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Abstract. In this paper, we get if f : X → Y preserves equality of n-distance with X and

Y be two linear n-normed spaces, f is n-continuous at some θ 6= x0 ∈ X, then f is affine.

1. Introduction

In 1989, Misiak [8,9] defined n-normed spaces and investigated the prop-
erties of these spaces. The concept of an n-normed space is a generalization
of the concepts of a normed space and of a 2-normed space. In 2004, Chu
et al. [3] defined the concept of n-isometry which is suitable for representing
the notion of n-distance preserving mappings in linear n-normed spaces and
studied the Aleksandrov problem in linear n-normed spaces.

S.Mazur and S.Ulam [10] proved the theorem: Every isometry of a real
normed linear space onto a real normed linear space is a linear mapping up
to translation. The property is not true for complex normed vector spaces.
The hypothesis of surjectivity is essential. Without this assumption Baker [1]
proved that every isometry from a real normed space into a strictly convex
normed space is linear up to translation. Chu [2] proved that the Mazur-
Ulam theorem holds when X and Y are linear 2-normed spaces. Chu et al.
[4] proved that the n-isometry mapped to a linear n-normed space is affine.
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Weijia Jia[7] proved that under some conditions, a 2-continuous function is
also a 2-isometry. In this paper, we replace n-isometry by the more general
notion of equality of n-distance preserving mappings and give the definition of
n-continuous. At last, we get under some conditions, a n-continuous function
is also a n-isometry.

2. Definitions and Lemmas

In this section, we will give some definitions and lemmas in linear n-normed
spaces.

Definition 2.1. [3] Let X be a real linear space with dim X ≥ n and ‖ ·, . . . , · ‖
: Xn→R a function. Then (X, ‖ ·, . . . , · ‖) is called a linear n-normed space
if
(nN1) ‖x1, . . . , xn‖= 0 ⇐⇒ x1, . . ., xn are linearly dependent,
(nN2) ‖x1, . . . , xn‖=‖xj1, . . . , xjn‖ for every permutation (j1, . . . , jn)

of (1, . . . , n),
(nN3) ‖αx1, . . . , xn‖=| α |‖x1, . . . , xn‖,
(nN4) ‖x + y, x2, . . . , xn‖≤‖x,x2, . . . ,xn‖+‖y, x2,. . . , xn‖

for all α ∈ R and x, y, x1, . . . , xn ∈ X.
The function ‖ ·, . . . , · ‖ is called an n-norm on X.

Definition 2.2 ([3]). Let X and Y be linear n-normed spaces and f : X→Y
be a mapping. We call f an n-isometry if
‖x1 − x0, . . . , xn − x0‖=‖f(x1)− f(x0), . . . , f(xn)− f(x0)‖

for all x0, x1, . . . , xn ∈ X.

Definition 2.3. Let X and Y be linear n-normed spaces, x0∈X and f : X→Y
be a mapping. Then f is said to be n-continuous at x0 if for every ε>0, there
exists positive real number δ such that
‖x1 − x0, . . . , xn − x0‖<δ implies ‖f(x1)− f(x0), . . . , f(xn)− f(x0)‖<ε

and f is said to be n-continuous on X if f is n-continuous at x for all x ∈X.

Definition 2.4. Let X and Y be linear n-normed spaces and f : X→Y be a
mapping. Then f is said to preserve equality of n-distance if and only if there
exists a function p : R0

+→R0
+ such that for each x0, x1, . . . , xn ∈X

‖f(x1)− f(x0), . . . , f(xn)− f(x0)‖=p(‖x1 − x0, . . . , xn − x0‖)
The function p is called the gauge function for f .

Definition 2.5 ([3]). The points x0, x1, . . . , xn of X are said to be n-collinear
if for every i, {xj−xi|0≤j 6=i≤n} is linearly dependent.
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Remark 2.6 ([3]). The points x0, x1 and x2 are said to be 2-collinear if and
only if x2 − x0=t(x1 − x0) for some real number t.

Lemma 2.7 ([3]). Let xi be an element of a linear n-normed space X for
every i∈{1,. . . , n} and γ be a real number. Then
‖x1, . . . , xi, . . . , xj, . . . , xn‖=‖x1, . . . , xi, . . . , xj+γxi, . . . , xn‖

for all 1 ≤ i 6= j ≤ n.

From now on, unless otherwise specified, let X and Y be real linear n-
normed spaces, f : X→Y be a mapping. X and Y have dimensions greater
than n− 1. Let x0, x1, . . . , xn be points of X.

3. Main Results

Lemma 3.1. For x0, x
′
0 ∈ X, if x0 and x

′
0 are linearly dependent with the

same direction, that is, x
′
0 = αx0 for some α > 0, then

‖x0 + x
′
0, x1, . . . , xn−1‖=‖x0, x1, . . . , xn−1‖+‖x′0, x1, . . . , xn−1‖

for all x1, . . . , xn−1 ∈X.

Proof. Let x
′
0=αx0 for some α>0. Then we have

‖x0 + x
′
0, x1, . . . , xn−1‖ = ‖x0 + αx0, x1, . . . , xn−1‖

= (1 + α)‖x0, x1, . . . , xn−1‖
= ‖x0, x1, . . . , xn−1‖+ α‖x0, x1, . . . , xn−1‖
= ‖x0, x1, . . . , xn−1‖+ ‖x′0, x1, . . . , xn−1‖

for all x1, . . . , xn−1 ∈X ¤

Remark 3.2. For every γ ∈R0
+, θ 6=x0∈X, there exist x1, . . . , xn−1 such that

||x0, x1, . . . , xn−1|| = γ.

Indeed, assume x
′
1, . . . , x

′
n−1 are linear independent to x0. Then

||x0, x
′
1, . . . , x

′
n−1|| = ρ > 0.

We obtain

||x0, n−1

√
γ

ρ
x
′
1, . . . ,

n−1

√
γ

ρ
x
′
n−1|| = γ

Let

xi = n−1

√
γ

ρ
x
′
i(i = 1, . . . , n− 1).
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Theorem 3.3. If x0, x1, . . . , xn ∈X and ‖x1 − x0, x2 − x0, . . . , xn − x0‖6=0,
that is x0, x1, . . . , xn are not collinear, then for any 06=γ∈R0

+, there exists an
element ω ∈X such that

||x0 − ω, x1 − ω, x2 − ω, . . . , xn−1 − ω||
= γ

= ||x1 − ω, x2 − ω, x3 − ω, . . . , xn − ω||
Proof. By hypothesis, we have

β , ||x1 − x0, x2 − x0, . . . , xn − x0|| > 0.

Set ω=x1+2γ
β (x0+xn

2 −x1), we have

||x0 − ω, x1 − ω, . . . , xn−1 − ω||
= ||x0 − x1 − 2γ

β
(
x0 + xn

2
− x1),−2γ

β
(
x0 + xn

2
− x1), . . . ,

xn−1 − x1 − 2γ

β
(
x0 + xn

2
− x1)||

= ||x0 − x1,−2γ

β
(
x0 + xn

2
− x1), x2 − x1, . . . , xn−1 − x1||

=
γ

β
||x0 − x1, x0 − x1 + xn − x1, x2 − x1, . . . , xn−1 − x1||

=
γ

β
||x0 − x1, xn − x1, x2 − x1, . . . , xn−1 − x1||

=
γ

β
||x1 − x0, x2 − x0, . . . , xn − x0||

= γ

and
||x1 − ω, x2 − ω, . . . , xn − ω||
= || − 2γ

β
(
x0 + xn

2
− x1), x2 − x1 − 2γ

β
(
x0 + xn

2
− x1), . . . ,

xn − x1 − 2γ

β
(
x0 + xn

2
− x1)||

=
γ

β
||x0 − x1 + xn − x1, x2 − x1, x3 − x1, . . . , xn − x1||

=
γ

β
||x0 − x1, x2 − x1, x3 − x1, . . . , xn − x1||

=
γ

β
||x1 − x0, x2 − x0, x3 − x0, . . . , xn − x0||

= γ

¤
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Because of this theorem, some results in [3] can be simplified in condition.

Lemma 3.4 ([3]). Assume that if x, y and z are 2-collinear then f(x), f(y)
and f(z) are 2-collinear and that f satisfies (nDOPP ). Then f preserves the
n-distance 1

k for any positive integer k.

Theorem 3.5 ([3]). Assume that if x0, x1, . . . , xm are m-collinear, then
f(x0), f(x1), . . . , f(xm) are m-collinear, m = 2, n, and that if y1 − y2=α(y3 −
y2) for some α ∈ (0, 1] then f(y1) − f(y2) = β(f(y3) − f(y2)) for some β ∈
(0, 1]. If f satisfies (nDOPP ), then f is an n-isometry.

Lemma 3.6. Let X and Y be two linear n-normed spaces, f : X→Y pre-
serves equality of n-distance, p is the gauge function for f . Then

(1) p(0) = 0, that is, if x0, x1, . . . , xn are n-collinear,
then f(x0), f(x1), . . . , f(xn) are n-collinear.

(2) If f is n-continuous at θ 6=x0∈X, then p is continuous.

Proof. (1) p(0)=p(‖u, . . . , u‖)=‖f(u)− f(θ), . . ., f(u)− f(θ)‖=0.
If x0, x1, . . . , xn are n-collinear, then

||x1 − x0, . . . , xn − x0|| = 0.

Because p(0) = 0, that is

||f(x1)− f(x0), . . . , f(xn)− f(x0)|| = 0.

Then f(x1)− f(x0), . . . , f(xn)− f(x0) are linearly dependent. That is,
f(x0), f(x1), . . . , f(xn) are n-collinear.
(2) For any ε > 0, t0∈R0

+,
(a) Let t0=0. By Remark 3.2, select x1, . . . , xn−1 ∈X such that

||x0, x1, . . . , xn−1|| = 1.

On the other hand, we have
|p(t)− p(0)|=p(t)
=p(t‖x0, x1, . . . , xn−1‖)
=‖f(x0)− f(θ), f( n−1

√
tx1)− f(θ), . . . , f( n−1

√
txn−1)− f(θ)‖

=‖f(θ)− f(x0), f( n−1
√

tx1)− f(x0), . . . , f( n−1
√

txn−1)− f(x0)‖ .
For any t∈R0

+, since f is n-continuous at x0 and

||θ − x0,
n−1
√

tx1 − x0, . . . ,
n−1
√

txn−1 − x0|| = ||x0,
n−1
√

tx1, . . . ,
n−1
√

txn−1||
= |t|||x0, x1, . . . , xn−1||
= |t|.
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When |t|<δ, we have |p(t)− p(0)|<ε. That is, p is continuous at 0.
(b) If t0 6= 0. By Remark 3.2, there exist x1, . . . , xn−1 ∈X, such that

|| 1
t0

x0, x1, . . . , xn−1|| = 1.

For any t ∈ R0
+,

| p(t)− p(t0) |
=| p (t‖ 1

t0
x0, x1, . . . , xn−1‖)− p(t0 ‖ 1

t0
x0, x1, . . . , xn−1‖)|

=|p(‖ t
t0

x0, x1, . . . , xn−1‖)−p(‖x0, x1, . . . , xn−1‖)|
=|‖f( t

t0
x0)− f(θ), f(x1)− f(θ), . . . , f(xn−1)− f(θ)‖

−‖f(x0)− f(θ), f(x1)− f(θ), . . . , f(xn−1)− f(θ)‖|
≤‖f( t

t0
x0)− f(x0), f(x1)− f(θ), . . ., f(xn−1)− f(θ)‖ .

Since t
t0

x0, x0, θ are 2-collinear, from (1), f( t
t0

x0), f(x0), f(θ) are 2-collinear.
That is

f(θ)− f(x0) = k(f(
t

t0
x0)− f(x0))

for some real number k. Thus we have
‖f( t

t0
x0)− f(x0), f(x1)− f(θ), . . . , f(xn−1)− f(θ)‖

=‖f( t
t0

x0)− f(x0), f(x1)− f(θ) + k(f( t
t0

x0)− f(x0)), . . . ,
f(xn−1)− f(θ)+k(f( t

t0
x0)− f(x0)) ‖

=‖f( t
t0

x0)− f(x0), f(x1)− f(x0), . . . , f(xn−1)− f(x0)‖ .
By hypothesis, f is n-continuous at x0. When

‖ t

t0
x0 − x0, x1 − x0, . . . , xn−1 − x0‖ = | t− t0 | ‖ 1

t0
x0, x1, . . . , xn−1‖

= | t− t0 |< δ.

We have

||f(
t

t0
x0)− f(x0), f(x1)− f(x0), . . . , f(xn−1)− f(x0)|| < ε.

That is, if |t− t0|<δ, then
|p(t)− p(t0)|≤‖f( t

t0
x0)− f(x0), f(x1)− f(x0), . . . , f(xn−1)− f(x0)‖<ε

To sum up, if f is n-continuous at x0, p is a continuous function. ¤

Lemma 3.7. Let X, Y , f , p be as in Lemma 3.6. If p 6=0, then f is injective.

Proof. If f is not injective, assume there are u, v ∈X and u6=v, but f(u) = f(v).
Since p 6= 0, there exists 06=α∈R0

+, such that p(β)=α.
Since u− v 6= θ, by Remark 3.2, we could find x1, . . . , xn−1 ∈X such that

||u− v, x1 − v, . . . , xn−1 − v|| = β.
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Thus

||f(u)− f(v), f(x1)− f(v), . . . , f(xn−1)− f(v)|| = p(β) = α > 0,

which is a contradiction to

||f(u)− f(v), f(x1)− f(v), . . . , f(xn−1)− f(v)|| = 0,

as f(u) = f(v). ¤

Lemma 3.8. Let X, Y , f , p be as in Lemma 3.6. If p is injective, f(θ)=θ,
then u and v are linearly dependent if and only if f(u) and f(v) are linearly
dependent.

Theorem 3.9. Let X and Y be two linear n-normed spaces, f : X→Y pre-
serves equality of n-distance, p is the gauge function for f . If p is injective, f is
n-continuous at some point θ 6=x0∈X, then f= n

√
λg, where g is a n-isometry.

Proof. Let h(x) = f(x) − f(θ). Then h is a mapping of preserving equality
of n-distance with the same gauge function as f . And h(θ) = θ. Thus we
may assume that f(θ)=θ. By Lemma 3.6, we know p is continuous. Thus, in
order to show p is linear, we only need to prove that it is additive. For any
γ1, γ2 ∈ R0

+, assume γ1, γ2 > 0 ( as γi=0, i=1,2 are trivial), select γ0 > 0 such
that γi<γ0, i=1,2. Since p(0) = 0 and p is injective, p is monotone increasing
function on R0

+. So p(γi)<p(γ0), i=1,2. By Lemma 3.7, f is injective, thus
there exists ω 6= θ in Y such that f−1(ω)6=θ.
By Remark 3.2, we can find x1, . . . , xn−1 ∈X, such that

||f−1(ω), x1, . . . , xn−1|| = γ0.

Thus, we have

||(ω), f(x1), . . . , f(xn−1)|| = p(||f−1(ω), x1, . . . , xn−1||) = p(γ0) > 0.

Set x0=f−1(p(γ1)
p(γ0)ω), then

p(‖x0, x1, . . . , xn−1‖)
=‖f(x0)− f(θ), f(x1)− f(θ), . . . , f(xn−1)− f(θ)‖
=‖p(γ1)

p(γ0)ω, f(x1),. . . , f(xn−1)‖
=p(γ1)

p(γ0)‖ω, f(x1),. . . , f(xn−1)‖
=p(γ1).

Since p is injective, so ‖x0, x1, . . . , xn−1‖=γ1.
Set x

′
0=

x0
γ1

, we have

||x′0, x1, . . . , xn−1|| = 1, f(γ1x
′
0) =

p(γ1)
p(γ0)

ω.
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Similarly, we could find x
′′
0 ∈ X such that

||x′′0 , x1, . . . , xn−1|| = 1, f(γ2x
′′
0) = −p(γ2)

p(γ0)
ω.

Because γ1x
′
0 and −γ2x

′
0 are linearly dependent, by Lemma 3.8, so are f(γ1x

′
0)

and f(−γ2x
′
0), f(−γ2x

′
0)=kf(γ1x

′
0) for some real number k.

And also, we have p(γ1 + γ2)=p(‖(γ1 + γ2)x
′
0, x1, . . . , xn−1‖)

=p(‖γ1x
′
0−(−γ2x

′
0), x1−(−γ2x

′
0), . . . , xn−1−(−γ2x

′
0)‖)

=‖f(γ1x
′
0)−f(−γ2x

′
0), f(x1)−f(−γ2x

′
0), . . . , f(xn−1)−f(−γ2x

′
0)‖

≤‖f(γ1x
′
0), f(x1)−f(−γ2x

′
0), . . . , f(xn−1)−f(−γ2x

′
0)‖

+‖f(−γ2x
′
0), f(x1)−f(−γ2x

′
0), . . . , f(xn−1)−f(−γ2x

′
0)‖

=‖f(γ1x
′
0), f(x1), . . . , f(xn−1)‖+‖f(−γ2x

′
0), f(x1), . . . , f(xn−1)‖

=p(‖γ1x
′
0, x1, . . . , xn−1‖)+p(‖−γ2x

′
0, x1, . . . , xn−1‖)

=p(γ1)+p(γ2).
Since f(γ1x

′
0) and f(γ2x

′′
0) are linearly dependent, from Lemma 3.8,

−γ2x
′′
0=l(γ1x

′
0−γ2x

′′
0) for some real number l. Because f(γ1x

′
0) and −f(γ2x

′′
0)

are linearly dependent with the same direction, from Lemma 3.1, we have
p(γ1) + p(γ2)=p(‖γ1x

′
0, x1, . . . , xn−1‖)+p(‖γ2x

′′
0 , x1, . . . , xn−1‖)

=‖f(γ1x
′
0), f(x1), . . . , f(xn−1)‖+‖−f(γ2x

′′
0), f(x1), . . . , f(xn−1)‖

=‖f(γ1x
′
0)−f(γ2x

′′
0), f(x1), . . . , f(xn−1)‖

=‖f(γ1x
′
0)−f(γ2x

′′
0), f(x1)−f(γ2x

′′
0), . . . , f(xn−1)−f(γ2x

′′
0)‖

=p(‖γ1x
′
0−γ2x

′′
0 , x1−γ2x

′′
0 , . . . , xn−1−γ2x

′′
0‖)

=p(‖γ1x
′
0−γ2x

′′
0 , x1, . . . , xn−1‖)

≤p(‖γ1x
′
0, x1, . . . , xn−1‖+‖γ2x

′′
0 , x1, . . . , xn−1‖)

=p(γ1 + γ2).
That is p(γ1 + γ2)=p(γ1)+p(γ2).
Until now, we have got p is linear on R0

+. Then

‖f(x1)− f(x0), . . . , f(xn)− f(x0)‖ = p(‖x1 − x0, . . . , xn − x0‖)
= λ‖x1 − x0, . . . , xn − x0‖.

Set g = f
n√

λ
, then g is a n-isometry. ¤

A direct application of Theorem 3.3 in [4] yields the following corollary:

Corollary 3.10. Let X and Y be two linear n-normed spaces, f : X → Y
preserves equality of n-distance, p be the gauge function for f . If p is injective,
f is n-continuous at some point θ 6= x0 ∈ X, then f is affine.
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