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Abstract. The main aim of this paper show the conditions to guarantee the existence

and uniqueness of the solution to stochastic differential equations. To make this stochastic

analysis theory more understandable, we impose a weakened Hölder condition and a weak-

ened linear growth condition. Furthermore, we give some properties of the solutions to the

stochastic differential equations.

1. Introduction

Stochastic system has come to play an important role in many branches
of natural and applied science where more and more researcher have encoun-
tered stochastic differential equations(short for SDEs). The problems of the
existence and uniqueness of the solution to the SDEs has become an impor-
tant field of study because the solution of the SDEs does not have an explicit
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expression except for linear cases as well as the question of the existence of
stochastic integral part in the equations.

Mao [10] had investigated the SDEs in his book. The main one of this paper
is the proof of the existence and uniqueness of the SDEs. In his book [10],
He had introduced the stochastic differential equations studied by previous
researchers;

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), (1.1)

on the closed interval [t0, T ], t0 ≤ T. And he obtained that if Lipschiz condition
and linear growth condition hold, then the SDEs (1.1) had a unique solution
x(t), moreover, x(t) ∈M2([t0, T ];Rd×m) which means that we denoted byM2

the family of processes {f(t)} in Lp such that E
∫ T
t0
|f(t)|2dt <∞.

After that the study of the existence and uniqueness theorem for the SDEs
has been developed into some new uniqueness theorem for SDEs under special
conditions. See the references to this [2], [4], [5], and [12], [13], [15], [16].
Moreover, as for the studies related to this research, see [3], [6]-[11], [14], and
references therein for details.

Especially, Wei et al. [16] obtained that if two condition (1.2) and (1.3)
hold: For all y, z ∈ Rd and t ∈ [t0, T ], it follows that

|f(y, t)− f(z, t)|2 ∨ |g(y, t)− g(z, t)|2 ≤ κ (|y − z|2), (1.2)

where κ(·) is a concave non-decreasing function. For all t ∈ [t0, T ], it follows

that f(0, t), g(0, t) ∈ Rd × [t0, T ] such that

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K, (1.3)

then there exists a unique solution x(t) to equation (1.1) and the solution
belongs to M2([t0, T ];Rd).

And Bae et al. [2] obtained that if two condition (1.4) and (1.5) hold: For
any y, z ∈ Rd and t ∈ [t0, T ], we assume that

|f(y, t)− f(z, t)|2 ∨ |g(y, t)− g(z, t)|2 ≤ K|y − z|2α, (1.4)

where K is a positive constant and 0 < α ≤ 1 is a constant. For any t ∈ [t0, T ]
it follows that f(0, t), g(0, t) ∈ L2([t0, T ]) it follows that

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K, (1.5)

where K is a positive constant, then there exists a unique solution x(t) to
equation(1.1) and the solution belongs to M2([t0, T ];Rd).

In the paper [2], by employing non-Lipschitz condition and non-linear growth
condition, authors established the results for d-dimensional stochastic func-
tional differential equation.
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Motivated by [2], [10], and [16], we will investigate the existence and unique-
ness theorem of the solution for SDEs at a phase spaceM2

(
[t0, T ];Rd

)
in this

paper. We still take t0 ∈ R as our initial time throughout this paper. And we
want to prove our main results as follows; first, under the weakened Hölder
condition and the weakened linear growth condition, we estimate bounded of
the solution for SDEs. Next, we prove the existence and uniqueness theorem of
the solution for SDEs. Finally, we derived the estimate for the error between
Picard iterations {xn(t)} and the unique solution x(t) of SDEs.

2. Definitions and basic properties

Let (Ω,F , P ), throughout this paper unless otherwise specified, be a com-
plete probability space with a filtration {Ft}t≥t0 satisfying the usual conditions
(that is, it is right continuous and Ft0 contains all P -null sets). Let | · | denote
Euclidean norm in Rn. If A is a vector or a matrix, its transpose is denoted
by AT ; if A is a matrix, its trace norm is represented by |A| =

√
trace(ATA).

Assume that B(t) is an m-dimensional Brownian motion defined on complete
probability space, that is, B(t) = (B1(t), B2(t), ..., Bm(t))T .

Consider the d-dimensional stochastic differential equation of Itô type

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) on t0 ≤ t ≤ T (2.1)

with initial value x(t0) = x0. By the definition of stochastic differential, this
equation is equivalent to the following stochastic integral equation:

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T. (2.2)

First, let us define the solution of the stochastic differential equations.

Definition 2.1. ([10]) An Rd-valued stochastic process {x(t)}t0≤t≤T is called
a solution of equation (2.1) if it has the following properties:

(i) {x(t)} is continuous and Ft-adapted;
(ii) {f(x(t), t)} ∈ L1([t0, T ];Rd) and {g(x(t), t)} ∈ L2([t0, T ];Rd×m);
(iii) equation (2.1) holds for every t ∈ [t0, T ] with probability 1.

A solution x(t) is said to be unique if any other solution x̄(t) is indistin-
guishable from x(t), that is

P{x(t) = x̄ for all t0 ≤ t ≤ T} = 1.

For the convenience of the reader, we state following lemmas.

Lemma 2.2. ([1, 10]) (Bihari’s inequality). Let x(t) and y(t) be non-negative
continuous functions defined on R+. Let z(u) be a non-decreasing continuous
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function R+ and z(u) > 0 on (0,∞). If

x(t) ≤ a+

∫ t

0
y(s)z(x(s))ds,

for t ∈ R+, where a ≥ 0 is a constant, then for 0 ≤ t ≤ t1,

x(t) ≤ L−1
(
L(a) +

∫ t

0
y(s)ds

)
,

where L(r) =
∫ r
r0

ds
z(s) , r > 0, r0 > 0, and L−1 is the inverse function of L

and t1 ∈ R+ is chosen so that L(a) +
∫ t
0 y(s)ds ∈ Dom(L−1) for all t ∈ R+

lying in the interval 0 ≤ t ≤ t1.

Lemma 2.3. ([10]) Let p ≥ 2. Let f ∈M2([0, T ];Rd×m) such that

E

∫ T

0
|f(s)|pds <∞.

Then

E

∣∣∣∣∫ T

0
f(s)dB(s)

∣∣∣∣p ≤ (p(p− 1)

2

) p
2

T
p−2
2 E

∫ T

0
|f(s)|pds.

Lemma 2.4. ([10]) If p ≥ 2, f ∈M2
(
[0, T ];Rd×m

)
such that

E

∫ T

0
|f(s)|pds <∞,

then

E

(
sup

0≤t≤T

∣∣∣∣∫ t

0
f(s)dB(s)

∣∣∣∣p
)
≤
(

p3

2(p− 1)

) p
2

T
p−2
p E

∫ T

0
|f(s)|pds.

Lemma 2.5. ([1, 10]) (Hölder’s inequality) If 1
p + 1

q = 1 for any p, q > 1,

f ∈ Lp, and g ∈ Lq, then fg ∈ L1 and
∫ b
a fgdx ≤

(∫ b
a |f |

pdx
) 1
p
(∫ b

a |g|
qdx
) 1
q
.

Lemma 2.6. ([1]) Let a(t) and u(t) be continuous functions on [0, T ]. Let

K ≥ 1 and 0 < p ≤ 1 be constants. If u(t) ≤ K+
∫ t
t0
a(s)up(s)ds for t ∈ [t0, T ]

then

u(t) ≤ K exp

(∫ t

t0

a(s)ds

)
.
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Lemma 2.7. ([1]) (Stachurska’s inequality) Let x(t) and y(t) be non-negative
continuous functions for t ≥ α, and let

x(t) ≤ a(t) + b(t)

∫ t

α
y(s)xp(s)ds,

t ∈ J = [α, β), where a
b is non-decreasing function and 0 < p < 1. Then

x(t) ≤ a(t)

(
1− (p− 1)

[
a(t)

b(t)

]p−1 ∫ t

α
y(s)bp(s)ds

) −1
p−1

.

3. Existence of solution

In order to attain the solution of (2.1) we impose following assumptions:

(H1) For all y, z ∈ Rd and t ∈ [t0, T ], it follows that

|f(y, t)− f(z, t)|2 ∨ |g(y, t)− g(z, t)|2 ≤ κ (|y − z|2α), (3.1)

where 0 < α ≤ 1 and κ(·) is a concave non-decreasing function from
R+ to R+ such that κ(0) = 0, κ(u) > 0, for u > 0 and

∫
0+

1
κ(u)du =∞.

(H2) For all t ∈ [t0, T ], it follows that f(0, t), g(0, t) ∈ Rd× [t0, T ] such that

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K. (3.2)

To demonstrate the generality of our results, let us illustrate it using a
concave function κ(·). Let K > 0 and let δ ∈ (0, 1) be sufficiently small.
Define

κ1(u) = Ku, u > 0;

κ2(u) =

{
u log(u−1), 0 ≤ u < δ

δ log(δ−1) + κ̇2(δ−)(u− δ), u > δ;

κ3(u) =

{
u log(u−1) log log(u−1), 0 ≤ u < δ

δ log(δ−1) log log(δ−1) + κ̇3(δ−)(u− δ), u > δ.

They are all concave non-decreasing functions satisfying κi(u) > 0, for u > 0,
and

∫
0+

1
κi(u)

du = ∞. In particular, we see that condition (1.4) is a special

case of our proposed condition (3.1).

Since our goal is to find the conditions that guarantee the existence and
uniqueness of the solution to stochastic differential equation (2.1). We start
with following an exponential estimate.
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Lemma 3.1. Assume that conditions (3.1) and (3.2) hold. If x(t) is the
solution of (2.1), then

E

(
sup

t0≤t≤T
|x(t)|2

)
≤ C2exp[6b(T − t0)(T − t0 + 4)], (3.3)

where C1 = 3E|x0|2 +6K(T − t0 +4)(T − t0) and C2 = C1 +6a(T − t0 +4)(T −
t0) ≥ 1.

Proof. For each number n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |x(t)| ≥ n}.

Obviously, as n→∞, τn ↑ T a.s. Let xn(t) = x(t ∧ τn), t ∈ [t0, T ]. Then xn(t)
satisfy the following equation

xn(t) = x0 +

∫ t

t0

f(xn(s), s)I[t0,τn](s)ds+

∫ t

t0

g(xn(s), s)I[t0,τn](s)dB(s).

Using the elementary inequality (y + z + w)2 ≤ 3(y2 + z2 + w2), we have the
following

|xn(t)|2 ≤ 3|x0|2 + 3

∣∣∣∣∫ t

t0

f(xn, s)I[t0,τn](s)ds

∣∣∣∣2 + 3

∣∣∣∣∫ t

t0

g(xn, s)I[t0,τn](s)dBs

∣∣∣∣2.
Taking the expectation on both sides, using the condition (3.1) and (3.2),
Hölder’s inequality, and the elementary inequality (y + z)2 ≤ 2y2 + 2z2, we
have the following

E

(
sup
t0≤s≤t

|xn(s)|2
)

≤ 3E|x0|2 + 3E sup
t0≤s≤t

∣∣∣∣∫ s

t0

f(xn(s), s)I[t0,τn](s)ds

∣∣∣∣2
+3E sup

t0≤s≤t

∣∣∣∣∫ s

t0

g(xn(s), s)I[t0,τn](s)dBs

∣∣∣∣2
≤ 3E|x0|2 + 6(T − t0)E

∫ t

t0

(
|f(xn(s), s)− f(0, s)|2 + |f(0, s)|2

)
ds

+24E

∫ t

t0

(
(|g(xn(s), s)− g(0, s)|2 + |g(0, s)|2

)
ds

≤ C1 + 6(T − t0 + 4)E

∫ t

t0

κ(|xn(s)|2α)ds,

where C1 = 3E|x0|2 + 6K(T − t0 + 4)(T − t0). If κ(·) is concave and κ(0) = 0,
then we can find the positive constants a and b such that κ(u) ≤ a+ bu for all
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u ≥ 0. Therefore, we find that

E

(
sup
t0≤s≤t

|xn(s)|2
)
≤ C1 + 6(T − t0 + 4)E

∫ t

t0

[a+ b|xn(s)|2α]ds,

≤ C2 + 6b(T − t0 + 4)

∫ t

t0

E|xn(s)|2αds,

where C2 = C1 + 6a(T − t0 + 4)(T − t0).
One further obtains that

E

(
sup
t0≤s≤t

|xn(s)|2
)
≤ C2 + 6b(T − t0 + 4)

∫ t

t0

E

(
sup

t0≤r≤s
|xn(r)|2α

)
ds.

By Lemma 2.6, we derive that

E

(
sup
t0≤s≤t

|xn(s)|2
)
≤ C2 exp [6b(T − t0 + 4)(T − t0)] .

Letting t=T, it then follows that

E

(
sup

t0≤s≤T
|xn(s)|2

)
≤ C2 exp [6b(T − t0 + 4)(T − t0)] .

This is as follows

E

(
sup

t0≤s≤T
|x(s ∧ τn)|2

)
≤ C2 exp [6b(T − t0 + 4)(T − t0)] .

Consequently, we see that

E

(
sup

t0≤t≤τn
|x(t)|2

)
≤ C2 exp [6b(T − t0 + 4)(T − t0)] .

Letting n→∞, it then implies the following inequality

E

(
sup

t0≤t≤T
|x(t)|2

)
≤ C2 exp [6b(T − t0 + 4)(T − t0)] ,

which is the required inequality. The proof is complete. �

The following theorem gives an existence and uniqueness theorem of the
solution to the stochastic differential equations under new conditions.

Theorem 3.2. Assume that (3.1) and (3.2) hold. Then there exists a unique
solution to the SDEs (2.1). Moreover, the solution belongs toM2

(
[t0, T ];Rd

)
.

Proof. (uniqueness): Let x(t), x̄(t) be any two solutions of the equation. By
Lemma 3.1, we see x(t), x̄(t) ∈M2([t0, T ];Rd). Note that

x(t)− x̄(t) =

∫ t

t0

[f(x(s), s)− f(x̄(s), s)]ds+

∫ t

t0

[g(x(s), s)− g(x̄(s), s)]dB(s).
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By the elementary inequality (y + z)2 ≤ 2y2 + 2z2,we see that

|x(t)− x̄(t)|2 ≤ 2

∣∣∣∣∫ t

t0

[f(x(s), s)− f(x̄(s), s)]ds

∣∣∣∣2
+2

∣∣∣∣∫ t

t0

[g(x(s), s)− g(x̄(s), s)]dB(s)

∣∣∣∣2.
Taking the expectation on both sides, we find that

E

(
sup
t0≤s≤t

|x(s)− x̄(s)|2
)
≤ 2(t− t0)E

∫ t

t0

|f(x, s)− f(x̄, s)|2ds

+8E

∫ t

t0

|g(x, s)− g(x̄, s)|2ds.

By the condition (3.1), we can show that

E

(
sup
t0≤s≤t

|x(s)− x̄(s)|2
)
≤ 2(T − t0 + 4)E

∫ t

t0

(
κ(|x(s)− x̄(s)|2α)

)
ds.

Since κ(·) is concave, by the Jensen inequality, we have

Eκ(|x(s)− x̄(s)|2α) ≤ κ(E(|x(s)− x̄(s)|2α)).

Therefore, this is induced as follows

E

(
sup
t0≤s≤t

|x(s)− x̄(s)|2
)
≤ 2(T − t0 + 4)

∫ t

t0

κ

(
E(|x(s)− x̄(s)|2α)

)
ds.

Consequently, for any ε > 0, we find that

E

(
sup
t0≤s≤t

|x(s)− x̄(s)|2
)
≤ ε+ 2(T − t0 + 4)

∫ t

t0

κ

(
E sup
t0≤r≤s

|x− x̄|2α
)
ds.

By the Bihari inequality, we deduces that, for all sufficiently small ε > 0

E sup
t0≤s≤t

|x(s)− x̄(s)|2 ≤ G−1[G(ε) + 2(T − t0 + 4)(T − t0)], (3.4)

where G(r) =
∫ r
1

1
κ1(u)

du on r > 0, κ1(u) = κ(uα), z(t) = E supt0≤s≤t |x(s) −
x(s)|2 and G−1(·) be the inverse function of G(·). By assumption

∫
0+

1
κ(u)du =

∞ and the definition of κ(·), we see that limε↓0G(ε) = −∞ and then

lim
ε↓0

G−1[G(ε) + 2(T − t0 + 4)(T − t0)] = 0.

Therefore, by letting ε→ 0 in (3.4), we have that

E sup
t0≤s≤t

|x(s)− x(s)|2 = 0.

This implies that x(t) = x(t) for t0 ≤ t ≤ T . The uniqueness has been proved.
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(existence): Next to check the existence, define x0(t) = x0, and for n =
1, 2, · · · , define the Picard iterations

xn(t) = x0 +

∫ t

t0

f(xn−1(s), s)ds+

∫ t

t0

g(xn−1(s), s)dB(s), t0 ≤ t ≤ T. (3.5)

Obviously, x0(·) ∈ M2([t0, T ];Rd). Moreover, it is easy to show that xn(·) ∈
M2([t0, T ];Rd). Taking the expectation on both sides and using the inequality
|y + z + w|p ≤ 3p−1 [|y|p + |z|p + |w|p] we see that

E sup
t0≤s≤t

|xn(s)|2 ≤ 3E|x0|2 + 3E sup
t0≤s≤t

∣∣∣∣∫ s

t0

f(xn−1, r)dr

∣∣∣∣2
+3E sup

t0≤s≤t

∣∣∣∣∫ s

t0

g(xn−1, r)dB(r)

∣∣∣∣2 .
By the Hölder inequality and the moment inequality, we have

E sup
t0≤s≤t

|xn(s)|2 ≤ 3E|x0|2 + 3(T − t0)E
∫ t

t0

|f(xn−1(s), s)|2ds

+12E

∫ t

t0

|g(xn−1(s), s)|2ds.

By the condition (3.1) and (3.2), we can show that

E sup
t0≤s≤t

|xn(s)|2

≤ 3E|x0|2 + 3(T − t0)E
∫ t

t0

|f(xn−1(s), s)− f(0, s) + f(0, s)|2ds

+12E

∫ t

t0

|g(xn−1(s), s)− g(0, s) + g(0, s)|2ds

≤ 3E|x0|2 + 6(T − t0 + 4)E

∫ t

t0

[κ(|xn−1(s)|2α) +K]ds.

If κ(·) is concave and κ(0) = 0, we can find the positive constants a and b such
that κ(u) ≤ a+ bu for all u ≥ 0. Therefore

E sup
t0≤s≤t

|xn(s)|2

≤ 3E|x0|2 + 6(T − t0 + 4)E

∫ t

t0

(K + a+ b|xn−1(s)|2α)ds

≤ C3 + 6b(T − t0 + 4)

∫ t

t0

E sup
t0≤r≤s

|xn−1(r)|2αds,
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where C3 = 3E|x0|2 + 6(K + a)(T − t0 + 4)(T − t0). Hence for any k ≥ 1, we
can derive that

max
1≤n≤k

E sup
t0≤s≤t

|xn(t)|2

≤ C3 + 6b(T − t0 + 4)

∫ t

t0

(
E|x0|2α + max

1≤n≤k
E sup
t0≤r≤s

|xn(r)|2α
)
ds

≤ C4 + 6b(T − t0 + 4)

∫ t

t0

max
1≤n≤k

E sup
t0≤r≤s

|xn(r)|2αds,

where C4 = C3 + 6b(T − t0 + 4)(T − t0)E|x0|2α. From the Lemma 2.6, we have

max
1≤n≤k

E|xn(t)|2 ≤ C4 exp[6b(T − t0 + 4)(T − t0)].

Since k is arbitrary, for all n = 0, 1, 2, ..., we deduce that

E|xn(t)|2 ≤ C4 exp[6b(T − t0 + 4)(T − t0)],

which shows the boundedness of the sequence {xn(t)}.
Next we check that the sequence {xn(t)} is Cauchy. For all n ≥ 0 and

t0 ≤ t ≤ T , we have

xn+1(t)− xn(t) =

∫ t

t0

[f(xn(s), s)− f(xn−1(s), s)]ds

+

∫ t

t0

[g(xn(s), s)− g(xn−1(s), s)]dB(s).

Using the elementary inequality (y+z)2 ≤ 2y2+2z2 and taking the expectation
on both sides, we derive that

E sup
t0≤s≤t

|xn+1(s)− xn(s)|2

≤ 2E sup
t0≤s≤t

∣∣∣∣∫ s

t0

[f(xn(r), r)− f(xn−1(r), r)]dr

∣∣∣∣2
+ 2E sup

t0≤s≤t

∣∣∣∣∫ s

t0

[g(xn(r), r)− g(xn−1(r), r)]dB(r)

∣∣∣∣2.
By Hölder’s inequality, Jensen’s inequality, Lemma 2.4 and condition (3.1),
we can show that
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E sup
t0≤s≤t

|xn+1(s)− xn(s)|2

≤ 2(T − t0)E
∫ t

t0

|f(xn(s), s)− f(xn−1(s), s)|2ds

+8E

∫ t

t0

|g(xn(s), s)− g(xn−1(s), s)|2ds

≤ 2(T − t0 + 4)

∫ t

t0

κ[E(|xn(s)− xn−1(s)|2α)]ds.

This yields that

lim sup
n→∞

E sup
t0≤s≤t

|xn+1(s)− xn(s)|2

≤ 2(T − t0 + 4)

∫ t

t0

κ[lim sup
n→∞

E(|xn(s)− xn−1(s)|2α)]ds.

Let z(t) = lim supn→∞E supt0≤s≤t |xn+1(s)− xn(s)|2. Then we get

z(t) ≤ ε+ 2(T − t0 + 4)

∫ t

t0

κ[z(s)α]ds.

By the Bihari inequality, we deduce that, for all sufficiently small ε > 0

z(t) ≤ G−1[G(ε) + 2(T − t0 + 4)(T − t0)], (3.6)

where G(r) =
∫ r
1

1
κ1(u)

du on r > 0, κ1(u) = κ(uα),

z(t) = lim sup
n→∞

E sup
t0≤s≤t

|xn+1(s)− xn(s)|2,

and G−1(·) is the inverse function of G(·). By assumption
∫
0+

1
κ(u)du = ∞

and the definition of κ(·), we see that limε↓0G(ε) = −∞ and then

lim
ε↓0

G−1[G(ε) + 2(T − t0 + 4)(T − t0)] = 0.

Therefore, by letting ε→ 0 in (3.6), we derive that

lim sup
n→∞

E sup
t0≤s≤t

|xn+1(s)− xn(s)|2 = 0.

This show the sequence {xn(t)} is Cauchy sequence in L2. Hence, as n→∞,
xn(t) → x(t) that is E|xn(t) − x(t)|2 → 0. Therefore, we obtain that x(t) ∈
M2([t0, T ];Rd). It remains to show that x(t) satisfies equation (2.1). Note
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that

E

∣∣∣∣∫ t

t0

[f(xn(s), s)− f(x(s), s)]ds

∣∣∣∣2 + E

∣∣∣∣∫ t

t0

[g(xn(s), s)− g(x(s), s)]dB(s)

∣∣∣∣2
≤ (T − t0)E

∫ t

t0

|f(xn, s)− f(x, s)|2ds+ E

∫ t

t0

|g(xn, s)− g(x, s)|2ds

≤ (T − t0 + 1)

∫ t

t0

κ(E|xn(s)− x(s)|2α)ds.

The right-hand term of the inequality converge to zero, as n → ∞. Not-
ing that sequence {xn(t)} is uniformly converge on [t0, T ], it means that
E supt0≤s≤t |xn(s) − x(s)|2α → 0. Hence, taking limits on both sides in the
Picard sequence, we obtain that

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T.

This above expression demonstrates that x(t) is the solution of (2.1). So far,
the existence of theorem is complete. �

4. Continuous of the solutions

The following theorem shows that the Picard sequence of the equation (2.1)
has a continuity under new conditions.

Theorem 4.1. Assume that conditions (3.1) and (3.2) hold. Let xn(t) be the
Picard iteration defined by (3.5). Then for all n ≥ 1, it follows that

E

(
sup

t0≤s≤T
|xn(s)− xn−1(s)|2

)
≤ C8,

where C5 = 4(T − t0 + 4)(T − t0)[a + b|x0|2α + K], C6 = 2(T − t0 + 4)(T −
t0)(a+ bCα5 ), C7 = C6

(
1− 2b(α− 1)Cα−16 (T − t0)(T − t0 + 4)

) 1
1−α and C8 =

C5 + C7.

Proof. Taking the expectation on both sides, and using the Hölder inequality,
conditions (3.1) and (3.2), and the elementary inequality (y+ z)2 ≤ 2y2 + 2z2,
we derive that

E sup
t0≤s≤t

|x1(s)− x0|2 ≤ 4(T − t0 + 4)E

∫ t

t0

[κ(|x0|2α) +K]ds.
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If κ(·) is concave and κ(0) = 0, then we can find the positive constants a and
b such that κ(u) ≤ a+ bu for all u ≥ 0. Therefore, this in induced as follows

E sup
t0≤s≤t

|x1(s)− x0|2 ≤ 4(T − t0 + 4)E

∫ t

t0

[a+ b|x0|2α +K]ds

≤ C5,

where C5 = 4(T − t0 + 4)(T − t0)[a + b|x0|2α + K]. On the other hand, the
properties maximum, we take

max
1≤n≤k

E sup
t0≤s≤t

|xn+1(s)− xn(s)|2

≤ C6 + 2b(T − t0 + 4)

∫ t

t0

max
1≤n≤k

E sup
t0≤r≤s

(|xn+1(r)− xn(r)|2α)ds,

where C6 = 2(T − t0 + 4)(T − t0)(a + bCα5 ). Therefore, by the Stachurska
inequality, we see that

max
1≤n≤k

E sup
t0≤s≤t

|xn+1(s)− xn(s)|2

≤ C6

(
1− 2b(α− 1)Cα−16 (T − t0)(T − t0 + 4)

) 1
1−α := C7.

That is, we have that

max
1≤n≤k

E sup
t0≤s≤T

|xn(s)− xn−1(s)|2

≤ E sup
t0≤s≤T

|x1(s)− x0|2 + max
1≤n≤k

E sup
t0≤s≤T

|xn+1(s)− xn(s)|2

≤ C5 + C7 (4.1)

:= C8,

which is the required inequality. The proof is complete. �

The following theorem shows that an estimate for a difference between the
approximate solution xn(t) and the accurate solution x(t).

Theorem 4.2. Assume that conditions (3.1) and (3.2) hold. Let x(t) be the
unique solution of (2.1), and xn(t) be the Picard iteration defined by (3.5).
Then for all n ≥ 1, we have the following characteristics

E

(
sup

t0≤t≤T
|xn(t)− x(t)|2

)
≤ C9

(
1− 4b(α− 1)Cα−19 (T − t0 + 4)(T − t0)

) 1
1−α ,

where C9 = 4(T − t0 + 4)(T − t0)(2a+ bCα5 ) .
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Proof. From the Picard sequence and the accurate solution x(t), we have

xn(t)− x(t) =

∫ t

t0

[f(xn−1(s), s)− f(x(s), s)]ds

+

∫ t

t0

[g(xn−1(s), s)− g(x(s), s)]dB(s).

Taking expectation and by Hölder’s inequality and condition (3.1), thus we
have

E sup
t0≤s≤t

|xn(s)− x(s)|2

≤ 4(T − t0 + 4)

∫ t

t0

[κ(E|xn(s)− xn−1(s)|2α) + κ(E|xn(s)− x(s)|2α)]ds.

By Theorem 4.1, we get

E sup
t0≤s≤t

|xn(s)− x(s)|2 ≤ 4(T − t0 + 4)

∫ t

t0

[κ(Cα8 ) + κ(E|xn(s)− x(s)|2α)]ds.

If κ(·) is concave and κ(0) = 0, then we can find the positive constants a and
b such that κ(u) ≤ a+ bu for all u ≥ 0. Therefore, we obtain that

E sup
t0≤s≤t

|xn(s)− x(s)|2

≤ C9 + 4b(T − t0 + 4)

∫ t

t0

E sup
t0≤r≤s

|xn(r)− x(r)|2αdr,

where C9 = 4(T − t0 + 4)(T − t0)(2a+ bCα8 ). By the Stachurska inequality, we
find that

E sup
t0≤s≤t

|xn(s)− x(s)|2 ≤ C9

(
1− 4b(α− 1)Cα−19 (T − t0 + 4)(T − t0)

) 1
1−α .

Thus, we derive that

E

(
sup

t0≤t≤T
|xn(t)− x(t)|2

)
≤ C9

(
1− 4b(α− 1)Cα−19 (T − t0 + 4)(T − t0)

) 1
1−α ,

where C9 = 4(T − t0 + 4)(T − t0)(2a+ bCα5 ), which is the required inequality.
The proof is complete. �

The following theorem shows that an exponential estimate for accurate so-
lution of SDEs.
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Theorem 4.3. Let p ≥ 2 and x0 ∈ Lp
(
Ω;Rd

)
. Assume that the conditions

(3.1) and (3.2) hold. Then, we have the following characteristics

E sup
t0≤t≤T

|x(t)|p ≤ C11

(
1− 3

p−2
2 b

p
2C10C

α−1
11 (α− 1)(T − t0)

) 1
1−α

:= C12,

where C10 = 2
p
2 3p−1

[
(T−t0)p−1+

(
p3

2(p−1)

) p
2

(T−t0)
p−2
p
]

and C11 = 3p−1E|x0|p+

3
p−2
2 C10(T − t0)(a

p
2 +K

p
2 ).

Proof. By the elementary inequality |y + z + w|p ≤ 3p−1(|y|p + |z|p + |w|p),
Hölder’s inequality and Lemma 2.4, we have that

E sup
t0≤s≤t

|x(s)|p ≤ 3p−1E|x0|p + C10E

∫ t

t0

[κ(|x(s)|2α) +K]
p
2 ds,

where C10 = 2
p
2 3p−1

[
(T − t0)p−1 +

(
p3

2(p−1)

) p
2

(T − t0)
p−2
p

]
. If κ(·) is concave

and κ(0) = 0, then we can find the positive constants a and b such that
κ(u) ≤ a+ bu for all u ≥ 0. Therefore, we find that

E sup
t0≤s≤t

|x(s)|p ≤ C11 + 3
p−2
2 b

p
2C10

∫ t

t0

E sup
t0≤r≤s

|x(r)|pαds,

where C11 = 3p−1E|x0|p + 3
p−2
2 C10(T − t0)(a

p
2 + K

p
2 ). By Stachurska’s in-

equality, we derive that

E sup
t0≤s≤T

|x(s)|p ≤ C11

(
1− 3

p−2
2 b

p
2C10C

α−1
11 (α− 1)(T − t0)

) 1
1−α

.

which is the required inequality. The proof is complete. �

The following theorem shows that Lp-continuity of the accurate solution of
SPDs.

Theorem 4.4. Let p ≥ 2 and x0 ∈ Lp
(
Ω;Rd

)
. Assume that conditions (3.1)

and (3.2) hold. Then, we have the following characteristics

E|x(t)− x(s)|p ≤ 3
p−2
2 C13[a

p
2 +K

p
2 + b

p
2Cα12](t− s)

p
2 ,

for all t0 ≤ s < t ≤ T , where C13 = 2
p
2 [2p−1(T − t0)

p
2 + 1

2(2p(p− 1))
p
2 ].

Proof. By the elemantary inequality |y + z|p ≤ 2p−1(|y|p + |z|p), it is easy to
see that

E|x(t)− x(s)|p ≤ 2p−1E

∣∣∣∣∫ t

s
f(x(r), r)dr

∣∣∣∣p + 2p−1E

∣∣∣∣∫ t

s
g(x(r), r)dB(r)

∣∣∣∣p .
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Using Hölder’s inequality, Lemma 2.3, condition (3.1) and (3.2), we have that

E|x(t)− x(s)|p

≤ [2(t− s)]p−1E
∫ t

s
[2|f(x(r), r)− f(0, r)|2 + 2|f(0, r)|2]

p
2 dr

+
1

2
(2p(p− 1))

p
2 (t− s)

p−2
2 E

∫ t

s
[2|g(x(r), r)− g(0, r)|2 + 2|g(0, r)|2]

p
2 dr

≤ C13(t− s)
p−2
2 E

∫ t

s
[κ(|x(r)|2α) +K]

p
2 dr,

where C13 = 2
p
2 [2p−1(T − t0)

p
2 + 1

2(2p(p− 1))
p
2 ].

If κ(·) is concave and κ(0) = 0, then we can find the positive constants a
and b such that κ(u) ≤ a+ bu for all u ≥ 0. Therefore, we derive that

E|x(t)− x(s)|p ≤ C13(t− s)
p−2
2 E

∫ t

s
[a+ b|x(r)|2α +K]

p
2 dr.

By the elemantary inequality |y + z +w|p ≤ 3p−1(|y|p + |z|p + |w|p), it is easy
to see that

E|x(t)− x(s)|p

≤ 3
p−2
2 C13(t− s)

p−2
2 E

∫ t

s
[a

p
2 + b

p
2 |x(r)|pα +K

p
2 ]dr

≤ 3
p−2
2 C13

{
[a

p
2 +K

p
2 ](t− s)

p
2 + b

p
2 (t− s)

p−2
2 E

∫ t

s
[E sup

t0≤u≤r
|x(u)|p]αdr

}
.

By Theorem 4.3, we have that

E|x(t)− x(s)|p

≤ 3
p−2
2 C13

{
[a

p
2 +K

p
2 ](t− s)

p
2 + b

p
2 (t− s)

p−2
2 E

∫ t

s
Cα12dr

}
≤ 3

p−2
2 C13[a

p
2 +K

p
2 + b

p
2Cα12](t− s)

p
2 ,

which is the required inequality. The proof is complete. �

Remark 4.5. Theorem 3.2 shown that the Picard iteration sequence xn(t)
converge to the unique solution x(t) of the SDEs (2.1). In Theorem 4.1,
we gives that Picard sequence of the equation(2.1) has a continuity under the
conditions. Theorem 4.2 shows that one can use the Picard iteration procedure
to obtain the approximate solution of the systems give the estimate for the
error of the approximation. Also in Theorem 4.4, we show that the accurate
solution of the SDEs has a Lp-continuity.
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