$\exists b^* \in B(y^*), \ \langle b^* - H(x^*), y - y^* \rangle \ge 0, \ \forall y \in Y.$$
 (1.2)

Note that, (1.1) can be replaced by the equivalent optimization problem:

$$g - g^* + \langle y^*, H(x) - H(x^*) \rangle \ge 0, \ \forall x \in X, g \in G(x), g^* \in G(x^*).$$
 (1.3)

Then, if $Y = \mathbb{R}^m_+$ and B is fixed, that is, $B(y) \equiv B$, and G is the subdifferential of a convex function, then the system (1.1)-(1.2) (or (1.2)-(1.3)) gives the necessary and sufficient Karush-Kuhn-Tucker optimality conditions for the constrained optimization problem:

$$\min_{x \in D} \to \varphi(x),$$

where $D = \{x \in X \mid H_i(x) \le B_i, i = 1, \dots, m\}.$

Various problems can be reduced to system (1.1)-(1.2) (see, [1, 5, 6, 11, 12, 13, 14]), moreover, under the condition that the mapping B is monotone, system (1.1)-(1.2) reduces to the saddle point problem of a convex concave function. The more difficult case when B is quite arbitrary was considered in [7, 8]. Then the main mapping of the variational inequality system (1.1)-(1.2) is neither monotone nor the gradient mapping of any function, which means that we have to develop special solution methods for such a problem. For instance, partial regularization and descent methods were constructed in [2, 3, 9, 10], but their convergence was established under the boundedness of X and/or Y, which may be quite a restrictive condition for applications. In the paper, this method is justified for the completely unbounded case.

2. Solutions of perturbed problem

Let $\varepsilon > 0$ be a fixed regularization parameter. Then we define the perturbed system: find $(x^{(\varepsilon)}, y^{(\varepsilon)}) \in X \times Y$ such that

$$\langle g' + \varepsilon x^{(\varepsilon)}, x - x^{(\varepsilon)} \rangle + \langle y^{(\varepsilon)}, H(x) - H(x^{(\varepsilon)}) \rangle \ge 0, \ \forall x \in X, g' \in G(x^{(\varepsilon)}), \ (2.1)$$

$$\langle B(y^{(\varepsilon)}) - H(x^{(\varepsilon)}), y - y^{(\varepsilon)} \rangle \ge 0, \ \forall y \in Y.$$
 (2.2)

Again we notice that (2.1) is equivalent to the following optimization problem with the strongly convex function:

$$g - g^{(\varepsilon)} + 0.5\varepsilon(\|x\|^2 - \|x^{(\varepsilon)}\|^2) + \langle y^{(\varepsilon)}, H(x) - H(x^{(\varepsilon)}) \rangle \ge 0,$$

580

for all $x \in X, g \in G(x), g^{(\varepsilon)} \in G(x^{(\varepsilon)})$. which always has a unique solution denoted by $x^{(\varepsilon)}(y^{(\varepsilon)})$, that is,

$$x^{(\varepsilon)}(y^{(\varepsilon)}) = \arg\min\{g + 0.5\varepsilon \|x\|^2 + \langle y^{(\varepsilon)}, H(x) \rangle \mid x \in X, g \in G(x)\}.$$

For any $y \in Y$ we also set

$$\begin{split} S^{(\varepsilon)}(y) &= -H(x^{(\varepsilon)}(y)), \ F^{(\varepsilon)}(y) = B(y) + S^{(\varepsilon)}(y), \\ \Psi_{(\varepsilon)}(y) &= -[g^{(\varepsilon)} + 0.5\varepsilon \|x^{(\varepsilon)}(y)\|^2 + \langle y, H(x^{(\varepsilon)}(y)) \rangle], g^{(\varepsilon)} \in G(x^{(\varepsilon)}(y)), \\ \Phi_{(\varepsilon)}(y) &= \varphi(y) + \Psi_{(\varepsilon)}(y). \end{split}$$

First of all we see that the assumptions made the mapping $y \to x^{(\varepsilon)}(y)$ is continuous on Y (for any fixed $\varepsilon > 0$), and that $S^{(\varepsilon)}$ is the gradient of the function $\Psi_{(\varepsilon)}$ (see [7], Lemmas 3.2 and 3.3). Further, the dual variational inequality for system (2.1)-(2.2) is to find a point $y^{(\varepsilon)} \in Y$ such that

$$\langle F^{(\varepsilon)}(y^{(\varepsilon)}), y - y^{(\varepsilon)} \rangle \ge 0, \ \forall y \in Y.$$
 (2.3)

Obviously if $y^{(\varepsilon)}$ is a solution of problem (2.3), then the pair $(x^{(\varepsilon)}(y^{(\varepsilon)}), y^{(\varepsilon)})$ is a solution of system (2.1)-(2.2). Moreover, problem (2.3) is a necessary optimality condition for the optimization problem

$$\min_{y \in Y} \to \Phi_{(\varepsilon)}(y)$$

which is not sufficient in general, because the function φ is not convex and the same is true for the function $\Phi_{(\varepsilon)}$.

In order to solve problem (2.3) we apply a descent projection type method [4]. For fix $\lambda > 0$ and set

$$z^{(\varepsilon)}(y) = \pi_Y[y - \lambda F^{(\varepsilon)}(y)],$$

where $\pi_Y[\cdot]$ is the projection mapping onto the set Y. Note that the mapping $F^{(\varepsilon)}$ is continuous, hence so is the mapping $y \to z^{(\varepsilon)}(y)$. Further, y^* is a solution of problem (2.3) if and only if

$$y^* = \pi_Y[y^* - \lambda F^{(\varepsilon)}(y^*)], \qquad (2.4)$$

besides

$$\langle \Phi'_{(\varepsilon)}(y), z^{(\varepsilon)}(y) - y \rangle \le -\lambda^{-1} \| z^{(\varepsilon)}(y) - y \|^2.$$
(2.5)

To get (2.5) we rewrite the definition of $z^{(\varepsilon)}(y)$ as a solution of the optimization problem:

$$z^{(\varepsilon)}(y) = \arg\min\{\|(y - \lambda F^{(\varepsilon)}(y)) - z\|^2 \mid z \in Y\}$$

or as the equivalent optimality condition:

$$z^{(\varepsilon)}(y) \in Y, \ \langle F^{(\varepsilon)}(y) + \lambda^{-1}(z^{(\varepsilon)}(y) - y), u - z^{(\varepsilon)}(y) \rangle \ge 0, \ \forall u \in Y.$$
(2.6)
Taking $u = u$ in (2.6) gives

Taking u = y in (2.6) gives

$$\langle F^{(\varepsilon)}(y), z^{(\varepsilon)}(y) - y \rangle \le -\lambda^{-1} \| z^{(\varepsilon)}(y) - y \|^2,$$

that is, (2.5) is satisfied.

Also set $d^{(\varepsilon)}(y) = z^{(\varepsilon)}(y) - y$ for brevity. Now we describe an algorithm to solve problem (2.3).

Algorithm 2.1. Choose a point $u \in Y$ and numbers $\alpha, \beta \in (0, 1)$. At the k^{th} iteration, $k = 0, 1, \cdots$, there is a point $u^k \in Y$. Compute $z^k = z^{(\varepsilon)}(u^{(\varepsilon)})$ and set $d^k = d^{(\varepsilon)}(u^k)$. If $d^k = 0$, then stop. Otherwise find p as the smallest nonnegative integer such that

$$\Phi_{(\varepsilon)}(u^k + \beta^p d^k) \le \Phi_{(\varepsilon)}(u^k) + \alpha \beta^p \langle \Phi'_{(\varepsilon)}(u^k), d^k \rangle,$$

set $\theta_k = \beta^p, u^{k+1} = u^k + \theta_k d^k$, the iteration has been completed.

Note that the termination of Algorithm 2.1 means that u^k is a solution of problem (2.3) due to (2.4), that is, $(x^{(\varepsilon)}(u^k), u^k)$ is then a solution of system (2.1)-(2.2). Hence it is sufficient to consider the case when Algorithm 2.1 generates an infinite iteration sequence.

First we give the convergence properties of Algorithm 2.1, which follow from [3, 4, 7]. We also note that its linesearch was also justified in these works, together with the convergence.

Proposition 2.2. Assume that the level set $W_{(\varepsilon)}(u^0) = \{y \in Y \mid \Phi_{(\varepsilon)}(y) \leq \Phi_{(\varepsilon)}(u^0)\}$ is bounded, the sequence $\{u^k\}$ is defined by Algorithm 2.1 and $v^k = x^{(\varepsilon)}(u^k)$. Then the following statements hold:

- (a) $d^k \to 0$ as $k \to \infty$,
- (b) $\{u^k\}$ has limit points and each of them is a solution of problem (2.3),
- (c) $\{(u^k, v^k)\}$ has limit points and each of them is a solution of system (2.1)- (2.2).

3. PARTIAL REGULARIZATION AND DESCENT METHOD

This method uses a sequence of the perturbed problems (2.1)-(2.2), which corresponds to a sequence of numbers $\varepsilon_{\ell} \to 0$. For any $\gamma \in Y$ set

$$\begin{aligned} x^{\ell}(y) &= \arg\min\{g + 0.5\varepsilon_{\ell} \|x\|^{2} + \langle y, H(x) \rangle \mid x \in X, g \in G(x)\}, \\ S^{\ell}(y) &= -H(x^{\ell}(y)), F^{\ell}(y) = B(y) + S^{\ell}(y), \\ \Psi_{\ell}(y) &= -[g^{\ell} + 0.5\varepsilon_{\ell} \|x^{\ell}(y)\|^{2} + \langle y, H(x^{\ell}(y)) \rangle], g^{\ell} \in G(x^{\ell}(y)), \end{aligned}$$

Partial regularization and descent method for a extended primal-dual system 583

$$\Phi_{\ell}(y) = \varphi(y) + \Psi_{\ell}(y), z^{\ell}(y) = z^{(\varepsilon_{\ell})}(y).$$

Algorithm 3.1. Step 0: Choose an arbitrary point $y^0 \in Y$, sequences $\varepsilon_{\ell} \to 0, \delta_{\ell} \to 0$, and numbers $\alpha, \beta \in (0, 1), \lambda > 0$. Set $\ell = 1$. Step 1: Set $u^{\ell,0} = y^{\ell-1}, k = 0$.

Step 1: Set $u = g^{\ell}$, u = 0. Step 2: Compute $z^{\ell,k} = z^{\ell}(u^{\ell,k})$ and set $d^{\ell,k} = z^{\ell,k} - u^{\ell,k}$. Step 3: If $||d^{\ell,k}|| \leq \delta_{\ell}$, then set $y^{\ell} = u^{\ell,k}, \ell = \ell + 1$ and go to Step 1. Step 4: Find p as the smallest nonnegative integer such that

$$\Phi_{\ell}(y^{\ell,k} + \beta^p d^{\ell,k}) \leq \Phi_{\ell}(y^{\ell,k}) + \alpha \beta^p \langle \Phi_{\ell}'(y^{\ell,k}), d^{\ell,k} \rangle,$$

set $\theta_k = \beta^p, u^{\ell,k+1} = u^{\ell,k} + \theta_k d^{\ell,k}, k = k+1$ and go to Step 2.

So, we can see that for any fixed ℓ Steps 2-4 of Algorithm 3.1 contain Algorithm 2.1 applied to problem (2.3) with $\varepsilon = \varepsilon_{\ell}$. The index k change will be referred to as an inner step of Algorithm 3.1. We need the following additional assumptions.

- (A1) There exists a point $\bar{x} \in X$ such that $H(\bar{x}) < 0$.
- (A2) The mapping H is bounded on the set X.
- (A3) It holds that $f(x) \to +\infty$ as $||x|| \to \infty$, $x \in X$.
- (A4) It holds that $\langle B(y), y \rangle \to +\infty$ as $||y|| \to \infty, y \in Y$.
- (A5) The mapping B is bounded on the set Y. Set

$$V_{\varepsilon}^{\gamma} = \{ y \in Y \mid \Phi(\varepsilon)(y) \le \gamma \}.$$

Theorem 3.2. Assume that the set $V_{\varepsilon_0}^{\gamma}$ is bounded for any number γ and that conditions (A1-A5) are satisfied. If the sequence $\{y^{\ell}\}$ is defined by Algorithm 3.1 and the sequence $\{x^{\ell}\}$ is given by the rule $x^{\ell} = x^{\ell}(y^{\ell})$, then

- (a) for each fixed ℓ the number of inner steps is finite,
- (b) the sequence {(x^ℓ, y^ℓ)} has limit points and each of them is a solution of system (1.1)-(1.2).

Proof. First of all we show that the set $W_{\varepsilon_{\ell}}(y^{\ell-1})$ is always bounded. Note that $y^{\ell-1} \in Y$ by construction. Take an arbitrary point $z \in W_{\varepsilon_{\ell}}(y^{\ell-1})$ and set $\gamma = \Phi_{\ell}(y^{\ell-1})$, then

$$W_{\varepsilon_{\ell}}(y^{\ell-1}) = V_{\varepsilon_{\ell}}^{\gamma}$$
, that is, $\Psi_{\ell}(z) + \varphi(z) \leq \gamma$.

Next, for all $g^{(\varepsilon'')} \in G(x^{(\varepsilon'')})$ we have

$$\begin{split} \Psi_{(\varepsilon')}(y) &= -[g^{(\varepsilon'')} + 0.5\varepsilon'' \|x^{(\varepsilon'')}\|^2 + \langle y, H(x^{(\varepsilon'')})\rangle] \\ &\leq -[g^{(\varepsilon'')} + 0.5\varepsilon' \|x^{(\varepsilon'')}\|^2 + \langle y, H(x^{(\varepsilon'')})\rangle] \\ &\leq -[g^{(\varepsilon')} + 0.5\varepsilon' \|x^{(\varepsilon')}\|^2 + \langle y, H(x^{(\varepsilon')})\rangle], \ \forall g^{(\varepsilon')}) \in G(x^{(\varepsilon')}) \\ &= \Psi_{(\varepsilon')}(y). \end{split}$$

If $0 \leq \varepsilon' \leq \varepsilon''$. Therefore $\Psi_{\ell}(z) + \varphi(z) \leq \gamma$ implies $\Psi_0(z) + \varphi(z) \leq \gamma$ and $z \in V_{\varepsilon_0}^{\gamma}$. Thus, $W_{\varepsilon_{\ell}}(y^{\ell-1}) \subseteq V_{\varepsilon_0}^{\gamma}$. But the set $V_{\varepsilon_0}^{\gamma}$ is bounded and part (a) holds true due to Proposition 2.2(a). Set $z^{\ell} = z^{\ell}(y^{\ell}) = \pi_Y[y^{\ell} - \lambda F^{\ell}(y^{\ell})]$, then for any pair $(x, y) \in X \times Y$ it holds that (cf. (2.1), (2.6))

$$g' + \varepsilon_{\ell} x^{\ell}, x - x^{\ell} \rangle + \langle y^{\ell}, H(x) - H(x^{\ell}) \rangle \ge 0, \quad \forall g' \in G(x^{\ell}),$$

$$\langle B(y^{\ell}) - H(x^{\ell}) + \lambda^{-1} (z^{\ell} - y^{\ell}), y - z^{\ell} \rangle \ge 0,$$

$$\|z^{\ell} - y^{\ell}\| \le \delta_{\ell}.$$
 (3.1)

Addition of the first and the second inequality in (3.1) with $x = \bar{x}, y = 0$ and $g' \in G(x^{\ell}), \bar{g} \in G(\bar{x}), g^{\ell} \in G(x^{\ell})$ gives

$$\begin{split} 0 &\leq \langle g', \bar{x} - x^{\ell} \rangle + \varepsilon_{\ell} \langle x^{\ell}, \bar{x} - x^{\ell} \rangle + \langle y^{\ell}, H(\bar{x}) \rangle \\ &- \langle y^{\ell}, H(x^{\ell}) \rangle - \langle B(y^{\ell}), z^{\ell} \rangle + \langle H(x^{\ell}), z^{\ell} \rangle - \lambda^{-1} \langle z^{\ell} - y^{\ell}, z^{\ell} \rangle \\ &\leq \bar{g} - g^{\ell} + \varepsilon_{\ell} \|x^{\ell}\| (\|\bar{x}\| - \|x^{\ell}\|) + \langle y^{\ell}, H(\bar{x}) \rangle - \langle y^{\ell} - z^{\ell}, H(x^{\ell}) \rangle \\ &+ \langle B(y^{\ell}), y^{\ell} - z^{\ell} \rangle - \langle B(y^{\ell}), y^{\ell} \rangle - \lambda^{-1} \|z^{\ell} - y^{\ell}\|^{2} - \lambda^{-1} \langle z^{\ell} - y^{\ell}, y^{\ell} \rangle \\ &= \bar{g} - g^{\ell} + \varepsilon_{\ell} \|x^{\ell}\| (\|\bar{x}\| - \|x^{\ell}\|) + \langle y^{\ell}, H(\bar{x}) - \lambda^{-1} (z^{\ell} - y^{\ell}) \rangle \\ &- \langle y^{\ell} - z^{\ell}, H(x^{\ell}) \rangle + \langle B(y^{\ell}), y^{\ell} - z^{\ell} \rangle - \langle B(y^{\ell}), y^{\ell} \rangle - \lambda^{1} \|z^{\ell} - y^{\ell}\|^{2} \\ &= \Delta_{\ell}. \end{split}$$

Suppose that $||w^{\ell}|| \to \infty$ as $\ell \to \infty$, where $w^{\ell} = (x^{\ell}, y^{\ell})$. Then the following three cases are possible.

Case 1:

$$\|x^\ell\|\to\infty,\ \|y^\ell\|\to\infty$$

Then due to (A1)-(A5) we have $\Delta_{\ell} \to -\infty$, which is a contradiction.

Case 2:

$$||x^{\ell}|| \to \infty, ||y^{\ell}|| \le C_1$$

Then due to (A1)-(A5) it holds that

$$\Delta_{\ell} \le C - g^{\ell} + \varepsilon_{\ell} \|x^{\ell}\| (\|\bar{x}\| - \|x^{\ell}\|) \to -\infty,$$

which is a contradiction.

Case 3:

$$\|x^{\ell}\| \le C_2, \|y^{\ell}\| \to \infty.$$

Then due to (A1)-(A5), it holds that

$$\Delta_{\ell} \le C - \langle B(y^{\ell}), y^{\ell} \rangle \to -\infty,$$

584

which is again a contradiction. So, the sequence $\{(x^{\ell}, y^{\ell})\}$ is bounded, hence it has limit points. Let (x', y') be an arbitrary pair of limit points of $\{(x^{\ell}, y^{\ell})\}$. Then, taking the corresponding limit in (3.1), we obtain

$$\langle g', x - x' \rangle + \langle y', H(x) - H(x') \rangle \ge 0, \quad \forall x \in X, g' \in G(x'), \\ \langle B(y') - H(x'), y - y' \rangle \ge 0, \quad \forall y \in Y,$$

that is, (x', y') is a solution of system (1.1)-(1.2). The proof is complete. \Box

Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).

References

- V.A. Bulavskii, Quasilinear programming and vector optimization, Dokl. Akad. Nauk SSSR., 257 (1981), 788-791.
- [2] D.A. Dyabilkin and I.V. Konnov, Combined partial regularization and descent method for a generalized primal-dual system, Optim. Lett., 7 (2013), 1061-1070.
- [3] D.A. Dyabilkin and I.V. Konnov, Partial regularization method for nonmonotone variational inequalities, Comput. Math. Math. Phys., 48 (2008), 337345.
- [4] M. Fukushima and H. Mine, A generalized proximal point algorithm for certain nonconvex minimization problems, Int. J. Syst. Sci., 12 (1981), 989-1000.
- [5] I.V. Konnov, On systems of extended primal-dual variational inequalities, Appl. Anal. An Int. J., 91(10) (2012), 1881-1890.
- [6] I.V. Konnov, Equilibrium Models and Variational Inequalities, Elsevier, Amsterdam 2007.
- [7] I.V. Konnov, Convex optimization problems with arbitrary right-hand side perturbations, Optimization, 54 (2005), 131-147.
- [8] I.V. Konnov, Dual approach for a class of implicit convex optimization problems, Math. Methods Oper. Res., 60 (2004), 87-99.
- I.V. Konnov, Dual type methods for inverse optimization problems and their extensions, Dokl. Math., 69 (2004), 275-278.
- [10] I.V. Konnov and D.A. Dyabilkin, Nonmonotone equilibrium problems: coercivity conditions and weak regularization, J. Global Optim., 49 (2011), 575-587.
- B.S. Lee and Salahuddin, A general system of regularized nonconvex variational inequalities, J. Appl. Comput. Math., 3(4) (2014). doi:10.4172/2168-9679.1000169
- [12] B.T. Polyak, Introduction to Optimization, Nauka, Moscow, 1983. (Engl. transl. in Optimization Software, New York, 1987).
- [13] Salahuddin, Descent techniques for generalized equilibrium problems, Transact. Math. Prog. Appl., 3(2) (2015), 30-39.
- [14] Salahuddin, System generalized nonlinear regularized nonconvex variational inequalities, Korean Math. J., 24(2) (2016), 181-198.