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1. INTRODUCTION

In this paper, we consider the following initial boundary value problem:

0
wie Dy = 5 | Bu (o ul [ ol ot ) e | (1.2)

a -
o [Ba (s ul ol el ot ) ]
a -
o [Ba (o, al ol el Nt ) |
= F (st g g, s ) o el )
a -
o |G (s ] | ) |
+f(x,t), ve€Q=(0,1),0<t<T,
w(0,4) = u(1,t) =0, (1.2)
u(z,0) = to(z), u(z,0)=1a1(z), (1.3)

where A > 0 is constant, g, 4 € Hi N H?, and f, F, G are given functions
under suitable assumptions later.

This problem has its origin in the model of Kirchhoff-Carrier-Love type
because it connects Kirchhoff, Carrier and Love equations. For more details,
Eq. (1.1) has its origin in the nonlinear vibration of an elastic string (Kirchhoff
[5]), for which the associated equation is

Eh [F
| pyr =
phug <0+2L/0

here u is the lateral deflection, L is the length of the string, h is the cross-
sectional area, E' is Young’s modulus, p is the mass density, and Fj is the initial
tension. It is also related to the Carrier equation. In [1], Carrier established
the equation which models vibrations of an elastic string when changes in
tension are not small

EA [T
PUtt — (1 + LTO/Q u2dac> Ugg = 0, (1.5)

where u(z,t) is the x-derivative of the deformation, Tp is the tension in the
rest position, F is the Young modulus, A is the cross-section of a string, L is
the length of a string and p is the density of a material. Clearly, if properties
of a material vary with x and ¢, then there is a hyperbolic equation of the type

ou

2
dy) Ugy, (1.4)

wt — B (:x,t, Hu(t)H2> - (1.6)
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On the other hand, Eq.(1.1) arises from the Love equation

ute = oy tae 2020 g = 0, (1.7)

presented by V. Radochova [15]. This equation describes the vertical oscilla-
tions of a rod, which was established from Euler’s variational equation of an
energy functional

T L

1 1

/ dt/ [QFp (uf + pPwui,) — §F (B2 + pu2w2uxuxtt)] dr, (1.8)
0 0

where v is the displacement, L is the length of the rod, F' is the area of cross-

section, w is the cross-section radius, F is the Young modulus of the material

and p is the mass density.

Note that Prob.(1.1)-(1.3), with the special case
2 2 2 2
By =B =B (w,t,u lul®, Juall” e ot )

i = 1,2, 3, has just been considered in [18], where results relate to the existence,
blow-up and exponential decay estimates have been proved. In case B =
B(z,t) and F = F(u,u;), G = G(u,u;) such that (F,G) = (%—i, gT};)’ the
authors have proved that the solution blows up in finite time when f(z,t) =0
and the initial energy is negative. On the other hand, they have established
a sufficient condition, in which the initial energy is positive and small, to
guarantee the global existence and exponential decay of weak solutions.

It is well known that the existence, global existence, decay properties and
blow-up of solutions to the initial boundary value problem for Kirchhoff type
models under different types of hypotheses have been extensively studied by
many authors, for example, we refer to [1]-[4], [7]-[21], and references therein.

In [2], the authors studied the existence of global solutions and exponential
decay for a Kirchhoff-Carrier model with viscosity. In [14], the author inves-
tigated on the global existence, decay properties, and blow-up of solutions
to the initial boundary value problem for the nonlinear Kirchhoff type. In
[20], the viscoelastic equation of Kirchhoff type was considered and the au-
thors established a new blow-up result for arbitrary positive initial energy, by
using simple analysis techniques.

In this paper, motivated by [18], we also establish the linear recurrent
sequence to prove that Prob.(1.1)-(1.3) has a solution. Furthermore, we
try to consider the blow-up and decay properties of Prob.(1.1)-(1.3) with

By =B <Hu$(t)H2> # Bi(z,t) as in [18].
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This paper is organized as follows. In the Section 2, because of the non-
linearities, we combine the linearization method for the nonlinear term, the
Faedo-Galerkin method and the weak compactness method to prove Theorem
2.2 concerning the local existence of unique weak solution for Prob.(1.1)-(1.3),
in case F, G € C1([0,1] x [0,T] x R* x RY); B; € C1([0,1] x [0,T] x R x R%)
with B;(x,t,y,2) > b; >0,i=1,2,3V(z,t) €[0,1] x [0,T], Vy € R, VZ € RY..

In Sections 3, 4, Prob.(1.1)-(1.3) is considered in case By = B (Hum(t)H2> ,
B; = Bi(x,t), i = 2,3 and F = F(u,u,), G = G(u,uy) such that (F,G) =

(%—f, 37]2). Here, by constructing Lyapunov functional, we prove Theorem 3.1,

Theorem 4.1 in order to obtain a blow-up result and the exponential decay of
weak solutions. More precisely, in Section 3, with f(z,t) = 0 and a negative
initial energy, we prove that the solution of Prob.(1.1)-(1.3) blows up in finite
time. In Section 4, we give a sufficient condition, where the initial energy is
positive and small, any the global weak solution is exponential decaying.

By adopting and modifying the methods of [18], the results obtained in this
study are superior to the results established in [18].

2. EXISTENCE OF A WEAK SOLUTION
In this section, we consider the local existence for Prob.(1.1)-(1.3). Without
loss of generality, we can suppose that A =0, f(x,t) = 0.
First, we set the preliminary as follows.

Let (-,-) be either the scalar product in L? or the dual pairing of a continuous
linear functional and an element of a function space, ||-|| be the norm in L?
and ||| y be the norm in the Banach space X. Let LP(0,7;X), 1 < p < oo be
the Banach space of the real functions u : (0,7") — X measurable, with

T 1/p
Huum,mz( / Hu(t)\\&dt) <o forl<p<oo,

and

[l oo 0,7, x) = ess sup [lu(t)]|x  for p = oc.
0<t<T

Denote u(t) = u(z,t), u’z(t) = wy(t) = L(z,t), (1) = un(t) = T(x,1),
ug(t) = g—g(x,t), Ugy () = %(m,t).
With F € C*([0,1] x Ry x RYxRY), F = F(z,t,y1, + ,ya,21, "+ ,24), We
_ oF _OF p. . _ OF p. @ _ OF s
put D1 F = G-, DoF = G, DijoF = ayr DiygF = 927 with ¢ = 1,--- /4
and D*F = D" --- D{}°F, a = (a1, ,a10) € Z1Y, la] = a1 + - + a9 < &,
DO O = F
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Similarly, with B; € C*([0,1] x [0,T] x R x R%), B; = B;(x,t,y, 21, , 24),
1= 1,2,3 we put DlBl = %, DQBZ == %, DgBZ = %7%, Dj+3Bi = %755, with
j=1,,4i=123and D°B; = D/*---DI'B;, B = (B1,--- ,B7) € LT,
Bl =B+ + P <k, DO OB =B, i=1,23

We recall the following properties related to the usual spaces C([0,1]), H!,

and
H} ={ve H' :v(1) =v(0) =0}

We then have the following lemma.

Lemma 2.1. (i) The imbedding H' — C([0,1]) is compact and
1/2
lellogy < V2 (0l + lul?) ™ for attv e H'. (2.1)

1/2
(ii) On H}, v |jvz| and v — ||v|| g1 = <”U||2 + ||vx||2) are equiva-
lent norms. On the other hand
lolleon < vl for altv e H. (2.2)
The weak formulation of Prob.(1.1)-(1.3) can be stated in the following
manner: Find
ue Wy ={ue L (0,T;HyNH?) :u/,u" € L* (0,T; Hy N H?)},
such that u satisfies the following variational equation
(" (t), w) + (Bulu](t)us (t) + Ba[u](t)uy(t) + Bslu](t)uz(t), we)  (2.3)
= (Flu](t), w) + (G[u](t), wa) ,
for all w € H}, a.e., t € (0,T), together with the initial conditions

w(0) = g, ' (0) = 1, (2.4)
where
Bilul(@,t) = Bi (w,t,u(@, ), Ju®IP Jus(0), [/ @ [, 0]) (25)
i=1,2,3,
Flu](z,t) = F<:c,t,u(m,t),ux(x,t),u’(x,t),u;(x,t),||u(t)\|2,
I [l @)% e (8)]*)
Glul(xz,t) = G(fL‘,t,u(ﬂ?,t),ux(ﬂf,t),U/(l‘,t),’u;(ﬂf,t),||U(t)”2,

O @ )]

Let T* > 0. Then we make the following assumptions:
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(Hy) @, @y € H N H;
(H2) B; € C1([0,1] x [0,T*] x R x R%)

and there exist three constants b, > 0, ¢ = 1,2, 3 such that
Bi(z,t,y,2) > b, Y(z,t) € [0,1] x [0,T%], Vy € R, VZ € R%;

(H3) F € C([0,1] x [0,T%] x R* x RY);

(Hy) G € CH[0,1] x [0,T*] x R* x R%).
In order to obtain unique and existence results of weak solution, we use a
linearization method, which consists of two steps.

Step 1: This Step is devoted to establishing a linear recurrent sequence {u, }.
For M > 0, we put

_ 10
Fy = \Flleiay = IFlcoayy + Y. IDiFllcoca,,) (2.6)
(Anr) (Anr) j=1 (An)
_ 10
Gu = 1Glloriay) = IGleocan + D 1IPiGllcoay)
7 .
BZ(M) = HBZHCl(AM) = HBZ'HCO(AM) + Zj:l ||DjBl||CO(AM)7 y— 1,2,3,
where
HFHCO(AM) = sup ’F(;C:t?yl?"' yYd, 21,0 724)’7
(x7t7y17"'7y4azlz“':z4)€Al\/I
||BiH00(AJW) = sup  [Bi(z,t,y 21,000 24)] i = 1,2, 3,
(z,t,y,21, ,24)EAN
with
Ay = [0,1] x [0,T%] x [-M, M]* x [0, M?]*
and

Ay =[0,1] x [0, T*] x [-M, M] x [0, M*]*.
For each T € (0,7*] and M > 0, we put
W(M,T)={veL>®0,T; Hi N H?) : v € L*>°(0,T; H} N H?),
,U// (= LOO(O,T, H&),Wlth HUHLOQ(O T'HIQHZ)’
/ " . (2.7)
| v HLOO(O,T;HOlﬂH?)a v HLoo(o,T;Hg) < M},
Wi (M,T)={veW(M,T):v" € L>(0,T; H: n H?)}.

We now start to establish the linear recurrent sequence {u,,}. We shall
choose the first term ug = 0, and suppose that

Um—1 € Wi(M,T), (2.8)
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and then we find u,, € Wi(M,T) (m > 1) such that u,, satisfies the linear
variational problem:

{1t (£), W) + (B (8)tmas (£) + Bom (8]t (£) + Bam (£) g (1), a)

= (Fin(t), w) + (Gt ) 2), Yw € Hy, (2.9)
U (0) = o, u;,(0) = a1,
where
Bim(z,t) = Bj[um—1](z,t), i =1,2,3, (2.10)

7 1
Fm(xat) - [’U,m 1]( )
Gm(z,t) = Glum-](z,1).

Now, we have the important result in Step 1 as follows.

Lemma 2.2. Let (Hy)—(Hy4) hold. Then there exist positive constants M, T >
0 such that, for ug = 0, there exists a recurrent sequence {u,,} C Wi(M,T)
defined by (2.8)-(2.10).

Proof. The proof consists of several steps.

(1) The Faedo-Galerkin approzimation (introduced by Lions [6]). Consider
a special orthonormal basis {w;} on H{ : w;(x) = v/2sin(jrz), j € N, formed
by the eigenfunctions of the Laplacian —A = —4- 22 Obviously, there exists

(k)( t), 1 < j < k, on interval [0,T] such that if there is the expression of

m]

(k)

U’ (t) in form
k

W0 =30 endwy, (2.11)
(k)

then uyy,’ (t) satisfies
(i (), 0) + (Bryn (i (¢) + Bo (6)ifz (8) + Baa(1)ifna (1), wjic)
= (Fn(t),wj) + (Gm(t), wje), 1 <j <k,
ug(0) = digk, i (0) = ding,
(2.12)
in which
o — Z?:l aék)
U1 = Z?:l B](.k)wj — 1y strongly in H} N H?.

w; — T strongly in H} N H?, (2.13)

Indeed, it implies from (2.12) that an equivalent form of system (2.12) as
below

{ 00+ Sy [BU (e 0) + B 00 + B (&N 0] = fuilt),
) =al® éM 0y =" 1<i<k,

me T ) T

(2.14)
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with

{ Fmi(t) = (F(t), ;) + (G (1), wjz), (2.15)

B (t) = (Bom (D Wigs wia), 1 < iy j <k, s =1,2,3.

sij
Then we have the following property:

For fixed M > 0 and T > 0, the system (2.14)-(2.15) has a unique solution
(k) (k) )
Cn = (C “ e

ol > Cop) ON an interval [0, 7.

In fact, if we omit indexs m, k, the system (2.14)-(2.15) is written as follows

(E + Bs(t)) "(t) + Bi(t)c(t) + Ba(t)'(t) = f(1),
{ c(0) = a, ¢(0) = B, (2.16)

where
ct) = (), ()T, (2.17)
f(t) = (fl(t)v afk(t))Tv
i) = (Fn),w;) + (Gn(t),wjz), 1 <j <k,
o = (ala 7ak)T7 Oél—Ck() 1SZ§ka
5 (/817 : 7/8k)T7 61 (k) 1 S 1 S kv
E = [ = dzag(l, s ) is the identity matrix of size k,
By(t) = [Bsi;(t)], s=1,2,3,
Bsz_](t) - <BS ( )wix)wjx>7 1 S Z7] S k;) s = 1)2)3‘
By
k k
TE+ By = TP+ wd . Baist)y;
1 2
= WP+ | Banla) |3 vy do

2 k 2
> ol b5 A
> (L4bs.7?) [lyl* >0, ¥y € RF, y #£0,

E + Bs(t) is invertible, it implies that (2.16) can be rewritten as follows

cﬂ(t) + B (t)c(t) + B (t)c’(t) _ f(t),
{ c(0) = a,lc’(O) =B, ’ (2.18)

where
By(t) = (E+ B3(t))_1 Bg(t), s=1,2, (2.19)

ft) = (E+Bs(0)' f(1).
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Integrating (2.18) over (0, t), it gives
c(t) = (Ue)(t), (2.20)
where

(Uce)(t) = h(t)+ (Le)(t), (2.21)
— t T —
M) = ast(B+Ba)a) + [ dr [ feas
t
(Le)(t) = /0 [(t = s) (B5(s) — Bi(s)) — Ba(s)] c(s)ds.
Applying the contraction principle, system (2.20) has a unique solution c¢(t)

in [0, T]. The proof is given below:
Let

Y > Bumax =T sup ||Bj(s) — Bl(S)H1 + sup | Ba(s)|

)
0<s<T 0<s<T L

where we denote ||B,(s)]|, = 1??<Xk Zle | Brij(s)

,r=12.

It is well known that X = C° (_[O, TY; Rk) is a Banach space with respect to
the norm

k
c = sup e et c(t)]; = ci(t)|, ce X.
el x S, le(®)]y, el Zj:1| AVIE

Clearly, U : X — X. We will prove that U : X — X is contractive as
follows.
First we note that, for all ¢ = (c1,--- ,cx), d=(d1, -+ ,d) € X, q=c—d,

(W)~ WD), = |(La)D),
< [ 1= 9 (B - Bi() ~ Bato)] )]

< [l = (Bye) = Bu(s) = Bt o)y s
< [ 1= 1B ~ Bao)l, + 1 Bats)],]lao)y s

0
t e'yt
< Buws il [ s < B =l -
0 Y
It follows that
Bmax

e (Ue)(t) — (Ud)(t)]y < le =dll, x »
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it leads to

Bmax
Ve —Udl, x < =2 fle—d], x (2.22)

B
Since 0 < —/= < 1, U : X — X is contractive. Then, (2.20) has a unique
v

solution ¢ € X. Thus, system (2.12) has a unique solution u'h (t) in [0, 7. So,
for fixed M > 0 and 7" > 0, the system (2.14)-(2.15) has a unique solution

C%) - (ng’ e 767(511) on an interval [0, 7.

(ii) A priori estimates. In what follows, we shall give a priori estimates to

show that there exist positive constants M, T > 0 such that ulh) € W(M,T),
for all m and k.
Put

sWwy = i@ + |VBm@uRo| +|vEmoaRo| @23
i@ 0|+ |VBm@ao| + |VBm@iho|
la@o| + |VBmmaud | + ||V Bmmadd)s)|
w2 [ VBt + |VEm e

+ H\/mAugf)(s)m ds.
Then, from (2.12) and (2.23), we get
S0 = SP0) +2 [ Fnlo) D 6)ds 2 [ Fns) A o)ds (220
#2 [ (Gn(o)dfhos +2 [ (E2 (0,00 5
2 [ (@6 s +2 [ (Gonals), 530 (5
+ s / [ i) (fusie )|+ i) + | aulb o))
4B, (2, 5) <‘u§§;(g¢,s)]2 + ]2, )| - ‘u;{j;(x,s))z)] da

9 / (B8 (5) + Bl ()55 (s), %) (5))ds
0
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t
- 2/ <Blmx(5)u$7§2:(5) + Bmeuq(v@c(S) + BSmx(S)ﬂggz(s), Au%)(é}»ds
0

2
Estimate @S’f) = ’ ‘ :

u;’?(())HQ + || VB @it 0)

Letting t — 04 in Eq.(2.12), multiplying the result by 07(7’3
oo « | o] -
—+ <Bgm(0)ﬂ1kz + Blm(O)Qka, Ug;)l?(o)>

- <Fm(o),a§,’§)(0)> + <Gm(0),ﬁ£§3f:(0)>-

(0), we have

Then
e = [0 +||vBm@io)| (226)

IN

(1B1on (O)ionell + 11 Bown (O)iisi | ) [52(0)|

+1En )] [#5©)| + 1GmO)1 |[520)|
ﬁ,’f)

b3«

+ IO + G (0)]]

< [lIBim(0)tokz | + || B2m (0)t1kz || + [ Em(0) ]| + |G (O)]]

1 - 5
< T [H B2y (0) g || + H\/ B1m(0) ok
It is clear to see that the functions
Bim(2,0) = By (2,0, o, o], s I, 2, 20 2)

i =1,2,3, are independent of m and the constant ||F,,,(0)|| + |G (0)]| is also
independent of m, by the fact that

[ (O] + G (0]

= | P (- 0,0, o i, v ol ol i I ) |

|6 (40,0, e, i, e, 0l iow |2 1 | e )|

2

Therefore
ﬁ,’f) < 8y, for all m, k, (2.27)

where Sy is a constant depending only on g, @1, B, F, G, i=1,2,3.
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It implies from (2.13), (2.23) and (2.27) that
SWO) = Jawl’ + | vBin O)iior

+ H\/mﬂlim

+ ‘\/mﬁfmk“? + H\/MATMHZ + &)

< S

2

g H\/Bgm(o)am

2
+ [ )

(2.28)

for all m,k € N, where S is also a constant depending only on g, 41, B;, F),
G,i=1,2,3.

Estimate [;:
By the Cauchy-Schwarz inequality, we have

L o= 2/(]t<Fm(s),u£,'j)(s)>ds gTFﬁJr/OtHug’?(s)Hst, (2.29)
L = —Q/Ot(Fm(s),Augj)(s))dsgTFﬁ+/0t“Au§,'j)(s)‘)2ds,
L = 2/0t<Gm(s),u$f§;(s)>ds gT@ﬂ+/0t‘uffj;(s) ‘st.
From
sy > || + [i@ o] + [ao]
s [uf 0]+ s b+ o 0]

off

wlF) ()

mx

2 2
. ‘ i® | + b HAu;’;) (t)H + by HAu;’?

> b, (2 ’u(’“(t

m

—

]2 + Hagp(t)HQ +2|al o \2 + f

~—

+ iRl + sl + \Aums)H?)

Y

(e

k) ()

mx

j2 + |2 )

a

with by, = min {1, by, box, b3. }, we get

o 1
L+ I+ I3 < 2T (F3 + G3)) + » S (s)ds. (2.30)
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Note that
F (t) = DoFlupm—1]+ D3Fum—1]ul, 4 (2.31)

+DyF [ty 1]vu’
+ D5 F [t —1]ulm,_ 1+D6F[um UV,
+2D7F [ty 1] (-1 (t), tpy 1 (1))
+2D8 F [t —1](Vum-1(t), VU ~1(1))
+2Dg F [ty 1] (U1 (1), 1 (1))
+2D10F [ur—1)(Vay, 1 (), Vg, (1)),

SO
|Fr, ()] < (1+4M +8M?) Fyy = Fyy. (2.32)

14_2/0t( 7 (), @™ (s))ds < TE2, + /H

Similarly, we also obtain to the following estimate

I /0 (G (s). i (s))ds < TGy + /Ot)u;;;;@)”?ds, (2.34)

with Gy = (1+4M + 8M?) Gy By

Thus

(2.33)

Gmx@) = DlG[um_l] + D3G[um_1]Vum_1 + D4G[um_1]Aum_1 (2.35)
+ D5G[um_1]Vu§n,1 + D6G[um_1]Au;n,1,

we get
|G (8)]| < (1+4M) Gar < G (2.36)
Hence
¢
Is :2/ (G (), DD (s))ds < TG, +/ HAU B) (s H (2.37)
0

Consequently, we have

Li+I+1g < 2T (F]@ + é%) (2.38)

o ) [l + o] « o] ] a

2T (F’]%/[ + éﬂ) + ™ /0 S (s)ds

IN
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By the fact that

B (t) =

SO

Hence

[I7] =

By (x,s) ( W)z, s

< By [ [ +2 ot
0

+ Hu,(fi;(s)‘r + ”Auﬁ,’f)(s)HQ] ds

t
ds
0 0

| Bin (1)

Dy B;[tm—1] + D3Bjlum—1]ts, 4

+ 2Dy Bi[um—1](tm-1(t), ;n 1(t)>
+ 2D5Bi[tum—1){Vum—1(t),
+ 2D Bi[um—1] (up, 1 (t) /m
+ 2D B;[um—1)(Vul,_1(t), Vu,

IN N

BM = max BiM; 1= 1,

i=1,2,3

~—

g ‘uff%(m,s)r + ‘Au

=
iy

> t
< By / S (s)ds
b* 0

We deduce that

|1

Furthermore,

Bimm (:C, t)
| Bima (2, 1)

AN

IN

: / 2(5) + By (s)iE) (5)
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(2.39)

(1+ M +8M?) B{(M) = B, (2.40)

2,3.

1 [ Im(T,8) ( ugig)c(m,s)r + ‘Augj)(m‘, s)‘2 + ’uﬁ,’%(az,s)’?

WWQDLm

off +Jaupef

o5 [ \u;';;<s>H + ) ]

t
4By / SW) (5)ds
0

D1 Bjum—1] + D3Bi[tm—1]Vum—1, i

(2.41)
Vi) (s)ds|  (2.42)
=1,2,3, (2.43)

Bi(M) (1+2M) = Biy < By = max Biy, i =1,2,3,
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the following estimation is true

b
|
[\)
/\
o
=
3
8
>
\—/
§
/-\
\_/
_l_
s
Do
8
/—\
\/
R
/\
\/

alk
+ Bama(s)i5)( >
<ot [ (Jui] + uussasw + sl [ase o o
< 6By /t S (5)ds
0

Consequently, the estimations (2.24), (2.28), (2.30), (2.38), (2.41), (2.42) and
(2.44) show that

(2.44)

SW(t) < So+2T (F]@ + G+ B+ éﬂ) (2.45)

2+ B _ A t
—|—< +b M +4BM+6BM)/ Sr(r]f)(s)ds
0

*

We choose M > 0 sufficiently large such that

Sy < %MQ, (2.46)
and then choose T' € (0,7*] small enough such that
(;M2 +or (F]@ + G+ B2+ G%)) (2.47)
X exp [T <2 +bBM + 4By + GBM>]
< M?, *

where

_ _ N B
kr = bﬁﬁa +3M) (Fur + G + Bur) exp [T (1 - QbMﬂ <1 (248

and
By = max (1+4M)B;(M).

1=1,2,3

From (2.45)-(2.48), we have
2+ BM

*

2+ B
+< +b M+4BM+6BM>/S s)ds.

*

Sr(r’f) (t) < M? exp |:T ( + 4BM + 63M>:| (2.49)
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Using Gronwall’s Lemma, (2.49) leads to
2+ B M

*

SE (1) < M exp [(T ~ 1) ( +ABy + GBMH < M2, (2.50)

for all ¢ € [0, 7], for all m and k, so
ul®) € W(M,T), for all m and k. (2.51)

(iii) Limaiting process. By (2.50), there exists a subsequence of {u,(q]i)} with
a same notation, such that

ugf) — upy in L®(0,T; HE N H?) weakly*,
aR) ol in L°(0,T; HE N H?) weakly™,
iR 5w in L°°(0, T HY) weakly™,

um € W(M,T).

Passing to limit in (2.12), (2.13), it is clear that wu,, is satisfying (2.9), (2.10)
in L2(0,T).

Furthermore, (2.9) and (2.52) imply that
Bam () Aull (1) (2.53)
= —Bum(t) Aum(t) — Bam () Atip, (t) — Bima (t)tma(t)
—Bama (1)U () = Bama ()t (£) + up (t) — Fin(t) + Ga(t)
=, € L>(0,T;L?).
We have
b | 8t ()] < | Bsm (6) A (1) | = [ an (O] < [l e 721

Hence u!/, € L>(0,T; H: N H?), so we obtain u,, € W1(M,T), Lemma 2.2 is
proved. O

(2.52)

Then, Step 1 is done from the Lemma 2.2.

Step 2: This Step will show that {u,,} converges to u and u is exactly a
unique local solution of Prob.(1.1)-(1.3). We have the following lemma.
Lemma 2.3. Let (Hy)-(Hy) hold. Then

(i) Prob.(1.1)-(1.3) has a unique weak solution w € W1(M,T), where M >
0 and T' > 0 are chosen constants as in Lemma 2.2.

(ii) The linear recurrent sequence {u,,} defined by (2.8)-(2.10) converges
to the solution u of Prob.(1.1)-(1.3) strongly in the space

Wi(T) = C* ([0,T]; Hy) - (2.54)
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Proof. We use the result obtained in Lemma 2.2 and the compact imbedding
theorems to prove Lemma 2.3. It means that the existence and uniqueness of
a weak solution of Prob.(1.1)-(1.3) is proved.

(i) Existence. It is well known that Wy (T) is a Banach space (see Lions [6]),
with respect to the norm

HUHWl(T) = H”Ho([o,T];Hg) + H”/Hc([o,ﬂ;ﬂg) : (2.55)

It is clear that {u,,} is a Cauchy sequence in W1(T'). Indeed, let
Wiy = Um41 — U
Then, we have
Fui1(t) = Fn(t),w0) + (G (£) — G (8), )

By m+1(t) Bim (1)) Ume(t) + (BZ,erl(t) — Bop(t)) ulrna:(t)7 Wy)

<_in( )s w) + (B1m11 (1) Wma () + Bom 1 ()W () + Bam1 (D)W (1), we)
—((
0<§B3 m+1(t) = Bsm(t)) i, (t), wa) , Yw € Hy,

Win( m(0) = 0.
(2.56)
Consider (2.56) with w = w},,, and then integrating in ¢, we get
t
Zm(t) = 2/ (Frn41(8) = Fi(s),wy,(s)) ds (2.57)
0

#2 [ (G )~ Guo). 0l 5) s

s [ (B s 500 09) 5 B ) )]
2 [ ((Bunia(6) = Bun)) tnels), ) s

2 [ (B s(5) ~ Ban()) ). 0l 5) s

t
2 / (Bsme1(5) — Ba(s)) t/a(5), e (5)) ds
0
= J1+J+J3+Js+ J5+ Jg

with

(2.58)

I!ww)H”Hmw;m(t) 2
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VB Ot

t

=3

0

2 b (|l + e + loma ®)])

2

2

B () (5)]| ds

By the fact that

1Fsr(s) = Bl < 20+ 2M)Fus wmslypyry . (259)
|Grns1(s) = Gunls)| < 21+ 2M)Crt [t oy ) -
1B i1 (@,8)] < (14+M+8M?) Bi(M)= By, i =1,3,
|Bims1(2,5) = Bun(z,8)| < (14 4M)Bi(M) [wm1lly,
< BM me—IHWI(T)y 1=1,2,3,
||umm(s)+u;m(s)+uxw(s)H < 3M,
we obtain the estimations
t
o= 2 / (Fos1(5) — F(s), wly(s)) ds (2.60)
0

4 _ t 2
< o U 2MP FT ol + e [ i) ds

t
Jy = 2 / (Cons1(5) — Gin(8), twha(s)) ds
0
4 B t
o (142002 G T iy + 0 [ o) s
t

4 _ _
Ji+Jy < b—(l +2M)? (Fas + Gu)° T [wm—1ll3y, () +/ Zm(s)ds;
* 0

t |
2
J3 = /Ods/o Bl i1 (@, $)wh, (2, 8) + B i1 (2, 8) [why (2, 8)| do

< But [ (homelo)P + a0 s
< 124 /Oth(s)ds

and
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|Js + J5 + Jg

IN
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2 [ [((Brnsa(s) = Buns)) tona(): wha(9)] ds
0

#2 [ (Baanis(5) = Ban) 5 51}

#2 [ (Baanis(5) = Ban) 5 51} s

N t
< 6MBar llwm1llwir) /0 [tha(s)]] ds

9 B t
< bM2B§4T\|wm_1II§V1(T)+/O Zm(s)ds.
*

It follows from (2.57) and (2.60) that
9T

_ _ - 2
Zn(®) < - (1+3M)” (Far+ Gar + Bar) lwomt sy

+ (2 + LZM> /Ot Zom(8)ds.

Using Gronwall’s Lemma, (2.61) leads to

”meWI(T) < kr me_lel(T) , Vm e N,
SO
[tm — um+p”W1(T) <M —kr) kP, Ym,peN.

(2.61)

(2.62)

(2.63)

It means that {u,,} is a Cauchy sequence in W;(T"), so there exists u € Wy (T)

such that
U, — u strongly in Wy (T).

(2.64)

Note that wu,, € W1(M,T), so there exists a subsequence {up,;} of {un}

such that
U, — U in L°(0,T; H} N H?) weakly*,
u’mj — in  L(0,T; H N H?) weakly*,
Upp, —> in  L>(0,T; H}) weakly*,
ue W(M,T)

On the other hand, by (2.6), (2.8), (2.10) and (2.65)4, we obtain
1Fn(t) = Flul(®) < 2(1+2M)Far um—1 = tllyy, (1) »
1Gm(t) = Glul®)]l < 2(1+2M) G [Jum—1 — ullyy, (1)

|Bimt1(z,t) = Bilul(z,t)] < By |[um—1 = ullyy, oy » i = 1,2,3.

(2.65)

(2.66)
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It implies from (2.64) and (2.66) that

F,, — Flu] strongly in L°°(0,T}; L?),
G — Glu] strongly in L>(0,T; L?), (2.67)
Bim — Bilu] strongly in L>®(Qr), i =1,2,3.

Passing to limit in (2.9), (2.10) as m = m; — oo, by (2.64), (2.65) and (2.67),
there exists u € W (M, T) satisfying the equation
(" (), w) + (Bs[u] (t)ul(t) + Ba[u](t)u,(t) (2.68)
+B1 [u](t)ug (t), wa)
= (Flu](t), w) + (G[u](t), ws), Yw € Hy,

~  ~—

and satisfying the initial conditions
u(0) = dg, u'(0) = 3. (2.69)

Furthermore, by the assumptions (Hz)-(Hy), it implies from (2.65) and
(2.68) that

Bs[u]Au" = —Bi[u]Au — Bs[u]Au' — % (B1[u]) ug (2.70)
_ 9 By + o — PR+ 26l
9z P v ox
= Ve L>®0,T;L%.
Because of
by ||Au” (t)|| < || Balul(t)Au” (t)|| = [T (2)]| < 1| oo 0,7522) -

we obtain u” € L*(0,T; H} N H?), and so u € W1(M,T). The existence is
proved.
(ii) Uniqueness. Let ui, ug be two weak solutions of Prob.(1.1)-(1.3), such
that
w € Wi(M,T), i =1,2. (2.71)

Then w = w1 — uy verifies

(w" (), w) + <Bn( Jwe (1) +321( Jwl,(t) + Bs1 (t)w}(t), wz)
= (F1(t) — Fa(t ) w) + (G (t) — (t) )
—((B11(t) — Bia(t)) u2s(t) + (Baa(t) — B22( )) wn, (1), we) (2.72)
—((Bz1(t) — Bsa(t)) uh, (1), we), Yw € Hy,
w(0) = w'(0) =0,

Bij = Bi[uj], Fj = F[u]‘], Gj = G[Uj], 7 = 1,2,3, j = 1,2. (273)
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Taking v = w = u; — ug in (2.72) and integrating with respect to ¢, we obtain

p(t) = 2/ (Fi(s) — Fa(s),w'(s)) ds (2.74)
0
/ (G1(s) — Ga(s), w(s)) ds
ds/ wi(z,s) + By (z, s) |[wl(z s)‘2> dx
+2/0 ((B11(s) = Bia(s)) u2s(s)+(Bai(s) — Baa(s)) gy (5), wi(s)) ds
+2/0 <(Bgl(8) — BgQ(S)) u2x( >d8

where

' )] + H\/ﬁ(t)ué,;(t)H2 - H\/wa(t)HQ (2.75)
+2/0t H\/ﬁ(s)w;(s)uzds

> b ([ O + b @)+ e 0])
On the other hand, by (H3) — (Hs), we deduce from (2.6), (2.75), that
|Bly(z,5)] < (1+M +8M?) B;(M) (2.76)
=By < By, t=1,3,

Bir(z,5) — Baa(z,s)| < &(HW)BZ»(M) o(5)
/b

2 -
7BM V p(8)7 1= 172737

IN

b*

IFi(s) - Fa(s)l| < &(
1G1(5) = Ga(s)| < &(
Hqu(s)+u2x +uh(s)|| < 3M.

Combining (2.75) and (2.76), it implies to

1 _ _ _ _ t
p(t) < ™ [8(1 +2M) (Fp 4+ Gum) + Bu + GMBM] / p(s)ds. (2.77)
* 0
By Gronwall’s Lemma, (2.77) gives p = 0, i.e., u; = uy. This completes the
proof. O
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Now we are in a position to give a main theorem of this section.

Theorem 2.4. Let (H;)-(Hy) hold. Then Prob.(1.1)-(1.3) has a unique local

solution
ue L™ (0,T;HyNH?), v € L* (0,T; Hy N H?), 2.78)
u" € L% (0,T; HE N H?), '

for T > 0 small enough.

Proof. We know that the proof of theorem will be obtained from Step 1 and
Step 2. O

Remark 2.5. Based on the regularity obtained by (2.78), Prob.(1.1)-(1.3)
has a unique strong solution

ue O ([0,T); Hy N H?), " € L™ (0,T; Hy N H?). (2.79)

3. BLow-up

In this section, we consider Prob. (1.1)-(1.3) with A > 0; By = By <||u$|12) ,

Bl(y) > bl* > 0? V?J > 0; Bz = Bl (iL',t) S Cl([ov 1] X R—i—)v Bi(xat) > bz* > Oa
i=2,3; F = F(u,ug), G = G(u,uz), F, G € CY(R%R), f, fr € L*(Ry; L?),
as follows

it = By (Iuall®) tra = 5 (Ba (@) ar) = & (Bs (1) tatr) + A

= F(u,uy) — 86 (G (u ug)) + f(z,t),0<x <1, 0<t<T, (3.1)
u(0,t) = u(l,t) =
u(x,0) = Uo( ), u ( 0) = a1 ().

By the same method as in the proof of Theorem 2.5, (3.1) has a weak
solution u(z,t) such that

uwe CY[0,T]; H* N HY), v € L™(0,T; H* N HY), (3.2)

for T' > 0 small enough. Furthermore, if the following assumptions hold, then
a blow-up result is obtained.

(Ha) f=0;

(H3) By € C'(R,) and there exist the positive constants by, x1 such
that

(i) Bi(y) > b1« >0,Vy >0,

(i) yBi(y) < x1 [y Bi(z)dz, Yy > 0;
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(Hy) B; € C'([0,1] x Ry), i = 2,3 and there exist the positive
constants b;, b, o;, such that
(i) bi < Bi(x,t) < b%, Y(x,t) € [0,1] x Ry, i = 2,3,
(i) —o; < Bl(z,t) <0,Y(z,t) € [0,1] x Ry, i = 2,3;
(ﬁg,) There exist 7 € C%(R?;R) and the constants p, ¢ > 2; dy, di > 0,
such that
(1) G (uv) = F(uv), F(u,v) = Glu,v),
(i) wF(u,v) +vG(u,v) > diF(u,v), for all (u,v) € R?,
(iii) F(u,v) > dy (Ju|? + |v[P), for all (u,v) € R?

(ﬁf;) di > 2x1 + lj‘i and o3 > 0 is small enough with dy, x1, 02, 03
as in (Hs)(ii), (Hy4)(1), (i1).

Example 3.1. We give an example of the functions F, G satisfying (H5) as
below

Flu,v) = av|ul*2ulv]® + ¢ys [ulT 2 u

Glu,v) = pyi ol v+ Braful® o] 20,
where a, 8, p, ¢ > 2; v1, Y2, 73 > 0 are the constants, with

min{p, ¢, + B} > 2x1 + b%

with by, x1 as in (Hs), (Hy). It is obvious that (Hs) holds, because there
exists a F € C?(R?;R) defined by

Fu,v) =71 [o? + 52 [ul® [v]” + 3 [ul,
such that

(u,v) = aya [ul* 2 u|v]® + g3 [ul?? u = F(u,v),

(’U,, ’U) =rn ‘U‘p_Q v+ 6’72 ’u‘a ‘U‘B_Q’U = G(U,’U),
(u,v) + vG(u,v) > dlf(u v), for all (u,v) € R?

%%\%%\%

in which d; = min{p, ¢, + 8} > 2x1 —|— b
1*

Flu,v) > dy (| + |u|?), for all (u,v) € R?,
with d; = min{~y,v3}. Put
1

Ho = 2t -2 [ B - LA,
+/01]:(&0(:c),ﬂ0x(:c)) dzx.

(3.3)
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First, we need the following lemma.

Lemma 3.1. Let 2 <1 < ¢, 2 <79, r3 <min{p,q}. Then, for any v € H{,
we have

o™ + e 7 + ol < 3 (Jolda + ol + lol?) . (3.4)

Proof. The proof of Lemma 3.1 is not difficult, so we omit the details. O

Theorem 3.2. Let (Hy)-(Hg) hold. Then, for any o, 41 € Hy N H? such
that H(0) > 0, the weak solution u = u(x,t) of Prob.(3.1) blows up in finite
time.

Proof. 1t consists of two steps.
Step 1: First, we prove that the Problem (3.1) has not a global weak solution.
Indeed, by contradiction, we assume that

we CY Ry H2NHY), o € L®(0,T; H N HY), VT >0,  (3.5)
is a global weak solution of Prob. (3.1). We define the energy associated with
(3.1) by

Ty, e 1 ||um(t>\|2
B(t) = 5Hu(lt)H +2/0 y)dy + =

VB, )] (3:6)

1
—/IF(U(JJ,t)yuac(‘T’t)) dl’,
0

and we put H(t) = —E(t), for all ¢ > 0. Multiplying (3.1) by «'(x,t) and
integrating the resulting equation over [0, 1], we have

() = Al )+ H\/ﬁ(t)u;(t)HZ— % /01 B, 1) ol (a0, £)[2 dx > 0. (3.7)

It implies that

0< H(0) < H(t), Vt >0, (3.8)
0< H(0) < ) < fo ux(x t))
()] + fo”“f” By + VBl H (3.9)
<2fO u(x, t), ug(z, t))da: Vt20

Now, we define the functional

L(t) = H'7(t) +e¥(t), (3.10)
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where
U(t) = (W(t),u(t)) + (Bs(t)ug (), ua(t)) (3.11)
3 @I + § || /B 1)

for € small enough and
0<n<l1, 2/(1-2n) <min{p,q}. (3.12)

In what follows, we show that, there exists a constant v > 0 such that

2 2
L(t) 2 [H®) + a5 + @, + [ O + [, 0] + a0
(3.13)
Multiplying (3.1) by u(z,t) and integrating over [0, 1], it lead

) = e H2+H\/Bg o) B (\qu()H?) lua (@) (3.14)

+(Bj(t) / Bl(x,t)us(z,t)d
+(F (u(t), uz(t)) , u(t)) + (G (u(t), uz(t))  ua(t))-
Therefore
L'(t)= 1 —-n)H "t)H (t) + V' (t) > V' (2). (3.15)
By (Hs), we obtain
(F (u () u(®)) + (G (u(t), uz(t)) , ua(t))

(t), uz
1
> d1/0 F(u(z,t), ugy(x,t)) de, (3.16)
1
/0 F (u(x, 1), ug(z,t)) de > dy ([Juz(®)]7, + [u)]|Ta) -

On the other hand, by (Hz), (Hy), we get

e (£)]12
B () 0 > = [ Bl (3.17)

/Bzazt @0de > =2 w0,
[(By(e)u ()uz<t>>| < IBOLOl 1)

1
< 2(51”% )12 + H H2>,v51>0.
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It implies from (3.14), (3.16), (3.17) that
b @)+ | VBB )|~ Br (e 0) s )P (3.28)
w3 [ Bl 02 0+ (B0 0, 0,0

0
1
+ody /0 F (ula, 1), ua(@, 1)) do

[ (£)]2
+(1 = 6)d; [H(t) + 1 Hu’(t)H2 + 1/ Bi(y)dy

2 2 Jo
Alvmme]
> (e a-ag ol [t a- a9 n ol
+d1(5/ F (u(x,t),up(z,t)) de+di(1 —9)H(t)
~5 @) = 5 (51 (&)1 + § Hu;<t>H2)
+ [(1 - 5% — x| b fua(0l?
> |1+ 0-9F| MO + a0 -5H0

+di8dy (Jlu®)l|Fq + llua(®)II75)
1+ a-0F ) n- 25““ Olls

% (1= 8)d1 — 2x1 ) brs — 02 — 1] [Jua (8%,

for all § € (0,1). By d1 > 2x1 + 60—2, we have
1%

lim [((1 — 5)d1 — 2)(1 )bl* — 09 — (51} = (d1 — 2)(1 )bl* — 09
5—>0+, 61—>0+

> 0,

then, we can choose 0, 41 € (0,1) with 0, §; are small enough such that

[(1 — (5)d1 — 2X1 ]bl* — 02 — (51 > 0. (3.19)
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Then, if o3 > 0 satisfies

2
<1 1+ (1—96) dl) by, — ;—5’1 >0, (3.20)

we deduce from (3.18), (3.19) and (3.20) that there exists a constant v > 0
such that (3.13) holds. From the formula of L(t) and (3.13), we can choose
€ > 0 small enough such that

L(t) > L(0) > 0, ¥t > 0. (3.21)
Using the inequality
5 r 5
(Z - ZL'Z) < 5l Z'_l xy, forall r > 1, and x1,--- ,25 >0, (3.22)
we deduce from (3.10)-(3.12) that
LYA=m@) < Const [H(t) + | ), () (3.23)
1/(1-
+[(Ba(tl (8), w01

P+ | VB

Using Young’s inequality, we have

[u(t), o/ (1)) < Hu( >u1/<l—”> [ e (3.24)
1 , 2
< ( ) O + 57— )Hu<t>H
< Const (Huac )T+ || ( H2>,

where s = 2/(1 — 2n) < min{p, ¢} as in (3.12). Similarly, we also obtain

1

(Bt (1), ua(B)| 7 < (65T [fua(®) |79 U, ()] =7 (3.25)
< Const (Jlus()I° + [Juz(8)]*)
[VEGwL@|" " < 670 a0,

Combining (3.23) - (3.25), it implies that

I

LYA-0(4) < Const [H(t)+|]u’(t)\}2+ﬂu;(t) (3.26)

a1 flu (O + s ()] } :
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Using (3.26) and Lemma 3.1 with r = 172”, ro =8, r3 = 2/(1 —mn), we obtain
- 2 2
LY@y < Const [H() + [/ O + [, + lua () (3.27)

Hlu7e + lua Ol ],
for all ¢ > 0. It follows from (3.13) and (3.27) that
L'(t) > ALY~ (4), vt >0, (3.28)

where ) is a positive constant. Integrating (3.28) over (0, 1), it leads to

_ 1—-n 1 1—n_ _,n-
L=y > —— 0<t<T=—~—L"071(0). 3.29
(0> g 0 = 0. (329)
Therefore lim L(t) = +oo. This is a contradiction with (3.27) and u €
t—T,.

CH([0,Ti]; H*> N H}). Thus, the Problem (3.1) has not a global weak solu-
tion
Step 2: Next, we put
Too = sup{T > 0: Prob.(3.1) has a unique solution,
ue CY[0,T); H> N HY), w" € L=(0,T; H> N HY)}.

Since Problem (3.1) has not a global weak solution, we have Ty, < +00. We
now prove that

Jim. (Hu(t)nHzﬂHol + Hu'(t)HHZOHé) = +oo. (3.30)

o)

Indeed, assume that (3.30) is not true, then there exists a constant M > 0
and there exists a sequence {t,,} with {t;,} C (0,Tw), tm — Too such that

o) Lz + 1o () gy < M. Vm €N

Following the argument as above, for each m € N, there exists a unique weak
solution

Uy € CY([tm,tm +0]; H2 N HY), v € Lt tm + o H? N HY)
of Prob.(3.1) with the initial data
u*(tm) = u(tm)a u;(tm) = u/(tm)>

for ¢ > 0 independent of m € N. By t,, = T, we can get t,, + 0 > T, for
m € N sufficiently large. It is clear to see that the function @(t) with

Yl — U(t), Ogtgtma
at) _{ Ue(t), tm <t <t +,

is a weak solution of Prob.(3.1) on [0,¢,, + o], t;, + 0 > Too, We obtain a
contradiction to the maximality of To,. Thus, (3.30) holds. This completes
the proof. O
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4. EXPONENTIAL DECAY

In this section, we continue to consider Prob.(3.1) and we make the following
assumptions.

(Hy) fe L (Ry:L?) NI (Ris12);
(H3) By € C*(Ry) and there exist two positive constants by, Y1«
d
with x1. > 22 such that
p

(i) Bi(y) > b1 >0, Yy > 0,
(ii) yBl(y) > X1x fgy Bl(z)dzv Vy > 0;
(Hy) B; € CY([0,1] x Ry), i = 2,3 and there exist the positive constants
bi«, b], o3 such that
(i) b < Bi(z,t) < b, V(@ t) € [0,1] x Ry, i = 2,3,
(i) —o3 < Bi(z,t) <0, V(z,t) €[0,1] x Ry,
(ii) Bh(xz,t) <0, V(x,t) €[0,1] x Ry;

(Hs) There exist F € C2(R%R) and the constants p, q, o, 3, da, dy, do > 0,
a, B, ¢ > 2, p>max{q, o+ (3, da} such that

(i) g—i(u,v) = F(u,v), %—f(u, v) = G(u,v), for all (u,v) € R?,
(i) Fi(u,v) = Flu,v) +dy vl < do <\u\°‘ o] + \uyq) , for all (u,v) € R?,
(iii) wF(u,v) + vG(u,v) < doF (u,v), for all (u,v) € R?;

_ d _
(Hg) xix > — with dy as in (Hs).
p

Example 4.1. We give an example of the functions F, G satisfying (Hj), as
follows
Flu,v) = oy |ul*%u \v|ﬁ + qy3 [u|T % u,
Gu,v) = —py o2 v+ Brya [ul* [v]" 7w,
where «, 8, p, ¢ > 2; 71, Y2, 73 > 0 are the constants, with o, 8, ¢ > 2 and
p>q,p>a+p.
We see that (Hs) holds, indeed, we consider F € C?(R?;R) defined by

F(u,v) = =71 [P + 52 |ul* [o]® + 3 |u]?,
then we have
%—f(u,v) = oy |u]o‘_2 u \U!’B + g3 \u|q_2 u = F(u,v),
OF

& (u,v) = =pm [0 "2 0+ Braul* o] 2 0 = Glu, v),
Fi(u,v) = F(u,v) + 1 v|P < day (|u|a lv|? + |u|q> , for all (u,v) € R?,

where CZl =7, 622 = max{’yg,’yg}-
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On the other hand, (Hg) also holds, because of

uF(u,v) + vG(u,v) = (p—¢e)F(u,v)—ey|vf’
~(p—a—B—ezlu o)~ (p—q—e)yslul
< (p—e)F(u,v) = daF(u,v), for all (u,v) € R?
where do = p — € < p, with € > 0 small enough such that

O<e<p,p—a—B—e>0,p—qg—e>0.

Now, we show the main result of this section. That is, the solution u of
Prob.(3.1) is exactly global and exponential decay provided that E(0) is small
enough and

1(0) = ||v/B(O) o

1
—p/o Fi(tap(z), toz(x))dx > 0,

where p > max{q, a + 3, d2} with dy given in (Hj)(iii).

First, we construct the following Lyapunov functional. Let u = u(x,t) be a
global weak solution of Prob.(3.1) satisfying (3.5) as in Section 3. In order to
obtain the decay result, we construct the functional

L(t) = B(t) + 0U(t), (4.1)

with § > 0, and ¥(¢) as in Section 3 and

llua ()]
B = 5O+ 5 WO +5 [ Biwa
v |vBs@ | (1.2
_ 1
s Oll — [ (), 1) d
where

(g u')(t) = /0 ot — 5 | (s)|* ds,

gt) =22 2 0 < X<\, k>0.

(4.3)

We rewrite E(t) as follows
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2

By = S|+ | VB

+(3-1) [<g w0+ [ O <y>dy]

. 1
+di [Juz ()17 + EM)’

where
e (1) 1
I(t) = (g*u')(t) + /0 Bi(y)dy — p/o Fi(u(z, t),uy(z,t)) de.  (4.5)

Now, we have the following theorem.

Theorem 4.1. Assume that (ﬁg)—(ﬁ(;) hold. Let g, 41 € Hi N H? such that
I(0) > 0 and the initial energy E(0) satisfy
8

) —o (B\? - pos
* = b1y — pd RfQ — —|—R32 > 4.6
n 1x — pa2 <d1> 5, (4.6)
where
1
B = (BO+ 51l ) ow (Flpe ). 6D
2pFE,
R - B
Assume that -
I£ &) < Cyexp(—mt), ¥t >0, (4.8)

where C1, N1 are two positive constants. Then, for all the global weak solution
of Prob.(3.1) is exponential decaying, that is, there exist positive constants C,
5 such that

[ (@) + [ ()| + Nl ()] + Nfua (@), < Cexp(—7t), ¥t >0.  (4.9)

Proof. 1t consists of three steps.

Step 1: The estimate of E'(t).

We have
CRACRER HO R VO O] (110)
Gi) E'(t) < — <>\—5\— %1) [/ ()[|* = F(g ) (£) — baw |1 (8) ]|

1 [t 1
i1 / Bl t) | )2 de + —— (1),
2 0 251
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for all 1 > 0. Indeed, multiplying (3.1) by u/(x,t) and integrating over [0, 1],
we get

Et) = == W@l kg u)) - | VBaltui( H (4.11)
—i—;/ Bé(a:,t)‘u;(x,t)fda:—{—<f(t),u/(t)>.

On the other hand

—_

[(F@), )| <5 IS ()||+*Hf e ] (4.12)

2
By Bj(z,t) <0, it follows from (4.11), (4.12) that (4.10)(i) holds.

Similarly,

[(f (), (1))] < o Hf ||0+—}| H , for all 1 > 0. (4.13)

By Bf(z,t) <0, (4.11) and (4.13), that (4.10)(ii) is valid.
Step 2: The estimate of I(t).
By the continuity of I(t) and I(0) > 0, there exists 77 > 0 such that
I(t) > 0, Vt € [0, T1], (4.14)

it implies that for all ¢ € [0,7T1],
2  (p—2 2
Bw) > gl + (257 ) b a0l (4.15)
b3* 2, 5
5 O]+ di flua@I1E

Combining (4.10);, (4.16) and using Gronwall’s inequality, then we obtain

IO+ (22 ) b st (4.16)

+5 e @ + du e )

< E(t) < E., Yt €[0,T1].
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Hence, it follows from (Hj)(iii), (4.7), (4.16) that

1 1
p/ Fi(u(z,t), ug(x,t))de < |u x,t)] \ux(x,t)|ﬂ + ]u(x,t)\q) dx
0

IN

(nux [ o) de + st
= z(uuz 1 lua®)175 + lua (D]
v (

lta ()11 ()20 + [ (1))

pds (Hux(t)\l“ 2l (N7, + e (D]1*)
< e ()] (4.17)

8
Ro~2 <E> " 4 Re?
Consequently, we have

I(t) 2 (g u) (1) + 0" Jua()]* = 0,92 € [0, T1].

Put T =sup {7 > 0:I(t) >0, Vt € [0,T]}. If Tox < 400, then the conti-
nuity of I(t) leads to I(T) > 0. If I(T) > 0, by the same arguments as in
the above part we can deduce that there exists Too > Tio such that I(t) > 0,
for all t € [0, Th]. We obtain a contradiction to the definition of Th.

If I(Tw) = 0, it follows that

0=1(T) = (g u)(Too) + 1" [Jua(To)|* = 0.

Therefore, we have

IN

IN

IN

pdy lua (0)]

w(Te) = (g*u')(Ts) = 0.
By the fact that the function s —s (T —s) ||/ (s)||? is continuous on [0, Th]
and g(Ts — s) > 0, for all s € [0, Tw], we have

Too
2
@e)(Tw) = [ o= 9 [l as
= 0,
it follows that ||u'(s)|| = 0, for all s € [0,Tw], it means that u is a constant
function on [0, 7). Then, u(0) = u(Tx) = 0. It leads to I(0) = 0. We get a

contradiction with 7(0) > 0. Consequently, T, = +o0, that is, I(t) > 0, for
all t > 0.

Step 3: Decay result. o
At first, we verify that there exist the positive constants 81, B2 such that

BLE(t) < L(t) < B2Er(t), Yt >0, (4.18)
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where

2

e R llua (8)]]
Ei(t) = [ @) + ||[wl@)]| +/0 By(y)dy + ||ua(t)||7, + 1(). (4.19)
Indeed, we have

) = @I+ 5 [VB@uo| (4.20)

_ llue (£
+p2p2 l<g ) () + /0 Bl<y>dy]

oy a2 + ;m)
o0 (1), u(t)) + 8B (1) (2), ug (1))

2

+2 ) + 5 | VB @]

On the other hand

(w(t) (1) < 3 eI + 5 )], (4.21)
(Bs(pu (), wal0)) < 585 ([0 + lualD?)
Then we have
) = 5 O + ghse )] (4.22)
2 [<g )0+ [ o Bl<y>dy]
4 Ol + 510 = 5 (lus I + | 0)]°)

ob3 0bas
=23 (e P+ e 12) + 22 a0

1-9 1
= = [ OIF + 5 b3 = 503) [l 0]

- _ l[ue ()|
oy [[ua () + ;m) + p2p2 [<g ) () + /0 Bl<y>dy]

5b2*

72 (14 5) e DI + 72 Jua (0]
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1-6 , -
> L) + L e = 085) o) 4+ s s ()

1 p—2 , p—2 §(1+0b3) /”%U”

) O ' — By (y)d

+p (t) + o (g*u')(t) + 5 2o ; 1(y)dy
> BiEL(t),

where ¢ is small enough and

= . f1=6 b3—6b5 p—2 ) o1
B = mln{ 5 > 2 T (1+03), di, p} >0, (4.23)
b3 (p - 2)bl* }

0 < (5<min{1, - .
b5 " p(1+05)

Similarly,
1+5 2 ~
L) < [l ( H 2 (1+0) |||+ di ua®)f,  (4.24)
1 p—2 ,
+-I(t) +——(g*u)(t
1) 2p( ()
p—2 ) bt b [lue (0] 5 .
+{ % +2b1*( T A+ 0+ 3)}/0 1(y)dy
< BZEl( )7
where
= 1+0 b3 p—2 1) N
5o —max{ 2 3 (1+96), 2% +2b1* (1+)\+b2+b3), d1} > 0. (4.25)

Next, we show that the functional W(¢) satisfies

vy < Ju@+ (5 +8) e (4.26)

dy ey g ()]
- <X1* T ) /0 Bi(y)dy

dg(l—(sg) % g3 2 d2 /
- (B - 2 ol + Ego

2
d2(52 ~ 1 2
—Z22I(t) — dady ||us () ||5, + — | F()]7,
) (t) — dad [Ju ()Hm+252 If@l

for all e2 > 0, 2 € (0,1). Its proof is as follows.
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By multiplying (3.1) by u(z,t) and integrating over [0, 1], we obtain

V() = [ @ - B (lu®)?) fu o) (4.27)

1 1
+§ / Bh(x, t)u’(z,t)dx
0

B (0) ue () + |V Bs (1)
U (u(t), s (6)  u(0) + (C (ult), s (1)) 02 (5) + (F(2), (D).
Furthermore, by (Hy)(iii), we get
(F (u(t), uat)) () + (G (), (1)) (1) (4.28)

1
< d2/0 F (u(z, t),ugp(z,t)) do
1 ~
0, [ /0 Fy (e ), g, ) d — dy Huxa)wzp]

o (1) 2 -
- & [(g*u’)(t) +/0 By (y)dy — I(t)] — dady [|ua(t)[|7

P
lJua (8)12
-2 l<g )+ [ Bl<y>dy] - 2210

da(1 — d2)

_ I(t) — d2d~1 ||U:Jc(t)||§,p .
We also have
e (82

B (Jus ) s < =10 [ B, (4.29)

0

Hx/%u&(t)”z A Al

1 1
2/ B (z, t)ul(z,t)dx <0,
0

By (0, ua(0)) < (@I + s (D))

lluz ()]
) < 5= [ By + o 1@

and
da(1 — d2)

p

1) < —d“;“” RO
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for all e3 > 0, d2 € (0,1). Combining (4.27)-(4.29), we get (4.26). The esti-
mates (4.10)(ii) and (4.26) give
LW < - ()\ - %1 - 5) [ <k - M2) (g u')(t) (4.30)

p
= |boe =6 (4 03) | uit)]

5 ds £9 lJua (8)]12 B ()
b2 [
dy(1—02) , o3 2

(B ) o)
_(5d252

~ 1/1 )
110) - b s O + 5 ( 2+ 2 ) IFOIP,

for all 0, 51,52>0 d2 € (0,1).

By 203 we can choose 6, £1, €9 > 0, d2 € (0,1) such that
n*
9, — )\—6—21—6>0, (4.31)

s —= by —5( +bg) 0,

do €2

03 = . — — — ,
3 X1 » 2b1*>0
do(1 — 6
94 = 72( 2>77*—$>0,
P 2
Y
0 = k‘—J>O.
p

By (4.30)-(4.31), we get

L'(t) < —mE(t)+Cre ™ < — glﬁ( )+ Cre Mt < —FL(t)+Cre™ ™, (4.32)
2

5dad ~
where v1 = min{#;, 62, §6s, ; 2 5d2d1} 0 <7< mln{ﬁ , )}, C1 =

1/1 0\ =
(2o
2 €1 €9
On the other hand, we also have
L(t) > BiEi(t) (4.33)
= . 2 2
> Brmin{L, b} [ O + a2 + [0 + luat) 2]

Therefore, Theorem 4.1 is proved completely. O
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