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Abstract. In this paper, we get if f: X — Y preserves equality of n-distance with X and

Y be two linear n-normed spaces, f is n-continuous at some 0 # xo € X, then f is affine.

1. INTRODUCTION

In 1989, Misiak [8,9] defined m-normed spaces and investigated the prop-
erties of these spaces. The concept of an n-normed space is a generalization
of the concepts of a normed space and of a 2-normed space. In 2004, Chu
et al. [3] defined the concept of n-isometry which is suitable for representing
the notion of n-distance preserving mappings in linear n-normed spaces and
studied the Aleksandrov problem in linear n-normed spaces.

S.Mazur and S.Ulam [10] proved the theorem: Every isometry of a real
normed linear space onto a real normed linear space is a linear mapping up
to translation. The property is not true for complex normed vector spaces.
The hypothesis of surjectivity is essential. Without this assumption Baker [1]
proved that every isometry from a real normed space into a strictly convex
normed space is linear up to translation. Chu [2] proved that the Mazur-
Ulam theorem holds when X and Y are linear 2-normed spaces. Chu et al.
[4] proved that the n-isometry mapped to a linear n-normed space is affine.
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Weijia Jia[7] proved that under some conditions, a 2-continuous function is
also a 2-isometry. In this paper, we replace n-isometry by the more general
notion of equality of n-distance preserving mappings and give the definition of
n-continuous. At last, we get under some conditions, a n-continuous function
is also a n-isometry.

2. DEFINITIONS AND LEMMAS

In this section, we will give some definitions and lemmas in linear n-normed
spaces.

Definition 2.1. [3] Let X be a real linear space with dim X >n and || ..., - ||

: X">R a function. Then (X, || -,...,- ||) is called a linear n-normed space

if

(nN1) ||x1, ..., zu||= 0 < x4, ..., z,, are linearly dependent,

(nN2) ||z1, ..., zpl|=llzj1, - -, jnl| for every permutation (j1, ..., jn)
of (1, ..., n),

(nN3) ||z, ..., zp||=| a|l|lz1, ..., 20l

(nNg) |lx+y, x2, ..., zp||<||lx,x2, ... xnll+]y, 22, . ., 20|

foralla€e Randz, y, x1, ..., xn € X.

The function || -,...,- || is called an n-norm on X.

Definition 2.2 ([3]). Let X and Y be linear n-normed spaces and f : X—Y
be a mapping. We call f an n-isometry if

|21 =20, ..., oo — ol = f(21) — f(z0), -+ 5 fl@n) — fz0)]l

for all xo,x1,..., 2, € X.

Definition 2.3. Let X andY be linear n-normed spaces, xg€X and f : X—Y
be a mapping. Then f is said to be n-continuous at xq if for every >0, there
exists positive real number § such that

lx1 — o, ..., Tn — mo||<d implies ||f(x1) — f(xo), ..., flxn) — f(zo)||<e
and f is said to be n-continuous on X if f is n-continuous at x for all x €X.

Definition 2.4. Let X and Y be linear n-normed spaces and f : X—Y be a
mapping. Then f is said to preserve equality of n-distance if and only if there
exists a function p : R(}r—>R9r such that for each xg,x1,...,xn €X

1f(z1) = f(z0), - -, f@n) = flzo)l=p(lz1 — 20, ..., @n — 20ll)
The function p is called the gauge function for f.

Definition 2.5 ([3]). The points xo,x1,...,z, of X are said to be n-collinear
if for every i, {xj—x;|0<j#i<n} is linearly dependent.
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Remark 2.6 ([3]). The points xo, x1 and x2 are said to be 2-collinear if and
only if xo — xo=t(x1 — o) for some real number t.

Lemma 2.7 ([3]). Let z; be an element of a linear n-normed space X for
every i€{1l,...,n} and v be a real number. Then

[ P . S 52 TIE R I Z FIRINE. o U ] |
forall 1 <i+#j<n.

From now on, unless otherwise specified, let X and Y be real linear n-
normed spaces, f : X—Y be a mapping. X and Y have dimensions greater
than n — 1. Let zg, 21, ..., T, be points of X.

3. MAIN RESULTS

Lemma 3.1. For xg, :1;2] € X, if g and 3:6 are linearly dependent with the
same direction, that is, xé) = axq for some a > 0, then

o + 2g, 1, -, Tn_al|=llz0, 1, -+, To_1l|+]|Tg, T1, .o, Toil]
forallxy,...,xp_1 €X.

Proof. Let xz):axo for some a>0. Then we have

”ZBO + xszl? ) $n71|| = HxO + axg, 21, . .. :-fnle
(1+ a)||zo, z1, ..., 2p_1]]
= ||:E0,1‘1,...,:13n,1||—|—a||:130,x1,...,mn,1||
= |’$0,$1,...,xn_1H+‘|1’6,I’1,...,$n_1|’
for all z1,...,z,1 €X O

Remark 3.2. For every -y ER(}F, 0#£xoe X, there exist x1,...,xn_1 such that

H:UO)Il) CIEaE axn—lH =7.
i / . .
Indeed, assume xq, ..., x,_, are linear independent to xy. Then
! !
llzo, 1, zpa|[ = p > 0.
We obtain
/7 /7
[|lzo, ™ \1[”31 " anall =
P p
Let

Ti = "\1/71‘;@: L...,n=1).
P
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Theorem 3.3. If xg,z1,...,2, €X and ||x1 — x9, 2 — X0, ..., Ty — To||#0,
that is xg,x1,...,x, are not collinear, then for any O;éfyeRO , there exists an
element w € X such that

llzo —w, 21 —w, T2 —w, ..., Tp_1 — W

=

=z —w,ze —w, 3 —w,..., T, —w|

Proof. By hypothesis, we have
B = ||z — x0, T2 — T, . . ., Ty — x0|| > 0.

Set w:$1+%7(m+Tx"—x1), we have

||x0_w)x1_w7"'7$n71_w||
“llwo —zq — (BT In g 2V B0
0 1 ﬁ 9 1), ,8 9 1)y
pm =1 = (T )|

n—1 1 ﬁ 9 1

27 To + Tn

—Hl‘o xr1, —(7—xl),xg—xl,...,xn_l—xlﬂ
I5] 2

:%on—xl,wo—xl+$n—$1,$2—$17--~,9€n—1—le

7

—EHHUO—xl,wn—$1,$2—$1,---79€n—1—HJ1H

7

—BHHM—960,332—960,~--73?n—$0H

and
||x1—w,x2 W, axn_wH
(L Gl B T
3 9 1), %2 1 3 5 1)seees

tn— w1 — (DI )

n 1 ﬁ 9 1
:%|’$0_$1+In—$1,$2—xl,ﬁg—xl,...,$n—$1”
_

_5”330_5517-172_xlux?)_Ila‘--axn_fElH
_
—BHﬂfl—$0,x2—$0,$3—I0,-.-,$n—560||
=9
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Because of this theorem, some results in [3] can be simplified in condition.

Lemma 3.4 ([3]). Assume that if x, y and z are 2-collinear then f(x), f(y)

and f(z) are 2-collinear and that f satisfies (nDOPP). Then f preserves the

n-distance % for any positive integer k.

Theorem 3.5 ([3]). Assume that if xo,x1,..., Ty are m-collinear, then
f(zo), f(x1),..., f(zm) are m-collinear, m = 2,n, and that if y1 — ya=c(y3 —

y2) for some a € (0,1] then f(y1) — f(y2) = B(f(y3) — f(y2)) for some B €
(0,1]. If f satisfies (nDOPP), then f is an n-isometry.

Lemma 3.6. Let X and Y be two linear n-normed spaces, f : X—Y pre-
serves equality of n-distance, p is the gauge function for f. Then

(1) p(0) =0, that is, if o, 21, .., Ty are n-collinear,
then f(xo), f(x1),-.., f(zy) are n-collinear.
(2) If f is n-continuous at 0Fxo€X, then p is continuous.

Proof. (1) p(O)=p(|[u, ..., ul)=[f(u) = f(0), ..., f(u) = f(O)]|=0.

If 29,21, ..., 2, are n-collinear, then
l|lz1 — zo, ..., 2y — x| = 0.
Because p(0) = 0, that is

[ f(z1) = f(x0),- .-, f(zn) = f(z0)]| = 0.

Then f(x1) — f(z0),..., f(xn) — f(xo) are linearly dependent. That is,

f(zo), f(x1),..., f(zn) are n-collinear.
(2) For any € > 0, tyeRY,
(a) Let to=0. By Remark 3.2, select x1,...,z,—1 €X such that

on,xl,...,xn_lH = 1.

On the other hand, we have
lp(t) — p(0)|=p(?)
=p(t[|zo, x1, ..., Tp-1]|)
= f(zo) = £(8), F("Vtx1) = f(0), ..., f("Vixn-1)— fO)]
=[1£(8) — f(wo), f("Vtx1) = f(xo), .., f("VEwa-1) = f(zo)] -

For any t€R0+, since f is n-continuous at xy and

10 — zo, "Viz1 — wo,..., "Viwa_1 — 20| = ||x0, "ViT1, .., "Viwn ||
= |t|||xo, 1, -y Tpo1]|
-
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When [t|<d, we have |p(t) — p(0)|<e. That is, p is continuous at 0.
(b) If ty # 0. By Remark 3.2, there exist x1,...,x,-1 €X, such that

Htlo:L’o,JIl,...,xn_lH = 1.
For anytERE)F,
| p(t) — p(to) |
=|p (tllEzo, z1, oy 2poall) = p(to | 20, 21, - 2pa )]
=lp(lg5zo, 21, -+ s Tn—1l)=p(llz0, 21, -, 2p]])]
=[If (o) — f(0), flx1) = f(0), ..., fwn-1)— (O]
=|[f(z0) = f(0), f(z1) = f(O), ... f(ﬂfn 1) — FO)l]
<|[f(f5w0) = f(wo), f(z1) = £(O), .., flzn1) = FO)-

Since %xo,xo,ﬂ are 2-collinear, from (1), f(to x0), f(xo), f(0) are 2-collinear.
That is

£(6) = f(a0) = (f(0) = f(a0)
for some real number k. Thus we have
1f(x0) = f(zo), fla1) = f(0), ..., flza—1) = FO)

=f(fw0) = f(wo), f(z1) = £(O) + k(f(F5w0) — f(0)), -,
f@n-1) = f(O)+k(f (5570) — f(0)) |

=[lf(Ezo) = f(w0), f(z1) = f(w0), -y fwn—1) = f(zo)] -
By hypothesis, f is n-continuous at xg. When

t
\\%$0—$0,$1—3¢07-~,$n—1—JfoH = !t—tolH 9607961,.‘-7%—1!\
= ’t—t0’<5.
We have

Hf(;l‘o) — f(o), (1) = f(20), - -, f(wn1) — f(o)l] <e.

That is, if |t — to|<0, then
[p(t) — p(to)|<I|f (F520) — f (o), fla1) = f(@o), ..., fan-1) — f(zo)|<e

To sum up, if f is n-continuous at xg, p is a continuous function. O
Lemma 3.7. Let X, Y, f, p be as in Lemma 3.6. If p#£0, then f is injective.

Proof. If f is not injective, assume there are u, v €X and u#v, but f(u) = f(v).
Since p # 0, there exists 0£a€RY, such that p(3)=
Since u — v # 0, by Remark 3.2, we could find x1,...,2,_1 €X such that

llu—v,21 —v,...,2p1 —v|| =0
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Thus
1f(w) = f(v), f(z1) = f(v),-.., flzn-1) = f(0)|[ = p(B) = a >0,

which is a contradiction to
[f(u) = f(v), f(z1) = f(v),..., f(zn-1) = f(v)|| =0,
as f(u) = f(v). O

Lemma 3.8. Let X, Y, f, p be as in Lemma 3.6. If p is injective, f(0)=0,
then uw and v are linearly dependent if and only if f(u) and f(v) are linearly
dependent.

Theorem 3.9. Let X and Y be two linear n-normed spaces, f : X—Y pre-
serves equality of n-distance, p is the gauge function for f. If p is injective, f is
n-continuous at some point O£z X, then f=3/Ag, where g is a n-isometry.

Proof. Let h(z) = f(z) — f(0). Then h is a mapping of preserving equality
of n-distance with the same gauge function as f. And h(f) = 6. Thus we
may assume that f(#)=6. By Lemma 3.6, we know p is continuous. Thus, in
order to show p is linear, we only need to prove that it is additive. For any
V1,72 € R&, assume 7y1,v2 > 0 ( as ;=0, i=1,2 are trivial), select vy > 0 such
that v;<70, i=1,2. Since p(0) = 0 and p is injective, p is monotone increasing
function on RY. So p(y;)<p(10), i=1,2. By Lemma 3.7, f is injective, thus
there exists w # 6 in Y such that f~1(w)#£6.

By Remark 3.2, we can find x1,...,x,_1 €X, such that

||f_1(w),x1, s ,l‘n,1’| = "0-

Thus, we have

(@), f (931)7---,f(=’17n—1)|!ZP(Hf*l(w)v«%’lw-wﬂfn—lH):p(’yo) > 0.
Set xo=f" ( V) w), then

(onv L1y ovvy xnfl”)
—||f(330) f0), f(z1) = f(0), ..., f(zn-a) = FO)
=128, f(21),. ., f@n)l|

S

p(70) ~1)]
=2 lw, f(21),. ., f@n)]|
—p(vl)
Since P is injective o ||xo, 1, « -y Tp—1||=71.
Set 2,=20, we have

p(m)
p(70)

2o @1, - an_1l| = 1, f(nzg) = w.
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Similarly, we could find 338 € X such that

p(vz)w
p(70)

1" 1"
”xowrl’”'vxn—lH =1, f(’Ygl‘O) = -

Because 71:1:6 and —’721’6 are linearly dependent, by Lemma 3.8, so are f (711‘;))
and f(—va1y), f(—721y)=kf(712,) for some real number k.
And also, we have p/('yl + ’yz)ZP(HI(’Yl + 72):1:6, TLy oy Tn—1]])
=p([[mag=(=7220), 21=(=72%0), -+, Tn1=(=7220)]) /
=l (nwg)=f (=r2w), flz1)=f(=r20), -, fl@n—1)—=f(=7220)ll
<NfOnzo), Fa)—F(=ze)s - fan1)=Fmpapl
+f(=n220), fl@1)=f(=r22), - s fl@n—1)=f(=r220)|
=Iftnzg), fz1), - Fan-D)l[+f(=r220), f(21), - s flan-1)l]
:p(H'Vl:EO’ L1y ovvy $n71||)+p(|\—72$0, L1y ovvy :En*lH)
=p(71)+p(72)- )
Since f(v1zy) and f(y2x,) are linearly dependent, from Lemma 3.8,
—yoxg=l(y129—2y) for some real number I. Because f(y12,) and — f(y2)
are linearly dependent with the same direction, from Lemma 3.1, we have
pOn) + pOR)=p (I, 21, - en D482z, 21, 2ol
:“f(71x9)7 f(x1)7”' B f(xn—l)“+“_f(72x0)7 f(%l), SR f(xn—l)H
= (ng)— (o). (@), ... Flans)| )
=f(nzo)=f(yewg), fFlz1)=f(r22g), o s F(@n—1)=F(7220)]

:p(H’yle—’yg:cQ, T1—Y2Xg,s - - s Tne1—72Zg||)
A Y |

Sp(”71$07 L1y ovv sy ffn—lH"‘H’YﬂOa L1y o-vy $n—1H)
=p(71 + 72).

That is p(y1 + 72)=p(71)+p(72)-
Until now, we have got p is linear on R(jr. Then

1f(z1) = f(xo), -, f(wn) = flzo)ll = p(lz1 =20, ., 20 — 20l])

= /\HZL‘1 — XLy 9Ly — :L‘OH

Set g = niﬁ, then g is a n-isometry. O

A direct application of Theorem 3.3 in [4] yields the following corollary:

Corollary 3.10. Let X and Y be two linear n-normed spaces, f : X — Y
preserves equality of n-distance, p be the gauge function for f. If p is injective,
f is n-continuous at some point 0 # xo € X, then f is affine.
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