Nonlinear Functional Analysis and Applications Vol. 15, No. 4 (2010), pp. 545-553

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \bigodot 2010 Kyungnam University Press

CHARACTERIZATIONS ON LINEAR N-NORMED SPACES

Xiaoyun Chen¹ and Meimei Song²

¹Department of Mathematics, Tianjin University of Technology, Tianjin 300384, China e-mail: xiayu830621@163.com

²Department of Mathematics, Tianjin University of Technology Tianjin 300384, China e-mail: songmeimei@tjut.edu.cn

Abstract. In this paper, we get if $f: X \to Y$ preserves equality of *n*-distance with X and Y be two linear *n*-normed spaces, f is *n*-continuous at some $\theta \neq x_0 \in X$, then f is affine.

1. INTRODUCTION

In 1989, Misiak [8,9] defined *n*-normed spaces and investigated the properties of these spaces. The concept of an *n*-normed space is a generalization of the concepts of a normed space and of a 2-normed space. In 2004, Chu et al. [3] defined the concept of *n*-isometry which is suitable for representing the notion of *n*-distance preserving mappings in linear *n*-normed spaces and studied the Aleksandrov problem in linear *n*-normed spaces.

S.Mazur and S.Ulam [10] proved the theorem: Every isometry of a real normed linear space onto a real normed linear space is a linear mapping up to translation. The property is not true for complex normed vector spaces. The hypothesis of surjectivity is essential. Without this assumption Baker [1] proved that every isometry from a real normed space into a strictly convex normed space is linear up to translation. Chu [2] proved that the Mazur-Ulam theorem holds when X and Y are linear 2-normed spaces. Chu et al. [4] proved that the *n*-isometry mapped to a linear *n*-normed space is affine.

 $^{^0\}mathrm{Received}$ May 18, 2009. Revised October 14, 2009.

⁰2000 Mathematics Subject Classification: 46B20.

 $^{^0\}mathrm{Keywords}:$ Linear n-normed space, preserve equality of n-distance, n-continuous.

 $^{^0{\}rm Foundation}$ item: Science and Technology Foundation of Educational Committee of Tianjin (20060402).

Weijia Jia[7] proved that under some conditions, a 2-continuous function is also a 2-isometry. In this paper, we replace *n*-isometry by the more general notion of equality of n-distance preserving mappings and give the definition of *n*-continuous. At last, we get under some conditions, a *n*-continuous function is also a *n*-isometry.

2. Definitions and Lemmas

In this section, we will give some definitions and lemmas in linear n-normed spaces.

Definition 2.1. [3] Let X be a real linear space with dim $X \ge n$ and $\|\cdot, \ldots, \cdot\|$: $X^n \rightarrow R$ a function. Then $(X, \|\cdot, \ldots, \cdot\|)$ is called a linear n-normed space if

- $(nN_1) ||x_1, \ldots, x_n|| = 0 \iff x_1, \ldots, x_n$ are linearly dependent,
- $(nN_2) ||x_1, ..., x_n|| = ||x_{j1}, ..., x_{jn}||$ for every permutation (j1, ..., jn)of (1, ..., n),
- $(nN_3) \|\alpha x_1, \ldots, x_n\| = |\alpha| \|x_1, \ldots, x_n\|,$
- $(nN_4) ||x + y, x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||y, x_2, \dots, x_n||$ for all $\alpha \in R$ and $x, y, x_1, \dots, x_n \in X$.

The function $\|\cdot, \ldots, \cdot\|$ is called an *n*-norm on X.

Definition 2.2 ([3]). Let X and Y be linear n-normed spaces and $f : X \rightarrow Y$ be a mapping. We call f an n-isometry if

 $||x_1 - x_0, \dots, x_n - x_0|| = ||f(x_1) - f(x_0), \dots, f(x_n) - f(x_0)||$ for all $x_0, x_1, \dots, x_n \in X$.

Definition 2.3. Let X and Y be linear n-normed spaces, $x_0 \in X$ and $f : X \to Y$ be a mapping. Then f is said to be n-continuous at x_0 if for every $\varepsilon > 0$, there exists positive real number δ such that

 $||x_1 - x_0, \ldots, x_n - x_0|| < \delta$ implies $||f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0)|| < \varepsilon$ and f is said to be n-continuous on X if f is n-continuous at x for all $x \in X$.

Definition 2.4. Let X and Y be linear n-normed spaces and $f : X \to Y$ be a mapping. Then f is said to preserve equality of n-distance if and only if there exists a function $p : R^0_+ \to R^0_+$ such that for each $x_0, x_1, \ldots, x_n \in X$ $\|f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0)\| = p(\|x_1 - x_0, \ldots, x_n - x_0\|)$ The function p is called the gauge function for f.

Definition 2.5 ([3]). The points x_0, x_1, \ldots, x_n of X are said to be n-collinear if for every i, $\{x_i - x_i | 0 \le j \ne i \le n\}$ is linearly dependent.

Remark 2.6 ([3]). The points x_0 , x_1 and x_2 are said to be 2-collinear if and only if $x_2 - x_0 = t(x_1 - x_0)$ for some real number t.

Lemma 2.7 ([3]). Let x_i be an element of a linear n-normed space X for every $i \in \{1, \ldots, n\}$ and γ be a real number. Then

 $||x_1, \ldots, x_i, \ldots, x_j, \ldots, x_n|| = ||x_1, \ldots, x_i, \ldots, x_j + \gamma x_i, \ldots, x_n||$ for all $1 \le i \ne j \le n$.

From now on, unless otherwise specified, let X and Y be real linear *n*-normed spaces, $f: X \to Y$ be a mapping. X and Y have dimensions greater than n-1. Let x_0, x_1, \ldots, x_n be points of X.

3. MAIN RESULTS

Lemma 3.1. For x_0 , $x'_0 \in X$, if x_0 and x'_0 are linearly dependent with the same direction, that is, $x'_0 = \alpha x_0$ for some $\alpha > 0$, then

 $||x_0 + x'_0, x_1, \dots, x_{n-1}|| = ||x_0, x_1, \dots, x_{n-1}|| + ||x'_0, x_1, \dots, x_{n-1}||$ for all $x_1, \dots, x_{n-1} \in X$.

Proof. Let $x'_0 = \alpha x_0$ for some $\alpha > 0$. Then we have

$$\begin{aligned} \|x_0 + x_0, x_1, \dots, x_{n-1}\| &= \|x_0 + \alpha x_0, x_1, \dots, x_{n-1}\| \\ &= (1+\alpha) \|x_0, x_1, \dots, x_{n-1}\| \\ &= \|x_0, x_1, \dots, x_{n-1}\| + \alpha \|x_0, x_1, \dots, x_{n-1}\| \\ &= \|x_0, x_1, \dots, x_{n-1}\| + \|x_0', x_1, \dots, x_{n-1}\| \end{aligned}$$

for all $x_1, \ldots, x_{n-1} \in X$

Remark 3.2. For every $\gamma \in \mathbb{R}^0_+$, $\theta \neq x_0 \in X$, there exist x_1, \ldots, x_{n-1} such that

$$|x_0, x_1, \ldots, x_{n-1}|| = \gamma.$$

Indeed, assume x'_1, \ldots, x'_{n-1} are linear independent to x_0 . Then

$$||x_0, x_1', \dots, x_{n-1}'|| = \rho > 0.$$

 $We \ obtain$

$$||x_0, \sqrt[n-1]{\frac{\gamma}{\rho}}x'_1, \dots, \sqrt[n-1]{\frac{\gamma}{\rho}}x'_{n-1}|| = \gamma$$

Let

$$x_i = \sqrt[n-1]{\frac{\gamma}{\rho}} x'_i (i = 1, \dots, n-1).$$

Theorem 3.3. If $x_0, x_1, \ldots, x_n \in X$ and $||x_1 - x_0, x_2 - x_0, \ldots, x_n - x_0|| \neq 0$, that is x_0, x_1, \ldots, x_n are not collinear, then for any $0 \neq \gamma \in R^0_+$, there exists an element $\omega \in X$ such that

$$||x_0 - \omega, x_1 - \omega, x_2 - \omega, \dots, x_{n-1} - \omega||$$

= γ
= $||x_1 - \omega, x_2 - \omega, x_3 - \omega, \dots, x_n - \omega||$

Proof. By hypothesis, we have

$$\beta \triangleq ||x_1 - x_0, x_2 - x_0, \dots, x_n - x_0|| > 0.$$

Set $\omega = x_1 + \frac{2\gamma}{\beta} (\frac{x_0 + x_n}{2} - x_1)$, we have

$$\begin{aligned} &|x_1 + \frac{\gamma}{\beta}(\frac{-y_2}{2} - x_1), \text{ we have} \\ &||x_0 - \omega, x_1 - \omega, \dots, x_{n-1} - \omega|| \\ &= ||x_0 - x_1 - \frac{2\gamma}{\beta}(\frac{x_0 + x_n}{2} - x_1), -\frac{2\gamma}{\beta}(\frac{x_0 + x_n}{2} - x_1), \dots, \\ &x_{n-1} - x_1 - \frac{2\gamma}{\beta}(\frac{x_0 + x_n}{2} - x_1)|| \\ &= ||x_0 - x_1, -\frac{2\gamma}{\beta}(\frac{x_0 + x_n}{2} - x_1), x_2 - x_1, \dots, x_{n-1} - x_1|| \\ &= \frac{\gamma}{\beta}||x_0 - x_1, x_0 - x_1 + x_n - x_1, x_2 - x_1, \dots, x_{n-1} - x_1|| \\ &= \frac{\gamma}{\beta}||x_0 - x_1, x_n - x_1, x_2 - x_1, \dots, x_{n-1} - x_1|| \\ &= \frac{\gamma}{\beta}||x_1 - x_0, x_2 - x_0, \dots, x_n - x_0|| \\ &= \gamma \end{aligned}$$

and

$$\begin{aligned} ||x_1 - \omega, x_2 - \omega, \dots, x_n - \omega|| \\ &= || - \frac{2\gamma}{\beta} (\frac{x_0 + x_n}{2} - x_1), x_2 - x_1 - \frac{2\gamma}{\beta} (\frac{x_0 + x_n}{2} - x_1), \dots, \\ &x_n - x_1 - \frac{2\gamma}{\beta} (\frac{x_0 + x_n}{2} - x_1)|| \\ &= \frac{\gamma}{\beta} ||x_0 - x_1 + x_n - x_1, x_2 - x_1, x_3 - x_1, \dots, x_n - x_1|| \\ &= \frac{\gamma}{\beta} ||x_0 - x_1, x_2 - x_1, x_3 - x_1, \dots, x_n - x_1|| \\ &= \frac{\gamma}{\beta} ||x_1 - x_0, x_2 - x_0, x_3 - x_0, \dots, x_n - x_0|| \\ &= \gamma \end{aligned}$$

Because of this theorem, some results in [3] can be simplified in condition.

Lemma 3.4 ([3]). Assume that if x, y and z are 2-collinear then f(x), f(y) and f(z) are 2-collinear and that f satisfies (nDOPP). Then f preserves the n-distance $\frac{1}{k}$ for any positive integer k.

Theorem 3.5 ([3]). Assume that if x_0, x_1, \ldots, x_m are m-collinear, then $f(x_0), f(x_1), \ldots, f(x_m)$ are m-collinear, m = 2, n, and that if $y_1 - y_2 = \alpha(y_3 - y_2)$ for some $\alpha \in (0, 1]$ then $f(y_1) - f(y_2) = \beta(f(y_3) - f(y_2))$ for some $\beta \in (0, 1]$. If f satisfies (nDOPP), then f is an n-isometry.

Lemma 3.6. Let X and Y be two linear n-normed spaces, $f : X \rightarrow Y$ preserves equality of n-distance, p is the gauge function for f. Then

(1) p(0) = 0, that is, if x_0, x_1, \ldots, x_n are n-collinear,

then $f(x_0), f(x_1), \ldots, f(x_n)$ are n-collinear.

(2) If f is n-continuous at $\theta \neq x_0 \in X$, then p is continuous.

Proof. (1) $p(0)=p(||u,...,u||)=||f(u) - f(\theta), ..., f(u) - f(\theta)||=0.$ If $x_0, x_1, ..., x_n$ are *n*-collinear, then

$$||x_1 - x_0, \dots, x_n - x_0|| = 0.$$

Because p(0) = 0, that is

$$||f(x_1) - f(x_0), \dots, f(x_n) - f(x_0)|| = 0$$

Then $f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0)$ are linearly dependent. That is, $f(x_0), f(x_1), \ldots, f(x_n)$ are *n*-collinear. (2) For any $\varepsilon > 0, t_0 \in \mathbb{R}^0_+$,

(a) Let $t_0=0$. By Remark 3.2, select $x_1, \ldots, x_{n-1} \in X$ such that

$$||x_0, x_1, \dots, x_{n-1}|| = 1.$$

On the other hand, we have

 $\begin{aligned} &|p(t) - p(0)| = p(t) \\ &= p(t||x_0, x_1, \dots, x_{n-1}||) \\ &= ||f(x_0) - f(\theta), f(\stackrel{n-1}{\sqrt{t}} x_1) - f(\theta), \dots, f(\stackrel{n-1}{\sqrt{t}} x_{n-1}) - f(\theta)|| \\ &= ||f(\theta) - f(x_0), f(\stackrel{n-1}{\sqrt{t}} x_1) - f(x_0), \dots, f(\stackrel{n-1}{\sqrt{t}} x_{n-1}) - f(x_0)|| . \end{aligned}$ For any $t \in \mathbb{R}^0_+$, since f is n-continuous at x_0 and

$$\begin{aligned} ||\theta - x_0, \sqrt[n-1]{t}x_1 - x_0, \dots, \sqrt[n-1]{t}x_{n-1} - x_0|| &= ||x_0, \sqrt[n-1]{t}x_1, \dots, \sqrt[n-1]{t}x_{n-1}|| \\ &= |t|||x_0, x_1, \dots, x_{n-1}|| \\ &= |t|. \end{aligned}$$

When $|t| < \delta$, we have $|p(t) - p(0)| < \varepsilon$. That is, p is continuous at 0. (b) If $t_0 \neq 0$. By Remark 3.2, there exist $x_1, \ldots, x_{n-1} \in X$, such that

$$\left\|\frac{1}{t_0}x_0, x_1, \dots, x_{n-1}\right\| = 1.$$

For any $t \in R^0_+$,

 $\begin{aligned} | p(t) - p(t_0) | \\ = | p(t) \| \frac{1}{t_0} x_0, x_1, \dots, x_{n-1} \|) - p(t_0 \| \frac{1}{t_0} x_0, x_1, \dots, x_{n-1} \|) | \\ = | p(\| \frac{t}{t_0} x_0, x_1, \dots, x_{n-1} \|) - p(\| x_0, x_1, \dots, x_{n-1} \|) | \\ = | \| f(\frac{t}{t_0} x_0) - f(\theta), f(x_1) - f(\theta), \dots, f(x_{n-1}) - f(\theta) \| \\ - \| f(x_0) - f(\theta), f(x_1) - f(\theta), \dots, f(x_{n-1}) - f(\theta) \| | \\ \leq \| f(\frac{t}{t_0} x_0) - f(x_0), f(x_1) - f(\theta), \dots, f(x_{n-1}) - f(\theta) \| . \end{aligned}$

Since $\frac{t}{t_0}x_0, x_0, \theta$ are 2-collinear, from (1), $f(\frac{t}{t_0}x_0), f(x_0), f(\theta)$ are 2-collinear. That is

$$f(\theta) - f(x_0) = k(f(\frac{t}{t_0}x_0) - f(x_0))$$

for some real number k. Thus we have

$$\|f(\frac{t}{t_0}x_0) - f(x_0), f(x_1) - f(\theta), \dots, f(x_{n-1}) - f(\theta)\| = \|f(\frac{t}{t_0}x_0) - f(x_0), f(x_1) - f(\theta) + k(f(\frac{t}{t_0}x_0) - f(x_0)), \dots, f(x_{n-1}) - f(\theta) + k(f(\frac{t}{t_0}x_0) - f(x_0))\| = \|f(\frac{t}{t_0}x_0) - f(x_0) - f(x_0)\|$$

 $= \|f(\frac{t}{t_0}x_0) - f(x_0), f(x_1) - f(x_0), \dots, f(x_{n-1}) - f(x_0)\|.$ By hypothesis, f is n-continuous at x_0 . When

$$\begin{aligned} \left\| \frac{t}{t_0} x_0 - x_0, x_1 - x_0, \dots, x_{n-1} - x_0 \right\| &= \| t - t_0 \| \left\| \frac{1}{t_0} x_0, x_1, \dots, x_{n-1} \right\| \\ &= \| t - t_0 \| < \delta. \end{aligned}$$

We have

$$||f(\frac{t}{t_0}x_0) - f(x_0), f(x_1) - f(x_0), \dots, f(x_{n-1}) - f(x_0)|| < \varepsilon.$$

That is, if $|t - t_0| < \delta$, then

 $|p(t) - p(t_0)| \le ||f(\frac{t}{t_0}x_0) - f(x_0), f(x_1) - f(x_0), \dots, f(x_{n-1}) - f(x_0)|| < \varepsilon$ To sum up, if f is *n*-continuous at x_0 , p is a continuous function.

Lemma 3.7. Let X, Y, f, p be as in Lemma 3.6. If $p \neq 0$, then f is injective.

Proof. If f is not injective, assume there are $u, v \in X$ and $u \neq v$, but f(u) = f(v). Since $p \neq 0$, there exists $0 \neq \alpha \in R^0_+$, such that $p(\beta) = \alpha$. Since $u - v \neq \theta$, by Remark 3.2, we could find $x_1, \ldots, x_{n-1} \in X$ such that

$$||u - v, x_1 - v, \dots, x_{n-1} - v|| = \beta.$$

Thus

$$||f(u) - f(v), f(x_1) - f(v), \dots, f(x_{n-1}) - f(v)|| = p(\beta) = \alpha > 0$$

which is a contradiction to

$$||f(u) - f(v), f(x_1) - f(v), \dots, f(x_{n-1}) - f(v)|| = 0,$$

= f(v).

as f(u) = f(v).

Lemma 3.8. Let X, Y, f, p be as in Lemma 3.6. If p is injective, $f(\theta)=\theta$, then u and v are linearly dependent if and only if f(u) and f(v) are linearly dependent.

Theorem 3.9. Let X and Y be two linear n-normed spaces, $f : X \to Y$ preserves equality of n-distance, p is the gauge function for f. If p is injective, f is n-continuous at some point $\theta \neq x_0 \in X$, then $f = \sqrt[n]{\lambda}g$, where g is a n-isometry.

Proof. Let $h(x) = f(x) - f(\theta)$. Then h is a mapping of preserving equality of n-distance with the same gauge function as f. And $h(\theta) = \theta$. Thus we may assume that $f(\theta)=\theta$. By Lemma 3.6, we know p is continuous. Thus, in order to show p is linear, we only need to prove that it is additive. For any $\gamma_1, \gamma_2 \in R^0_+$, assume $\gamma_1, \gamma_2 > 0$ (as $\gamma_i=0$, i=1,2 are trivial), select $\gamma_0 > 0$ such that $\gamma_i < \gamma_0$, i=1,2. Since p(0) = 0 and p is injective, p is monotone increasing function on R^0_+ . So $p(\gamma_i) < p(\gamma_0)$, i=1,2. By Lemma 3.7, f is injective, thus there exists $\omega \neq \theta$ in Y such that $f^{-1}(\omega) \neq \theta$.

By Remark 3.2, we can find $x_1, \ldots, x_{n-1} \in X$, such that

$$||f^{-1}(\omega), x_1, \dots, x_{n-1}|| = \gamma_0.$$

Thus, we have

$$||(\omega), f(x_1), \dots, f(x_{n-1})|| = p(||f^{-1}(\omega), x_1, \dots, x_{n-1}||) = p(\gamma_0) > 0.$$

Set $x_0 = f^{-1}(\frac{p(\gamma_1)}{p(\gamma_0)}\omega)$, then $p(||x_0, x_1, \dots, x_{n-1}||)$ $= ||f(x_0) - f(\theta), f(x_1) - f(\theta), \dots, f(x_{n-1}) - f(\theta)||$ $= ||\frac{p(\gamma_1)}{p(\gamma_0)}\omega, f(x_1), \dots, f(x_{n-1})||$ $= \frac{p(\gamma_1)}{p(\gamma_0)}||\omega, f(x_1), \dots, f(x_{n-1})||$ $= p(\gamma_1).$ Since p is injective, so $||x_0, x_1, \dots, x_{n-1}|| = \gamma_1.$ Set $x'_0 = \frac{x_0}{\gamma_1}$, we have

$$||x'_{0}, x_{1}, \dots, x_{n-1}|| = 1, \ f(\gamma_{1}x'_{0}) = \frac{p(\gamma_{1})}{p(\gamma_{0})}\omega.$$

Similarly, we could find $x_0'' \in X$ such that

$$||x_0'', x_1, \dots, x_{n-1}|| = 1, \ f(\gamma_2 x_0'') = -\frac{p(\gamma_2)}{p(\gamma_0)}\omega.$$

Because $\gamma_1 x'_0$ and $-\gamma_2 x'_0$ are linearly dependent, by Lemma 3.8, so are $f(\gamma_1 x'_0)$ and $f(-\gamma_2 x'_0)$, $f(-\gamma_2 x'_0) = kf(\gamma_1 x'_0)$ for some real number k. And also, we have $p(\gamma_1 + \gamma_2) = p(||(\gamma_1 + \gamma_2) x'_0, x_1, \dots, x_{n-1}||)$ $= p(||\gamma_1 x'_0 - (-\gamma_2 x'_0), x_1 - (-\gamma_2 x'_0), \dots, x_{n-1} - (-\gamma_2 x'_0)||)$ $= ||f(\gamma_1 x'_0) - f(-\gamma_2 x'_0), f(x_1) - f(-\gamma_2 x'_0), \dots, f(x_{n-1}) - f(-\gamma_2 x'_0)||$ $\leq ||f(\gamma_1 x'_0), f(x_1) - f(-\gamma_2 x'_0), \dots, f(x_{n-1}) - f(-\gamma_2 x'_0)||$ $+ ||f(-\gamma_2 x'_0), f(x_1) - f(-\gamma_2 x'_0), \dots, f(x_{n-1}) - f(-\gamma_2 x'_0)||$ $= ||f(\gamma_1 x'_0), f(x_1), \dots, f(x_{n-1})|| + ||f(-\gamma_2 x'_0), f(x_1), \dots, f(x_{n-1})||$ $= p(||\gamma_1 x'_0, x_1, \dots, x_{n-1}||) + p(||-\gamma_2 x'_0, x_1, \dots, x_{n-1}||)$

Since $f(\gamma_1 x'_0)$ and $f(\gamma_2 x''_0)$ are linearly dependent, from Lemma 3.8, $-\gamma_2 x''_0 = l(\gamma_1 x'_0 - \gamma_2 x''_0)$ for some real number *l*. Because $f(\gamma_1 x'_0)$ and $-f(\gamma_2 x''_0)$ are linearly dependent with the same direction, from Lemma 3.1, we have

$$p(\gamma_{1}) + p(\gamma_{2}) = p(\|\gamma_{1}x'_{0}, x_{1}, \dots, x_{n-1}\|) + p(\|\gamma_{2}x''_{0}, x_{1}, \dots, x_{n-1}\|)$$

$$= \|f(\gamma_{1}x'_{0}), f(x_{1}), \dots, f(x_{n-1})\| + \|-f(\gamma_{2}x''_{0}), f(x_{1}), \dots, f(x_{n-1})\|$$

$$= \|f(\gamma_{1}x'_{0}) - f(\gamma_{2}x''_{0}), f(x_{1}) - f(\gamma_{2}x''_{0}), \dots, f(x_{n-1}) - f(\gamma_{2}x''_{0})\|$$

$$= p(\|\gamma_{1}x'_{0} - \gamma_{2}x''_{0}, x_{1} - \gamma_{2}x''_{0}, \dots, x_{n-1} - \gamma_{2}x''_{0}\|)$$

$$= p(\|\gamma_{1}x'_{0} - \gamma_{2}x''_{0}, x_{1}, \dots, x_{n-1}\|)$$

$$\leq p(\|\gamma_{1}x'_{0}, x_{1}, \dots, x_{n-1}\| + \|\gamma_{2}x''_{0}, x_{1}, \dots, x_{n-1}\|)$$

$$= p(\gamma_{1} + \gamma_{2}).$$
hat is $p(\gamma_{1} + \gamma_{2}) = p(\gamma_{1}) + p(\gamma_{2}).$
Then

Until now, we have got p is linear on R^0_+ . Then

$$\|f(x_1) - f(x_0), \dots, f(x_n) - f(x_0)\| = p(\|x_1 - x_0, \dots, x_n - x_0\|) \\ = \lambda \|x_1 - x_0, \dots, x_n - x_0\|.$$

Set $g = \frac{f}{\sqrt[n]{\lambda}}$, then g is a *n*-isometry.

A direct application of Theorem 3.3 in [4] yields the following corollary:

Corollary 3.10. Let X and Y be two linear n-normed spaces, $f : X \to Y$ preserves equality of n-distance, p be the gauge function for f. If p is injective, f is n-continuous at some point $\theta \neq x_0 \in X$, then f is affine.

Acknowledgements. I am deeply grateful to Professor Guanggui Ding for his great encouragement and many helpful suggestions.

Т

References

- [1] J.A. Baker, Isometries in normed spaces, Amer. Math. Monthly. (1971), 655–658.
- [2] H. Y. Chu, On the Mazur-Ulam problem in linear 2-normed spaces, J. Math. Anal. Appl., 327 (2007), 1041–1045.
- [3] H. Y. Chu, K. H. Lee and C. K. Park, On the Aleksandrov problem in linear n-normed spaces, Nonlinear. Anal. TMA., 59(2004), 1001–1011.
- H. Y. Chu, et al., Mappings of conservative distances in linear n-normed spaces, Nonlinear Analysis TMA., doi:10.1016/j.na.2008.02.002
- [5] H. Y. Chu, S. H. Ku and D. S. Kang, *Characterizations on 2-isometries*, J. Math. Anal. Appl., **340** (2008), 621–628.
- [6] R. Hu, On the maps preserving the equality of 2-distance, J. Math. Anal. Appl., 343 (2008), 1161–1165.
- [7] W. J. Jia, On the mappings preserving the equality of 2-distance, submitted
- [8] A. Misiak, *n-inner product spaces*, Math. Nachr. 140 (1989), 299–319.
- [9] A. Misiak, Orthogonality and orthogonormality in n-inner product spaces, Math. Nachr., 143 (1989), 249–261.
- S. Mazur and S. Ulam, Sur les transformations isometriques d'espaces vectoriels normes, C. R. Acad. Sci. Paris. 194 (1932), 946–948.