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Abstract. In this paper, we introduce the finite element method and solve the boundary

control problem governed by parabolic variational inequalities with an infinite number of

variables by using this method.

1. Introduction

Finite element and boundary element methods are major numerical tools for
different types of boundary value problems and for studying partial differential
equations modeling real-world problems, functional analysis plays a vital role
in reducing the problem in a form amenable to computer analysis. It is a
basic tool for error estimation between solutions of continuous and discrete
problems and convergence of solutions of the latter to the original problem.
The finite element method is a general technique to build finite-dimensional
spaces of a Hilbert space of some classes of functions, such as Sobolev spaces of
different orders, and their subspaces, in order to apply the Ritz and Galerkin
methods to a variational problem. The technique is based on ideas like (i)
Division of the domain Ω in which the problem is posed in a set of simple

0Received November 13, 2019. Revised January 29, 2020. Accepted June 9, 2020.
02010 Mathematics Subject Classification: 47H09, 47H10, 37C25.
0Keywords: Optimal control, variational inequalities, operator with an infinite number of

variables, finite element method.



606 Gh. E. Mostafa

subdomains, called elements-often these elements are triangles, quadrilaterals
tetrahedra. (ii) A space H of functions defined on Ω is then approximated
by appropriate functions defined on each subdomain with suitable matching
conditions at interfaces [16].

A systematic study of variational formulation of the boundary value prob-
lems and their discretization began in the early seventies [16].

The finite element method has been applied in every conceivable area of
engineering, such as structural analysis, semiconductor devices, meteorology,
flow through porous media, heat conduction, wave propagation, electromag-
netism, environmental studies, biomechanics [16].

The finite element method is a numerical method for solving problems of en-
gineering and mathematical physics. Typical problem areas of interest include
structural analysis, heat transfer, fluid flow, mass transport, and electromag-
netic potential. The analytical solution of these problems generally require the
solution to boundary value problems for partial differential equations. The fi-
nite element method formulation of the problem results in a system of algebraic
equations. The method approximates the unknown function over the domain.
To solve the problem, it subdivides a large system into smaller, simpler parts
that are called finite elements. The simple equations that model these finite
elements are then assembled into a larger system of equations that models the
entire problem. FEM then uses variational methods from the calculus of vari-
ations to approximate a solution by minimizing an associated error function
[17].

Let us introduce some examples of application of finite element method:

Finite element model
of a human knee joint

A piecewise linear
function in 2D

Visualization of how a
car deforms in crash
using finite element

analysis

A set of inequalities defining a control of a system governed by self-adjoint
elliptic operators with an infinite number of variables are presented in Gali et
al. ([11]). In Gali et al. ([10], [12], [13]) the optimal control problem for sys-
tem described by elliptic and hyperbolic operators with an infinite number of
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variables have been discussed. El-Zahaby ([8]) presented the necessary condi-
tions for control problems governed by elliptic variational inequalities with an
infinite number of variables. Necessary conditions for optimality in distributed
control problem governed by parabolic variational inequalities with an infinite
number of variables are established by El-Zahaby et al. ([9]). Boundary con-
trol problem with nonlinear state equation with an infinite number of variables
are established by El-Zahaby and Mostafa.

In this paper, we shall use the theory of Barbu ([2], [3], [4], [5]) to intro-
duce boundary control problem govened by parabolic equation with nonlinear
boundary value condition in the case of infinite number of variables and will
apply finite element method.

This paper is organized as follows:

In section 2, some functional spaces with an infinite number of variables
will be introduced. In section 3, we introduce the main results.

2. Preliminaries

We consider some function spaces of infinitely many variables (Berezankii
et al. [6], [7]). For this this purpose, we introduce the infinite product

R∞ = R1 ×R1 × · · · ,

with elements x = (xµ)∞µ=1, xµ ∈ R1 and denote by dg(x) the product of
measures

g1(x1)⊗ g2(x2)⊗ · · · ,
defined on the σ-hull of the cylindrical sets in R∞ generated by the finite
dimensional Borel sets g(R∞) = 1 with 0 < gk(t) ∈ C∞(R1) is fixed weight∫

R1

gk(t)dt = 1, k = 1, 2, · · · .

We have a Hilbert space of functions of infinitely many variables

L2(R∞) = L2(R∞, dg(x)).

In the following, we shall use the chain

W l(R∞) ⊆ L2(R∞) = W 0(R∞) ⊆W−l(R∞),

whereW l(R∞) is a Sobolev space, which is the completion of the class C∞0 (R∞)
of infinitely differentiable functions of compact support with respect to the
scalar product

(u, v)wl(R∞) =
∑
|α|≤l

(Dαu,Dαv)L2(R∞),
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where

Dα =
∂|α|

(∂x1)α1(∂x2)α2 · · ·
, |α| =

∞∑
i=1

αi.

The differentiation is in the sense of a generalized function on R∞. W−l(R∞)
are the dual of W l(R∞). L2(0, T ;W l(R∞)) denote the space of all measurable
functions t → ϕ(t) of ]0, T [→ W l(R∞) and the variable t denotes the time :
t ∈]0, T [, T ≺ ∞ with the Lebesgue measure dt on ]0, T [ such that

‖ϕ‖L2(0,T ;W l(R∞)) =

( T∫
0

‖ϕ(t)‖2W l(R∞)dt

) 1
2

≺ ∞,

is endowed with the scalar product

(f, g)L2(0,T ;W l(R∞)) =

T∫
0

(f(t), g(t))W l(R∞)dt,

which is a Hilbert space ([15]).

Since W l(R∞) is a Hilbert space, the dual of L2(0, T ;W l(R∞)) is the space
L2(0, T ;W−1(R∞)).

Similarly, we can define the spaces

L2(0, T ;L2(Ω)) = L2(Q), (Q = Ω×]0, T [),

L2(0, T ;L2(Γ)) = L2(Σ), (Σ = Γ×]0, T [),

where Ω is a bounded and open set in R∞ with sufficiently smooth boundary
Γ and Σ is the lateral boundary of Q.

Let us introduce the space W 1,p([0, T ];E) the space

{y ∈ Lp(0, T ;L2(Ω)); y′ ∈ Lp(0, T ;E)},

where the derivative y′ of y is taken in the sense of vectorial distribution on
]0, T [, E is a Banach space, and the space

W 2,1
p (Q) = Lp(0, T ;W 1,2(Ω)) ∩W 1,p(0, T ;Lp(Ω)).

For p = 2 we set W 2,1
2 (Q) = H2,1(Q).

Finally, let us introduce the space denoted by W (Q) the space of all func-
tions

y ∈ L2(0, T ;W l(R∞))

such that (
d

dt

)
y ∈ L2(0, T ;W−l(R∞)).
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W (Q) is a Banach space with the natural norm

‖y‖2W (Q) = ‖y‖2L2(0,T ;W 1(R∞)) +

∥∥∥∥dydt
∥∥∥∥2

L2(0,T ;W−1(R∞))

.

The considered spaces are assumed to be real and l = 1.

3. Main results

We introduce convex control problem governed by boundary value problem
of the form

yt +Ay = 0 in Q = Ω×]0, T [,

∂y

∂v
+ βi(y) 3 ui + fi in Σi = Γ×]0, T [, i = 1, 2, (3.1)

y(x, 0) = y0(x) in Ω,

where Ω is a bounded open set in R∞ with boundary Γ consists of two parts
Γ1 and Γ2, that is, Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = Φ, and Σ = Γ×]0, T [ is the
lateral boundary of Q, ∂

∂v is the outward normal derivative corresponding to
A, and βi are maximal monotone graphs in R×R, which satisfy the conditions

βi(0) 3 0, i = 1, 2, (3.2)

the controls ui are taken from the Hilbert spaces L2(Σi), i = 1, 2. The func-
tions y0, fi are fixed in L2(R∞) and L2(Σi), i = 1, 2, respectively. A is a
second order self-adjoint elliptic partial deferential operator with an infinite
number of variables that maps W 1(R∞) onto W−1(R∞) and take the form:

Ay(x) = −
∞∑
k=1

1√
pk(xk, t)∂x

2
k

∂2

∂x2
k

√
pk(xk, t)y(x) + q(x, t)y(x),

Ay(x) = −
∞∑
k=1

(D2
xy)(x) + q(x)y(x). (3.3)

For each t ∈]0, T [, the bilinear form

π(t, ϕ, ψ) = (A(t)ϕ,ψ)L2(R∞) ϕ,ψ ∈W 1(R∞) on W 1(R∞), (3.4)

is coercive on W 1(R∞), that is, there exists λ ∈ R, such that

π(t;ϕ,ϕ) ≥ λ‖ϕ‖2W 1(R∞) λ > 0. (3.5)

Definition 3.1. A function y ∈ W (Q) is a solution to (3.1) if there exist
functions ωi ∈ L2(Σi), i = 1, 2, such that

ωi(σ, t) ∈ βi(y(σ, t)) a.e. (σ, t) ∈ Σi, i = 1, 2 (3.6)
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and∫
Q

yktdp(x)dt+

T∫
0

π(y, k)dt+
2∑
i=1

∫
Σi

(ωi − vi)kdΓdt =

∫
R∞

y0(x)k(x, 0)dp(x),

(3.7)
for all k ∈W (Q) such that k(x, T ) = 0. Here π(y, k) is bilinear functional has
the form (3.4), condition (3.7) can be equivalently defined as

d

dt
((y(t), ψ) + π(y(t), ψ)) +

2∑
i=1

∫
Γi

(ωi − vi)ψdΓ = 0 a.e. t ∈]0, T [,

y(0) = y0 for all ψ ∈W 1(R∞). (3.7’)

Let ρ be a C∞0 -mollifie function on R, satisfying ρ(r) � 0 for r ∈] − 1, 1[,

ρ(r) = 0 for |r| � 1, ρ(r) = ρ(−r) for all r ∈ R and
∞∫
−∞

ρ(r)dr = 1. We define,

for ε � 0

βεi (r) =

∞∫
−∞

βiε(r − εθ)ρ(θ)dθ, i = 1, 2, r ∈ R,

where

βiε(r) = ε−1(r − (1 + εβi)
−1r).

It should be recalled that βεi are monotonically increasing infinitely differen-
tiable functions. Moreover, βεi are Lipschitzian with Lipschitz constant ε−1,
and in a certain sense which will be explained below they approximate βi, for
ε→ 0. For each ε � 0, consider the approximating system:

yt +Ay = 0 in Q,

∂y

∂v
+ βεi (y) = ui + fi in Σi, i = 1, 2, (3.8)

y(x, 0) = y0(x) in Ω.

According to a standard existence result due to Lions [15] the system (3.8)
has a unique solution yε ∈W (Q).

Let Aε : w1(R∞)→ (w−1(R∞)) be the operator defined by

(Aεy, ψ) = π(y, ψ) +

2∑
i=1

∫
Γ1

βεi (y)ψdσ, y, ψ ∈ w1(R∞). (3.9)
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and let f ∈ L2(0, T ; (w−1(R∞)) be given by:

(f(t), ψ) =
2∑
i=1

∫
Γi

uiψdσ, ψ ∈ w1(R∞). (3.10)

Then in the sense of Definition 3.1, (3.8) can be written as

dy

dt
+Aεy = f, t ∈ [0, T ],

y(0) = y0. (3.11)

Let ji : R → R̄, i = 1, 2, be two lower semi-continuous convex functions
such that ∂ji = βi (it is well known that such functions always exist).

Under the assumptions and the coerciveness condition (3.5), we have:

Theorem 3.2. Let y0 ∈ L2(R∞) and ui ∈ L2(Σi), fi ∈ L2(Σi), i = 1, 2. Then
the system (3.1) has a unique solution y ∈W (Q). Furthermore, for ε→ 0 we
have

yε → y strongly in C([0, T ];L2(Ω)) ∩ L2(0, T ;W 1(R∞)) (3.12)

and weakly in W (Q). And there exists c � 0 independent of ui such that

‖y‖W (Q) +

2∑
i=1

‖βi(y)‖L2(Σi) ≤ C
( 2∑
i=1

‖ui‖L2(Σi) + 1

)
. (3.13)

Proof. We take the inner product of (3.11) with yε and integrate over [0, t].
From (3.9) and (3.10) it follows that

||yε(t)‖L2(Ω)+

t∫
0

‖yε(s)‖2w1(R∞)ds ≤ C(‖u1‖2L2(Σ1)+‖u2‖2L2(Σ2)+1), t ∈ [0, T ],

(3.14)
where t is independent of ε.

Next we take the inner product of (3.11) with βεi (yε). In as much as
π(ψ, βεi (ψ)) ≥ 0 for all ψ ∈ w1(R∞), we find, after some calculations,∫

Ω

jεi (yε)dx+

2∑
i=1

∫
Σi

βεi (yε − ui)βεi (yε)dσdt ≤
∫
Ω

jεi (y0)dx for i = 1, 2,

(3.15)
where

jεi (r) =

r∫
0

βεi (s)ds, i = 1, 2.
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Along with assumption (3.2), (3.15) yields

2∑
i=1

‖βεi (yε)‖|2L2(Σi)
≤ C

( 2∑
i=1

‖ui‖2 L2
(Σi)

+ 1

)
. (3.16)

And by (3.11), (3.14) we see that

‖yε‖2W (Q) +
2∑
i=1

‖βεi (yε)‖2L2(Σi)
≤ C

( 2∑
i=1

‖ui‖2L2(Σi)
+ 1

)
, (3.17)

where C is independent of ε. Now using (3.11), for ε, λ > 0 we get

‖yε(t)− yλ(t)‖2L2(Ω) + ‖yε(t)− yλ(t)‖2L2(0,T ;w1(R∞))

+ C
2∑
i=1

∫
Σi

βεi (yε)− βλi (yλ))(yε − yλ)dσdt ≤ 0.

If we take into account the following relations:

βεi (r) =

∞∫
−∞

βiε(r − εθ)ρ(θ)dθ, i = 1, 2, r ∈ R,

where
βiε(r) = ε−1(r − (1 + εβi)

−1r).

And if we take into account (3.16) and the monotonicity of βi, we find

‖yε − yλ‖2C([0,T ];L2(Ω)) + ‖yε − yλ‖L2([0,T ];w1(R∞)) ≤ C(ε− λ). (3.18)

Hence y exist in the strong topology of L2([0, T ];w1(R∞)) ∩ C([0, T ];L2(Ω)),
particular, this implies that

yε → y strongly in L2([0, T ];H
1
2 (Γ)) ⊂ L2(Σ).

To obtain (3.12), (3.13) we let ε → 0 in (3.17) and let λ → 0 in (3.18) and
this completes the proof. �

We shall study the following control problem:

(P ) Minimize

1

2

∫
Q

h(x, t)|y(x, t)− yd(x, t)|2dp(x)dt+ ψ1(u1) + ψ2(u2) + φ(y(T ))

= J(y, u),

(3.19)

on the class of all ui ∈ L2(Σi), i = 1, 2, and y ∈ W (Q) subject to the state
system (3.1).

We shall assume that the following conditions are satisfied:
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(1) Ui = L2(Σi), i = 1, 2, are the spaces of controls ui, i = 1, 2.
(2) The functions ψi : L2(Σi) → R̄, ui, i = 1, 2 are lower semi-continuous

convex functions and not identically equal to infinity.
(3) The function φ : L2(R∞)→ R is convex and continuous on L2(R∞).
(4) h ∈ L∞(Q) and yd ∈ L2(Q) are given; h ≥ 0 a.e. on Q.
(5) A is the elliptic symmetric operator which is presented by (3.3) and

βi, i = 1, 2, are two maximal monotone graphs in R×R which satisfy
condition (3.2).

(6) y0 ∈ L2(R∞) and fi ∈ L2(Σi), i = 1, 2, satisfy the assumptions of
Theorem 3.2. Under our assumptions, the coerciveness condition (3.5),
we may apply the result of Barbu ([2], [5]) for every pair (u1, u2) ∈
L2(Σ1)×L2(Σ2). Problem (P ), has at least optimal (y∗, u∗1, u

∗
2) where

y∗ ∈ W (Q), u1 ∈ L2(Σi), i = 1, 2, for which the infimum of the
functional (3.10) is attained for y = y∗ and ui = u∗i , i = 1, 2. The
optimality result is given in the case in which βi are single-valued and
satisfy the following condition.

(7) The function βi ae monotonically increasing and locally Lipschitzian
on the real axis R. Moreover, there exists c � 0, such that

β′i(r) ≤ c(|βi(r)|+ |r|+ 1) a.e. r ∈ R, i = 1, 2. (3.20)

In the following we shall introduce the finite element discretization of the
state equation and optimal control problem ([1], [14]):

At first let us consider the finite element approximation of the state equation
(3.1). For the spatial discretization we consider conforming Largrange triangle
elements. We assume that Ω is a polygonal domain. Let Υh be a quasi-uniform
partitioning of Ω into disjoint regular triangles τ , so that

Ω̄ =
⋃
τ∈Υh

τ̄ .

Associated with Υh is a finite dimensional subspace V h of C([0, T ]; Ω̄), such
that for χ ∈ V h and τ ∈ Υh, χ|τ are piecewise linear polynomials. We set

V h
0 = V h ∩W 1

0 (R∞).

Let Υh
U be a partitioning of Γ into disjoint regular segments s, so that

Γ =
⋃
s∈Υh

U

s̄.

Associated with Υh
U is another finite dimensional subspace Uh of L2([0, T ]; Γ),

such that for χ ∈ Uh and s ∈ Υh
U , χ|s are piecewise linear polynomials. Here we

suppose that Υh
U is the restriction of Υh on the boundary Γ and Uh = V h(Γ),

where V h(Γ) is the restriction of V h on the boundary Γ.
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Lagrange interpolation operator Ih : C([0, T ]; Ω̄)→ V h, we have the following
error estimate

‖w − Ihw‖l,r∞ ≤ Chm−l‖v‖m,R∞ , 0 ≤ l ≤ 1 ≤ m ≤ ∞. (3.21)

Qh : L2(Γ)→ V h(Γ) and Q̃h : L2(R∞)→ V h
0 denote orthogonal projection op-

erators. Furthermore, Rh : W 1([0, T ];R∞)→ V h
0 denotes the Ritsz projection

operator defined as:

π(Rhw, vh) = π(w, vh), ∀ vh ∈ V h
0 . (3.22)

It is well known that the Ritz projection satisfies:

‖w −Rhw‖s,R∞ ≤ Chl−s‖w‖l,R∞ ,

w ∈W 1
0 (R∞) ∩W l(R∞), ∀ 0 ≤ s ≤ 1 ≤ l ≤ ∞.

(3.23)

For the L2(Γ) projection operator Qh we also have:

‖w −Qhw‖0,Γ ≤ Chs−
1
2 ‖w‖s,R∞ , w ∈W s(R∞), ∀ 1

2
≤ s ≤ ∞ (3.24)

and
‖(I −Qh)∂nw‖0,Γ ≤ Ch

1
2 ‖w‖2,R∞ , for w ∈W 2(R∞).

The semi-discrete finite element approximation of (3.1) reads :
find yh ∈ L2(V h) such that

−(yh, ∂tvh)Q + π(yh, vh)Q = (f, vh)Q + (yh0 , vh(., 0)), ∀ vh ∈W 1(V h
0 ),

yh = Qh(u) on Σi = Γ×]0, T [. (3.25)

With yh0 an approximation of y0 the semi-discrete finite element approximation
of (3.10), (3.1) reads as follows:

Minimize Jh(yh, uh) over uh ∈ Uhad, yh ∈ L2(V h) (3.26)

subject to

− (yh, ∂tvh)Q + π(yh, vh)Q = (f, vh)Q + (yh0 , vh(., 0)), (3.27)

∀ vh ∈W 1(V h
0 ),

yh = Qh(uh) on Σi,

where Uhad is an appropriate approximation to Ui = L2(Σi). It follows that
(3.26), (3.27) has a unique solution (yh, uh).

We next consider the fully discrete approximation for the above semi-
discrete problem by using the dG(0) scheme in time. For simplicity we consider
an equi-distant partition of the time interval.

Let 0 = t0 < t1 < · · · < tN−1 < tN = T with k = T
N and ti = ik,

i = 1, 2, · · · , N . We also set Ii = (ti−1, ti], for i = 1, 2, · · · , N . We construct
the finite element spaces V h ∈ W 1(R∞) with the mesh Υh

U . Similarly we
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construct the finite element spaces Uh of L2([0, T ]; Γ), with the mesh Υh
U in

our case we have Uh = V h(Γ), then we denote by V h, Uh the finite element
spaces defined on Υh, Υh

U on each time step.

Let Vk denote the space of piecewise constant functions on the time partion.
We define the L2 projection operator Pk : L2(0, T )→ Vk on Ii through

Pk(w)(t) =
1

k

∫
w(s)ds for t ∈ Ii.

Then we have the following estimate:

‖(I − Pk)w‖L2(0,T ;H) ≤ Ck‖wt‖L2(0,T ;H), ∀ w ∈W 1(0, T ;H), (3.28)

where H denote some separable Hilbert space.

We consider a dG(0) scheme for the time discretization and set

Vhk = {θ; Ω̄× [0, T ]→ R, θ(., t)|Ω̄ ∈ V h, θ(x, .)|In ∈ P0}.

We introduce for Y,Φ ∈ Vhk

A(Yhk; Φ) = (f,Φ)Q + (y0,Φ
0
+), ∀ Φ ∈ V 0

hk,

Yhk = Λ(u) on Γ, (3.29)

where V 0
hk denotes the subspace of Vhk with functions vanishing on Γ, and

Λ = PkQh.

As a result of the application of finite element method on boundary control
problem governed by parabolic variational inequalities with an infinite number
of variables. We estimate the error introduced by the discretization of the state
equation, that is, The error between the solution of problem (3.1) and (3.29)
by the following theorem :

Theorem 3.3. Suppose that f ∈ L2(L2(R∞)), u ∈ L2(L2(Γ)), and y0 ∈
L2(R∞). Let y ∈ L2(L2(R∞)) and Yhk ∈ Vhk with Yhk|Σ = Λ(u) be the
solution of problems (3.1), (3.29), respectively. Then we have

‖y − Yhk‖L2(L2(Γ)) ≤ C
(
h

1
2 + k

1
4
)(
‖f‖L2(L2(Γ)) + | y0‖0,R∞ + ‖u‖L2(L2(Γ))

)
.
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