Nonlinear Functional Analysis and Applications Vol. 15, No. 4 (2010), pp. 545-553

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2010 Kyungnam University Press

CHARACTERIZATIONS ON LINEAR N-NORMED SPACES

Xiaoyun Chen¹ and Meimei Song²

¹Department of Mathematics, Tianjin University of Technology, Tianjin 300384, China e-mail: xiayu830621@163.com

²Department of Mathematics, Tianjin University of Technology Tianjin 300384, China e-mail: songmeimei@tjut.edu.cn

Abstract. In this paper, we get if $f : X \to Y$ preserves equality of *n*-distance with X and Y be two linear n-normed spaces, f is n-continuous at some $\theta \neq x_0 \in X$, then f is affine.

1. INTRODUCTION

In 1989, Misiak [8,9] defined n-normed spaces and investigated the properties of these spaces. The concept of an n -normed space is a generalization of the concepts of a normed space and of a 2-normed space. In 2004, Chu et al. [3] defined the concept of *n*-isometry which is suitable for representing the notion of n -distance preserving mappings in linear n -normed spaces and studied the Aleksandrov problem in linear n-normed spaces.

S.Mazur and S.Ulam [10] proved the theorem: Every isometry of a real normed linear space onto a real normed linear space is a linear mapping up to translation. The property is not true for complex normed vector spaces. The hypothesis of surjectivity is essential. Without this assumption Baker [1] proved that every isometry from a real normed space into a strictly convex normed space is linear up to translation. Chu [2] proved that the Mazur-Ulam theorem holds when X and Y are linear 2-normed spaces. Chu et al. [4] proved that the n-isometry mapped to a linear n-normed space is affine.

 0 Received May 18, 2009. Revised October 14, 2009.

⁰ 2000 Mathematics Subject Classification: 46B20.

⁰Keywords: Linear *n*-normed space, preserve equality of *n*-distance, *n*-continuous.

⁰Foundation item: Science and Technology Foundation of Educational Committee of Tianjin (20060402).

Weijia Jia[7] proved that under some conditions, a 2-continuous function is also a 2-isometry. In this paper, we replace n-isometry by the more general notion of equality of n-distance preserving mappings and give the definition of n -continuous. At last, we get under some conditions, a n -continuous function is also a n -isometry.

2. Definitions and Lemmas

In this section, we will give some definitions and lemmas in linear n -normed spaces.

Definition 2.1. [3] Let X be a real linear space with dim $X \ge n$ and $\|\cdot, \ldots, \cdot\|$: $X^n \rightarrow R$ a function. Then $(X, \| \cdot, \ldots, \cdot \|)$ is called a linear n-normed space if

- (nN_1) $||x_1, \ldots, x_n|| = 0 \iff x_1, \ldots, x_n$ are linearly dependent,
- (nN_2) $\|x_1, \ldots, x_n\| = \|x_{j1}, \ldots, x_{jn}\|$ for every permutation $(j1, \ldots, jn)$ of $(1, \ldots, n)$,
- (nN_3) $\|\alpha x_1, \ldots, x_n\| = |\alpha| \|x_1, \ldots, x_n\|,$
- (nN_4) $||x + y, x_2, \ldots, x_n|| \leq ||x, x_2, \ldots, x_n|| + ||y, x_2, \ldots, x_n||$ for all $\alpha \in R$ and $x, y, x_1, \ldots, x_n \in X$.

The function $\|\cdot, \ldots, \cdot\|$ is called an n-norm on X.

Definition 2.2 ([3]). Let X and Y be linear n-normed spaces and $f : X \rightarrow Y$ be a mapping. We call f an n-isometry if

 $||x_1 - x_0, \ldots, x_n - x_0|| = ||f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0)||$ for all $x_0, x_1, \ldots, x_n \in X$.

Definition 2.3. Let X and Y be linear n-normed spaces, $x_0 \in X$ and $f : X \rightarrow Y$ be a mapping. Then f is said to be n-continuous at x_0 if for every $\varepsilon > 0$, there exists positive real number δ such that

 $||x_1 - x_0, \ldots, x_n - x_0|| < \delta$ implies $||f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0)|| < \epsilon$ and f is said to be n-continuous on X if f is n-continuous at x for all $x \in X$.

Definition 2.4. Let X and Y be linear n-normed spaces and $f : X \rightarrow Y$ be a mapping. Then f is said to preserve equality of n-distance if and only if there exists a function $p: R_+^0 \to R_+^0$ such that for each $x_0, x_1, \ldots, x_n \in X$ $|| f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0)|| = p(||x_1 - x_0, \ldots, x_n - x_0||)$ The function p is called the gauge function for f .

Definition 2.5 ([3]). The points x_0, x_1, \ldots, x_n of X are said to be n-collinear *if for every i*, $\{x_j - x_i | 0 \leq j \neq i \leq n\}$ *is linearly dependent.*

Remark 2.6 ([3]). The points x_0 , x_1 and x_2 are said to be 2-collinear if and only if $x_2 - x_0 = t(x_1 - x_0)$ for some real number t.

Lemma 2.7 ([3]). Let x_i be an element of a linear n-normed space X for every $i \in \{1, \ldots, n\}$ and γ be a real number. Then

 $||x_1, \ldots, x_i, \ldots, x_j, \ldots, x_n|| = ||x_1, \ldots, x_i, \ldots, x_j + \gamma x_i, \ldots, x_n||$ for all $1 \leq i \neq j \leq n$.

From now on, unless otherwise specified, let X and Y be real linear n normed spaces, $f : X \rightarrow Y$ be a mapping. X and Y have dimensions greater than $n-1$. Let x_0, x_1, \ldots, x_n be points of X.

3. Main Results

Lemma 3.1. For $x_0, x_0' \in X$, if x_0 and x_0' \int_0^{∞} are linearly dependent with the same direction, that is, $x'_0 = \alpha x_0$ for some $\alpha > 0$, then

 $||x_0 + x'_0$ $\int_0', x_1, \ldots, x_{n-1} \le ||x_0, x_1, \ldots, x_{n-1}|| + ||x'_0$ $\langle 0, x_1, \ldots, x_{n-1} \rangle$ for all $x_1, \ldots, x_{n-1} \in X$.

Proof. Let $x'_0 = \alpha x_0$ for some $\alpha > 0$. Then we have

$$
||x_0 + x'_0, x_1, \dots, x_{n-1}|| = ||x_0 + \alpha x_0, x_1, \dots, x_{n-1}||
$$

\n
$$
= (1 + \alpha) ||x_0, x_1, \dots, x_{n-1}||
$$

\n
$$
= ||x_0, x_1, \dots, x_{n-1}|| + \alpha ||x_0, x_1, \dots, x_{n-1}||
$$

\n
$$
= ||x_0, x_1, \dots, x_{n-1}|| + ||x'_0, x_1, \dots, x_{n-1}||
$$

for all $x_1, \ldots, x_{n-1} \in X$

Remark 3.2. For every $\gamma \in R_+^0$, $\theta \neq x_0 \in X$, there exist x_1, \ldots, x_{n-1} such that

$$
||x_0,x_1,\ldots,x_{n-1}||=\gamma.
$$

 $Indeed, assume x_1'$ x'_1, \ldots, x'_n n_{n-1} are linear independent to x_0 . Then

$$
||x_0, x_1', \dots, x_{n-1}'|| = \rho > 0.
$$

We obtain

$$
||x_0, \sqrt[n-1]{\frac{\gamma}{\rho}}x'_1, \ldots, \sqrt[n-1]{\frac{\gamma}{\rho}}x'_{n-1}|| = \gamma
$$

Let

$$
x_i = \sqrt[n-1]{\frac{\gamma}{\rho}} x'_i (i = 1, \dots, n-1).
$$

Theorem 3.3. If $x_0, x_1, \ldots, x_n \in X$ and $||x_1 - x_0, x_2 - x_0, \ldots, x_n - x_0|| \neq 0$, that is x_0, x_1, \ldots, x_n are not collinear, then for any $0 \neq \gamma \in R_+^0$, there exists an element $\omega \in X$ such that

$$
||x_0 - \omega, x_1 - \omega, x_2 - \omega, \dots, x_{n-1} - \omega||
$$

= γ
= $||x_1 - \omega, x_2 - \omega, x_3 - \omega, \dots, x_n - \omega||$

Proof. By hypothesis, we have

$$
\beta \triangleq ||x_1 - x_0, x_2 - x_0, \dots, x_n - x_0|| > 0.
$$

Set $\omega = x_1 + \frac{2\gamma}{\beta}$ $\frac{2\gamma}{\beta}(\frac{x_0+x_n}{2}-x_1)$, we have

$$
||x_0 - \omega, x_1 - \omega, \dots, x_{n-1} - \omega||
$$

= $||x_0 - x_1 - \frac{2\gamma}{\beta}(\frac{x_0 + x_n}{2} - x_1), -\frac{2\gamma}{\beta}(\frac{x_0 + x_n}{2} - x_1), \dots,$

$$
x_{n-1} - x_1 - \frac{2\gamma}{\beta}(\frac{x_0 + x_n}{2} - x_1)||
$$

= $||x_0 - x_1, -\frac{2\gamma}{\beta}(\frac{x_0 + x_n}{2} - x_1), x_2 - x_1, \dots, x_{n-1} - x_1||$
= $\frac{\gamma}{\beta}||x_0 - x_1, x_0 - x_1 + x_1 - x_1, x_2 - x_1, \dots, x_{n-1} - x_1||$
= $\frac{\gamma}{\beta}||x_0 - x_1, x_n - x_1, x_2 - x_1, \dots, x_{n-1} - x_1||$
= $\frac{\gamma}{\beta}||x_1 - x_0, x_2 - x_0, \dots, x_n - x_0||$
= γ

and

$$
||x_1 - \omega, x_2 - \omega, \dots, x_n - \omega||
$$

= $|| - \frac{2\gamma}{\beta} (\frac{x_0 + x_n}{2} - x_1), x_2 - x_1 - \frac{2\gamma}{\beta} (\frac{x_0 + x_n}{2} - x_1), \dots,$

$$
x_n - x_1 - \frac{2\gamma}{\beta} (\frac{x_0 + x_n}{2} - x_1) ||
$$

= $\frac{\gamma}{\beta} ||x_0 - x_1 + x_0 - x_1, x_2 - x_1, x_3 - x_1, \dots, x_n - x_1 ||$
= $\frac{\gamma}{\beta} ||x_0 - x_1, x_2 - x_1, x_3 - x_1, \dots, x_n - x_1 ||$
= $\frac{\gamma}{\beta} ||x_1 - x_0, x_2 - x_0, x_3 - x_0, \dots, x_n - x_0 ||$
= γ

Because of this theorem, some results in [3] can be simplified in condition.

Lemma 3.4 ([3]). Assume that if x, y and z are 2-collinear then $f(x)$, $f(y)$ and $f(z)$ are 2-collinear and that f satisfies (nDOPP). Then f preserves the $n\textrm{-}distance \, \tfrac{1}{k} \, \textrm{ for any positive integer } k.$

Theorem 3.5 ([3]). Assume that if x_0, x_1, \ldots, x_m are m-collinear, then $f(x_0), f(x_1), \ldots, f(x_m)$ are m-collinear, $m = 2, n$, and that if $y_1 - y_2 = \alpha(y_3$ y_2) for some $\alpha \in (0,1]$ then $f(y_1) - f(y_2) = \beta(f(y_3) - f(y_2))$ for some $\beta \in$ $(0, 1]$. If f satisfies (nDOPP), then f is an n-isometry.

Lemma 3.6. Let X and Y be two linear n-normed spaces, $f : X \rightarrow Y$ preserves equality of *n*-distance, p is the gauge function for f . Then

- (1) $p(0) = 0$, that is, if x_0, x_1, \ldots, x_n are n-collinear, then $f(x_0), f(x_1), \ldots, f(x_n)$ are n-collinear.
- (2) If f is n-continuous at $\theta \neq x_0 \in X$, then p is continuous.

Proof. (1) $p(0)=p(||u, \ldots, u||) = ||f(u) - f(\theta), \ldots, f(u) - f(\theta)|| = 0.$ If x_0, x_1, \ldots, x_n are *n*-collinear, then

$$
||x_1 - x_0, \dots, x_n - x_0|| = 0.
$$

Because $p(0) = 0$, that is

$$
||f(x_1) - f(x_0), \dots, f(x_n) - f(x_0)|| = 0.
$$

Then $f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0)$ are linearly dependent. That is, $f(x_0), f(x_1), \ldots, f(x_n)$ are *n*-collinear. (2) For any $\varepsilon > 0$, $t_0 \in R_+^0$,

(a) Let $t_0=0$. By Remark 3.2, select $x_1, \ldots, x_{n-1} \in X$ such that

$$
||x_0, x_1, \ldots, x_{n-1}|| = 1.
$$

On the other hand, we have

 $|p(t) - p(0)| = p(t)$ $= p(t||x_0, x_1, \ldots, x_{n-1}||)$ $= \|f(x_0) - f(\theta), f(\bigcap_{n=1}^{n-1} |f(x_1) - f(\theta), \dots, f(\bigcap_{n=1}^{n-1} f(x_{n-1}) - f(\theta)|\)$
 $= \|f(a) - f(a) - f(x_{n-1})\|_F^2$
 $= \|f(a) - f(a)\|_F^2$ $=\|f(\theta)-f(x_0), f(\sqrt[n-1]{tx_1})-f(x_0), \ldots, f(\sqrt[n-1]{tx_{n-1}})-f(x_0)\|$. For any $t \in R_+^0$, since f is n-continuous at x_0 and

$$
||\theta - x_0, \sqrt[n-1]{tx_1 - x_0}, \dots, \sqrt[n-1]{tx_{n-1} - x_0}|| = ||x_0, \sqrt[n-1]{tx_1}, \dots, \sqrt[n-1]{tx_{n-1}}||
$$

= |t|||x_0, x_1, \dots, x_{n-1}||
= |t|.

When $|t| < \delta$, we have $|p(t) - p(0)| < \varepsilon$. That is, p is continuous at 0. (b) If $t_0 \neq 0$. By Remark 3.2, there exist $x_1, \ldots, x_{n-1} \in X$, such that

$$
||\frac{1}{t_0}x_0, x_1, \dots, x_{n-1}|| = 1.
$$

For any $t \in R_+^0$,

 $| p(t) - p(t_0) |$ $=$ $|p(t)| \frac{1}{t_c}$ $\frac{1}{t_0}x_0, x_1, \ldots, x_{n-1}\| - p(t_0 \| \frac{1}{t_0})$ $\frac{1}{t_0}x_0, x_1, \ldots, x_{n-1}$ ||)| $=$ $|p(||\frac{t}{t}$ $\frac{t}{t_0}x_0, x_1, \ldots, x_{n-1} \|\big) - p(\|x_0, x_1, \ldots, x_{n-1}\|)$ $=\infty$ $\frac{t}{t_0}x_0$ – $f(\theta)$, $f(x_1)$ – $f(\theta)$, ..., $f(x_{n-1})$ – $f(\theta)$ || $-\|f(x_0) - f(\theta), f(x_1) - f(\theta), \ldots, f(x_{n-1}) - f(\theta)\|$ \leq || $f(t)$ $\frac{t}{t_0}x_0$ – $f(x_0)$, $f(x_1)$ – $f(\theta)$, ..., $f(x_{n-1})$ – $f(\theta)$ || .

Since $\frac{t}{t_0}x_0, x_0, \theta$ are 2-collinear, from (1), $f(\frac{t}{t_0})$ $(\frac{t}{t_0}x_0), f(x_0), f(\theta)$ are 2-collinear. That is

$$
f(\theta) - f(x_0) = k(f(\frac{t}{t_0}x_0) - f(x_0))
$$

for some real number k . Thus we have

$$
|| f(\frac{t}{t_0}x_0) - f(x_0), f(x_1) - f(\theta), \dots, f(x_{n-1}) - f(\theta)||
$$

= $|| f(\frac{t}{t_0}x_0) - f(x_0), f(x_1) - f(\theta) + k(f(\frac{t}{t_0}x_0) - f(x_0)), \dots,$
 $f(x_{n-1}) - f(\theta) + k(f(\frac{t}{t_0}x_0) - f(x_0)) ||$
= $|| f(\frac{t}{t_0}x_0) - f(x_0), f(x_1) - f(x_0), \dots, f(x_{n-1}) - f(x_0) ||.$

By hypothesis, f is *n*-continuous at x_0 . When

$$
\begin{aligned} \|\frac{t}{t_0}x_0 - x_0, x_1 - x_0, \dots, x_{n-1} - x_0\| &= \left\|t - t_0\right\| \|\frac{1}{t_0}x_0, x_1, \dots, x_{n-1}\| \\ &= \left\|t - t_0\right\| < \delta. \end{aligned}
$$

We have

$$
||f(\frac{t}{t_0}x_0)-f(x_0),f(x_1)-f(x_0),\ldots,f(x_{n-1})-f(x_0)|| < \varepsilon.
$$

That is, if $|t - t_0| < \delta$, then

 $|p(t) - p(t_0)| \leq ||f||^{\frac{t}{t_0}}$ $\frac{t}{t_0}x_0$) – $f(x_0)$, $f(x_1)$ – $f(x_0)$, ..., $f(x_{n-1})$ – $f(x_0)$ || $\lt \varepsilon$ To sum up, if f is n-continuous at x_0 , p is a continuous function. \Box

Lemma 3.7. Let X, Y, f, p be as in Lemma 3.6. If $p\neq 0$, then f is injective.

Proof. If f is not injective, assume there are $u, v \in X$ and $u \neq v$, but $f(u) = f(v)$. Since $p \neq 0$, there exists $0 \neq \alpha \in R_+^0$, such that $p(\beta)=\alpha$. Since $u - v \neq \theta$, by Remark 3.2, we could find $x_1, \ldots, x_{n-1} \in X$ such that

$$
||u - v, x_1 - v, \dots, x_{n-1} - v|| = \beta.
$$

Thus

$$
||f(u) - f(v), f(x_1) - f(v), \dots, f(x_{n-1}) - f(v)|| = p(\beta) = \alpha > 0,
$$

which is a contradiction to

$$
||f(u) - f(v), f(x_1) - f(v), \dots, f(x_{n-1}) - f(v)|| = 0,
$$
 as $f(u) = f(v)$.

Lemma 3.8. Let X, Y, f, p be as in Lemma 3.6. If p is injective, $f(\theta) = \theta$, then u and v are linearly dependent if and only if $f(u)$ and $f(v)$ are linearly dependent.

Theorem 3.9. Let X and Y be two linear n-normed spaces, $f : X \rightarrow Y$ preserves equality of n-distance, p is the gauge function for f. If p is injective, f is n-continuous at some point $\theta \neq x_0 \in X$, then $f = \sqrt[n]{\lambda}g$, where g is a n-isometry.

Proof. Let $h(x) = f(x) - f(\theta)$. Then h is a mapping of preserving equality of *n*-distance with the same gauge function as f. And $h(\theta) = \theta$. Thus we may assume that $f(\theta)=\theta$. By Lemma 3.6, we know p is continuous. Thus, in order to show p is linear, we only need to prove that it is additive. For any $\gamma_1, \gamma_2 \in R_+^0$, assume $\gamma_1, \gamma_2 > 0$ (as $\gamma_i=0$, i=1,2 are trivial), select $\gamma_0 > 0$ such that $\gamma_i < \gamma_0$, i=1,2. Since $p(0) = 0$ and p is injective, p is monotone increasing function on R_+^0 . So $p(\gamma_i) < p(\gamma_0)$, i=1,2. By Lemma 3.7, f is injective, thus there exists $\omega \neq \theta$ in Y such that $f^{-1}(\omega) \neq \theta$.

By Remark 3.2, we can find $x_1, \ldots, x_{n-1} \in X$, such that

$$
||f^{-1}(\omega), x_1, \ldots, x_{n-1}|| = \gamma_0.
$$

Thus, we have

$$
||(\omega), f(x_1), \ldots, f(x_{n-1})|| = p(||f^{-1}(\omega), x_1, \ldots, x_{n-1}||) = p(\gamma_0) > 0.
$$

Set $x_0 = f^{-1}(\frac{p(\gamma_1)}{p(\gamma_0)})$ $\frac{p(\gamma_1)}{p(\gamma_0)}\omega$), then $p(||x_0, x_1, \ldots, x_{n-1}||)$ $=$ $|| f(x_0) - f(\theta), f(x_1) - f(\theta), \ldots, f(x_{n-1}) - f(\theta) ||$ $=\left\| \frac{p(\gamma_1)}{p(\gamma_2)} \right\|$ $\frac{p(\gamma_1)}{p(\gamma_0)}\omega, f(x_1),\ldots,f(x_{n-1})$ $=\frac{p(\gamma_1)}{p(\gamma_2)}$ $\frac{p(\gamma_1)}{p(\gamma_0)}\|\omega, f(x_1),\ldots, f(x_{n-1})\|$ $=p(\gamma_1)$. Since p is injective, so $||x_0, x_1, \ldots, x_{n-1}||=\gamma_1$. Set $x_0' = \frac{x_0}{\gamma_1}$ $\frac{x_0}{\gamma_1}$, we have

$$
||x'_0, x_1,...,x_{n-1}|| = 1, f(\gamma_1 x'_0) = \frac{p(\gamma_1)}{p(\gamma_0)}\omega.
$$

Similarly, we could find $x_0'' \in X$ such that

$$
||x_0'', x_1, \ldots, x_{n-1}|| = 1, \ f(\gamma_2 x_0'') = -\frac{p(\gamma_2)}{p(\gamma_0)}\omega.
$$

Because $\gamma_1 x_0'$ $\frac{1}{0}$ and $-\gamma_2 x_0'$ δ_0' are linearly dependent, by Lemma 3.8, so are $f(\gamma_1 x_0')$ $_{0}^{\prime})$ and $f(-\gamma_2 x_0^{\prime})$ $\int_{0}^{\tilde{}}$), $f(-\gamma_{2}x_{0}^{\prime}%)\rho_{1}(\tilde{r}_{0})\rho_{2}(\tilde{r}_{0})$ \sum_{0}^{6} = $kf(\gamma_1 x_0)$ $\binom{1}{0}$ for some real number k. And also, we have $p(\gamma_1 + \gamma_2) = p(\|(\gamma_1 + \gamma_2)x'_0)$

and also, we have
$$
p(\gamma_1 + \gamma_2)=p(||(\gamma_1 + \gamma_2)x'_0, x_1, \dots, x_{n-1}||)
$$

\n
$$
=p(||\gamma_1x'_0 - (-\gamma_2x'_0), x_1 - (-\gamma_2x'_0), \dots, x_{n-1} - (-\gamma_2x'_0)||)
$$
\n
$$
=||f(\gamma_1x'_0) - f(-\gamma_2x'_0), f(x_1) - f(-\gamma_2x'_0), \dots, f(x_{n-1}) - f(-\gamma_2x'_0)||
$$
\n
$$
\leq ||f(\gamma_1x'_0), f(x_1) - f(-\gamma_2x'_0), \dots, f(x_{n-1}) - f(-\gamma_2x'_0)||
$$
\n
$$
+ ||f(-\gamma_2x'_0), f(x_1) - f(-\gamma_2x'_0), \dots, f(x_{n-1}) - f(-\gamma_2x'_0)||
$$
\n
$$
= ||f(\gamma_1x'_0), f(x_1), \dots, f(x_{n-1})|| + ||f(-\gamma_2x'_0), f(x_1), \dots, f(x_{n-1})||
$$
\n
$$
= p(||\gamma_1x'_0, x_1, \dots, x_{n-1}||) + p(||-\gamma_2x'_0, x_1, \dots, x_{n-1}||)
$$
\n
$$
= p(\gamma_1) + p(\gamma_2).
$$

Since $f(\gamma_1 x_0)$ f_{0}) and $f(\gamma_{2}x_{0}''')$ $_{0}^{\prime\prime}$) are linearly dependent, from Lemma 3.8, $-\gamma_2 x_0'' = l(\gamma_1 x_0' - \gamma_2 x_0''$ $\binom{n}{0}$ for some real number l. Because $f(\gamma_1 x_0)$ $'_{0}$) and $-f(\gamma_2x''_0)$ $_{0}^{\prime\prime})$ are linearly dependent with the same direction, from Lemma 3.1, we have

$$
p(\gamma_1) + p(\gamma_2) = p(||\gamma_1 x'_0, x_1, \dots, x_{n-1}||) + p(||\gamma_2 x''_0, x_1, \dots, x_{n-1}||)
$$

\n= $||f(\gamma_1 x'_0), f(x_1), \dots, f(x_{n-1})|| + ||-f(\gamma_2 x''_0), f(x_1), \dots, f(x_{n-1})||$
\n= $||f(\gamma_1 x'_0) - f(\gamma_2 x''_0), f(x_1), \dots, f(x_{n-1})||$
\n= $||f(\gamma_1 x'_0) - f(\gamma_2 x''_0), f(x_1) - f(\gamma_2 x''_0), \dots, f(x_{n-1}) - f(\gamma_2 x''_0)||$
\n= $p(||\gamma_1 x'_0 - \gamma_2 x''_0, x_1 - \gamma_2 x''_0, \dots, x_{n-1} - \gamma_2 x''_0||)$
\n= $p(||\gamma_1 x'_0 - \gamma_2 x''_0, x_1, \dots, x_{n-1}||) \leq p(||\gamma_1 x'_0, x_1, \dots, x_{n-1}|| + ||\gamma_2 x''_0, x_1, \dots, x_{n-1}||)$
\n= $p(\gamma_1 + \gamma_2).$
\nThat is $p(\gamma_1 + \gamma_2) = p(\gamma_1) + p(\gamma_2).$

Until now, we have got p is linear on R_+^0 . Then

$$
||f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0)|| = p(||x_1 - x_0, \ldots, x_n - x_0||)
$$

= $\lambda ||x_1 - x_0, \ldots, x_n - x_0||.$

Set $g = \frac{f}{\sqrt[n]{\lambda}}$, then g is a n-isometry.

A direct application of Theorem 3.3 in [4] yields the following corollary:

Corollary 3.10. Let X and Y be two linear n-normed spaces, $f : X \rightarrow Y$ preserves equality of *n*-distance, p be the gauge function for f . If p is injective, f is n-continuous at some point $\theta \neq x_0 \in X$, then f is affine.

Acknowledgements. I am deeply grateful to Professor Guanggui Ding for his great encouragement and many helpful suggestions.

$$
\qquad \qquad \Box
$$

REFERENCES

- [1] J.A. Baker, Isometries in normed spaces, Amer. Math. Monthly. (1971), 655–658.
- [2] H. Y. Chu, On the Mazur-Ulam problem in linear 2-normed spaces, J. Math. Anal. Appl., 327 (2007), 1041–1045.
- [3] H. Y. Chu, K. H. Lee and C. K. Park, On the Aleksandrov problem in linear n-normed spaces, Nonlinear. Anal. TMA., 59(2004), 1001–1011.
- [4] H. Y. Chu,et al., Mappings of conservative distances in linear n-normed spaces, Nonlinear Analysis TMA., doi:10.1016/j.na.2008.02.002
- [5] H. Y. Chu, S. H. Ku and D. S. Kang, Characterizations on 2-isometries, J. Math. Anal. Appl., 340 (2008), 621–628.
- [6] R. Hu, On the maps preserving the equality of 2-distance, J. Math. Anal. Appl., 343 (2008), 1161–1165.
- [7] W. J. Jia, On the mappings preserving the equality of 2-distance, submitted
- [8] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989), 299–319.
- [9] A. Misiak, *Orthogonality and orthogonormality in n-inner product spaces*, Math. Nachr., 143 (1989), 249–261.
- [10] S. Mazur and S. Ulam, Sur les transformations isometriques d'espaces vectoriels normes, C. R. Acad. Sci. Paris. 194 (1932), 946–948.