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1. Introduction

Suppose (X, d) is a metric space. A geodesic path joining x ∈ X to y ∈ X,
or a geodesic from x to y is a map c from a closed interval [0, `] ⊆ R to X
such that c(0) = x, c(`) = y, and d(c(t), c(t′)) = |t− t′| for each t, t′ ∈ [0, `]. In
particular, c is an isometry and d(x, y) = `. The image α of c is known as a
geodesic (or metric) segment joining x and y. When it is unique, the geodesic
segment is denoted by [x, y]. The space (X, d) is said to be a geodesic space
if every two points of X is joined by a geodesic segment, and X is said to
be uniquely geodesic if there is exactly one geodesic joining x and y for each
x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes every geodesic
segment joining any two of its points.

A geodesic triangle ∆(x1, x2, x3) in a geodesic space (X, d) consists of three
points x1, x2 and x3 in X, the vertices of ∆ and a geodesic segment between
each pair of vertices (the edge of ∆). A comparison triangle for geodesic
triangle ∆(x1, x2, x3) in (X, d) is a triangle ∆(x1, x2, x3) := ∆(x1, x2, x3) in
the Euclidean plane E2 such that dE2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT (0) space if all geodesic triangles of
appropriate size satisfy the following comparison axiom.

Let ∆ be a geodesic triangle in X, and ∆ a comparison triangle for ∆.
Then, ∆ is said to satisfy the CAT (0) inequality if for each x, y ∈ ∆ and
all comparison points x, y ∈ ∆, d(x, y) ≤ dE2(x, y). Examples of CAT (0)
spaces includes: any complete simply connected Riemannian manifold having
nonpositive sectional curvature, the complex Hilbert ball with a hyperbolic
metric [21], Pre-Hilbert spaces [15], and R-trees [37]. The reader interested in
detailed study of such spaces is reffered to ([2], [6], [33], [35], [36], [37], [40]).

The notion of complex valued metric spaces was introduced by Azam et
al. [11] in 2011. They established some fixed point theorems for a pair of
mappings satisfying rational inequality. Their results incorporated rational
contractive operators which can not be studied in the setup of cone metric
spaces as the definition of cone metric spaces rely on the underlying Banach
space which is not a division ring. Several authors have obtained interesting
and applicable results in complex valued metric spaces (see, e.g. [3], [4], [8],
[7], [11], [18], [20], [27], [46], [47], [50], [51], [52], [53]).

The purpose of this paper is to define the concept of complex valued CAT (0)
space and propose a new proximal point algorithm for certain nonlinear map-
pings satisfying rational expressions in the framework of complex valued CAT (0)
spaces. We prove existence of fixed point results for these nonlinear mappings
in complex valued CAT (0) spaces. The strong and ∆-convergence of the itera-
tive sequence generated by these nonlinear mappings was proved. We propose
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a new modified proximal point algorithm for these nonlinear mappings in com-
plex valued CAT (0) spaces and prove that it converges faster to the minimizer
of a convex function and the fixed point of these mappings than the modified
Mann-type and Ishikawa-type proximal point algorithms. We obtain some
numerical examples to validate our analytical results. Our results extend sev-
eral known results to complex valued CAT (0) spaces, including the results of
Abbas et al. [2] and Khan and Abbas [33].

2. Preliminaries

The fixed point problem involves finding the fixed point of a mapping T :
X → X. The set of fixed point of the mapping T is denoted by F (T ) := {x ∈
X : x = Tx}. The fixed point problem (FP ) is then formulated as follows:

find x ∈ X such that x = Tx.

Let C be the set of complex numbers. For the rest of this paper, we will
adopt the partial order defined on C in [11].

Definition 2.1. ([11]) Let X be a nonempty set. Suppose that the mapping
d : X ×X → C, satisfies:

(1) 0 - d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a complex valued metric on X, and (X, d) is called a complex
valued metric space.

Suppose x, y1, y2 are points in a CAT (0) space, and y0 is the midpoint of
the segment [y1, y2], then the CAT (0) inequality implies

d2(x, y0) ≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)− 1

4
d2(y1, y2). (2.1)

This is the (CN) inequality of Bruhat and Tits [16]. It is known (see [15])
that a geodesic space is a CAT (0) space if and only if it satisfies the (CN)
inequality.

The following facts about CAT (0) spaces can be seen in [24].

Lemma 2.2. ([24]) Let (X, d) be a CAT (0) space. Then

(i) (X, d) is uniquely geodesic.
(ii) Let p, x, y be points of X, let α ∈ [0, 1], and let m1 and m2 be the points

of [p, x] and [p, y], respectively, and satisfying d(p,m1) = αd(p, x) and
d(p,m2) = αd(p, y). Then

d(m1,m2) ≤ αd(x, y). (2.2)
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(iii) Let x, y ∈ X, x 6= y and z, w ∈ [x, y] such that d(x, z) = d(x,w). Then
z = w.

(iv) Let x, y ∈ X. For each t ∈ [0, 1], there exists a unique point z ∈ [x, y]
such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y). (2.3)

We will use the following notations for convenience, from now on, (1−t)x⊕ty
for the unique point z satisfying (2.3).

Suppose {xn} is a bounded sequence in a CAT (0) space X. For x ∈ X, we
set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}
and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
It is known (see, e.g. [21], Proposition 7) that in a CAT (0) space, A({xn})

consists of exactly one point.

Definition 2.3. ([36], [39]) A sequence {xn} in X is said to be ∆-convergent
to x ∈ X if x is the unique asymptotic center of {un} for every subsequence
{un} of {xn}. In this case we write ∆-limn xn = x and call x the ∆-limit of
{xn}.

We use the following notations for the rest of this paper:

w∆(xn) :=
⋃
{A({un})},

where the union is taken over all subsequences {un} of {xn}.
Motivated by the results above, we now define the concept of complex valued

CAT (0) space by assuming that the space (X, d) is a complex valued metric
space as follows:

Definition 2.4. A complex valued metric space (X, d) is called a complex
valued CAT (0) space if it is geodesically connected, and if every geodesic
triangle in X is at least as ”thin” as its comparison triangle in the Euclidean
plane.

A geodesic space is said to be a complex valued CAT (0) space if all geodesic
triangles of appropriate size satisfy the following comparison axiom.

Let ∆ be a geodesic triangle in X, and let ∆ be a comparison triangle for
∆. Then, ∆ is said to satisfy the complex valued CAT (0) inequality if for each
x, y ∈ ∆ and all comparison points x, y ∈ ∆, d(x, y) - dE2(x, y).
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Suppose x, y1, y2 are points in a complex valued CAT (0) space, and y0 is the
midpoint of the segment [y1, y2]. Then the complex valued CAT (0) inequality
implies

d2(x, y0) -
1

2
d2(x, y1) +

1

2
d2(x, y2)− 1

4
d2(y1, y2). (2.4)

This is the (CN) inequality of Bruhat and Tits [16]. Following the results of
[15], we can easily show that a geodesic space is a complex valued CAT (0)
space if and only if it satisfies the (CN) inequality.

In 1975, Dass and Gupta [23] extended the Banach contraction mapping
principle by using mappings satisfying contractive condition of the rational
type in the framework of complete metric spaces. Folowing the results of [23],
we define the following class of nonlinear mappings in complex valued CAT (0)
spaces.

M1 = {T : X → X : T is continuous satisfying

d(Tx, Ty) - αd(y,Ty)(1+d(x,Tx))
1+d(x,y) + βd(x, y)}, (2.5)

where α, β ∈ [0, 1) such that α+ β < 1 for each x, y ∈ X.
Similarly, we define the following class of mappings from the results of Jaggi

[29].

M2 = {T : X → X : T is continuous satisfying

d(Tx, Ty) - αd(x,Tx)d(y,Ty)
d(x,y) + βd(x, y)}, (2.6)

where α, β ∈ [0, 1) such that α+ β < 1 for each x, y ∈ X, x 6= y.

Next, we define the following class of mappings from the results of Jaggi
and Dass [30].

M3 = {T : X → X : T is continuous satisfying

d(Tx, Ty) - αd(x,Tx)d(y,Ty)
d(x,y)+d(x,Ty)+d(y,Tx) + βd(x, y)}, (2.7)

where α, β ∈ [0, 1) such that α+ β < 1 for each x, y ∈ X.
Finally, we define the following class F of nonlinear mappings:

F :=M1 ∪M2 ∪M3. (2.8)

It is our purpose in this paper to prove some fixed point results for F class
of nonlinear mappings in the framework of complex valued CAT (0) spaces.
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In 2013, Khan [34] introduced the Picard-Mann hybrid iterative process.
The iterative process for one mapping case is given by the sequence {xn}∞n=1. x1 = x ∈ D,

xn+1 = Tzn,
zn = (1− αn)xn + αnTxn, n ∈ N,

(2.9)

where {αn}∞n=1 is in (0, 1). Khan [34] proved that this iterative process con-
verges faster than all of Picard [48], Mann [41] and Ishikawa [28] iterative
processes in the sense of Berinde [14] for contractive mappings.

In 2017, Okeke and Abbas [45] introduced the Picard-Krasnoselskii hybrid
iterative process defined by the sequence {xn}∞n=1 as follows: x1 = x ∈ D,

xn+1 = Tyn,
yn = (1− `)xn + `Txn, n ∈ N,

(2.10)

where ` ∈ (0, 1). The authors proved that this new hybrid iteration process
converges faster than all of Picard [48], Mann [41], Krasnoselskii [38] and
Ishikawa [28] iterative processes in the sense of Berinde [14]. The authors
used this iterative process to find the solution of delay differential equations.
Moreover, Okeke [44] proved that the Picard-Mann hybrid iterative process
[34] have the same rate of convergence as the Picard-Krasnoselskii hybrid
iterative process [45].

Recently, Okeke [43] introduced the Picard-Ishikawa hybrid iterative process
{xn}∞n=0 as follows: for any fixed x1 in D, construct the sequence {xn} by

x1 = x ∈ D,
xn+1 = Tvn,
vn = (1− αn)xn + αnTun,
un = (1− βn)xn + βnTxn, n ∈ N,

(2.11)

where {αn}, {βn} are real sequences in (0, 1). The author proved that this
new hybrid iterative process converges faster than all of Picard, Krasnosel-
skii, Mann, Ishikawa, Noor, Picard-Mann and Picard-Krasnoselskii iterative
processes.

Next, we modify iterative processes (2.9), (2.10) and (2.11) in complex
valued CAT (0) spaces as follows: x1 = m ∈ D,

xn+1 = Tzn,
zn = (1− αn)xn ⊕ αnTxn, n ∈ N,

(2.12)

where {αn}∞n=1 is in (0, 1).
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 x1 = x ∈ D,
xn+1 = Tyn,
yn = (1− `)xn ⊕ `Txn, n ∈ N,

(2.13)

where ` ∈ (0, 1). 
x1 = x ∈ C,
xn+1 = Tvn,
vn = (1− αn)xn ⊕ αnTun,
un = (1− βn)xn ⊕ βnTxn, n ∈ N,

(2.14)

where {αn}, {βn} are real sequences in (0, 1).

Definition 2.5. ([14]) Let {an}∞n=0, {bn}∞n=0 be two sequences of positive
numbers that converge to a and b, respectively. Assume there exists

l = lim
n→∞

|an − a|
|bn − b|

. (2.15)

(1) If l = 0, then it is said that the sequence {an}∞n=0 converges to a faster
than the sequence {bn}∞n=0 to b.

(2) If 0 < l < ∞, then we say that the sequences {an}∞n=0 and {bn}∞n=0

have the same rate of convergence.

Definition 2.6. ([54]) Let D be a nonempty, closed and convex subset of a
complete CAT (0) space. A function f : D → (−∞,∞] defined on the set D
is said to be convex, if for any geodesic γ : [a, b] → D, the function f ◦ γ is
convex. We say that a function f defined on D is lower semi-continuous at a
point x ∈ D if

f(x) ≤ lim inf
n→∞

f(xn) (2.16)

for each sequence xn → x. A function f is called lower semi-continuous on D
if it is lower semi-continuous at any point in D.

For each λ > 0, define the Moreau-Yosida resolvent of f in CAT (0) spaces
as follows:

Jλ(x) = argmin
y∈X

[f(y) +
1

2λ
d2(y, x)]

for each x ∈ X. The mapping Jλ is well-defined (see [31]).
Suppose f : X → (−∞,∞] is a proper convex and lower semi-continuous

function. Ariza-Ruiz et al. [10] proved that the set F (Jλ) of fixed points
of the resolvent associated with f coincides with the set argminy∈X f(y) of
minimizers of f.

The following lemmas will be useful in this study.
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Lemma 2.7. ([24]) Let X be a CAT (0) space. Then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z), (2.17)

for all x, y, z ∈ X and t ∈ [0, 1].

Lemma 2.8. ([24]) Let X be a CAT (0) space. Then

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y), (2.18)

for all x, y, z ∈ X and t ∈ [0, 1].

Lemma 2.9. ([24]) We have the following ststements.

(i) Every bounded sequence in X has a ∆-convergent subsequence.
(ii) If C is a closed convex subset of X and if {xn} is a bounded sequence

in C, then the asymptotic center of {xn} is in C.
(iii) Let C be a closed convex subset of X and f : C → X be a nonexpansive

mapping. If {xn} is ∆-convergent to x and d(xn, f(xn)) → 0, then
x ∈ C and f(x) = x.

Lemma 2.10. ([11]) Let (X, d) be a complex valued metric space and let {xn}
be a sequence in X. Then {xn} converges to x if and only if |d(xn, x)| −→ 0
as n→∞.

Lemma 2.11. ([11]) Let (X, d) be a complex valued metric space and let
{xn} be a sequence in X. Then {xn} is a Cauchy sequence if and only if
|d(xn, xn+m)| −→ 0 as n→∞.

Lemma 2.12. ([31]) Let (X, d) be a complete CAT (0) space and f : X →
(−∞,∞] be proper convex and lower semi-continuous. For any λ > 0, the
resolvent Jλ of f is nonexpansive.

Lemma 2.13. ([9]) Let (X, d) be a complete CAT (0) space and f : X →
(−∞,∞] be proper convex and lower semi-continuous. Then, for all x, y ∈ X
and λ > 0, we have

1

2λ
d2(Jλx, y)− 1

2λ
d2(x, y) +

1

2λ
d2(x, Jλx) + f(Jλx) ≤ f(y).

Proposition 2.14. (The resolvent identity, [31]) Let (X, d) be a complete
CAT (0) space and f : X → (−∞,∞] be proper convex and lower semi-
continuous. Then the following identity holds:

Jλx = Jµ(
λ− µ
λ

Jλx⊕
µ

λ
x)

for all x ∈ X and λ > µ > 0.
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Lemma 2.15. ([24]) If {xn} is a bounded sequence in a complete CAT (0)
space with A({xn}) = {x}, {un} is a subsequence of {xn} with A({un}) = {u}
and the sequence {d(xn, u)} converges, then x = u.

We now prove the following results which will be useful in the proofs our
results in this paper.

Lemma 2.16. Let (X, d) be a complex valued CAT (0) space and let {xn} be a
sequence in X. Then {xn} is ∆-convergent to x if and only if |d(xn, x)| −→ 0
as n→∞.

Proof. Suppose {xn} is ∆-convergent to x. This means that x is the unique
asymptotic center of {un} for every subsequence {un} of {xn}. This means
that

lim sup
n→∞

d(un, x) - lim sup
n→∞

d(xn, x). (2.19)

Therefore for some 0 ≺ c ∈ C we have

lim sup
n→∞

|d(un, x)| ≤ lim sup
n→∞

|d(xn, x)| < |c|. (2.20)

Hence, we obtain |d(xn, x)| −→ 0 as n→∞.
Conversely, suppose |d(xn, x)| −→ 0 as n → ∞. This means that {xn} is

bounded. Then by Lemma 2.4 (i), there exists a subsequence {un} of {xn}
such that A({un}) = {x}. This means that x ∈ w∆(xn). By Lemma 2.4 (i),
there exists a subsequence {vn} of {un} such that ∆-limn vn = v for some
v ∈ X. We claim that x = v.

Assume for contradiction that x 6= v. Therefore, by the uniqueness of as-
ymptotic centers, we have

lim supn→∞ d(vn, v) ≺ lim supn→∞ d(vn, x)
- lim supn→∞ d(un, x)
≺ lim supn→∞ d(un, v)
= lim supn→∞ d(xn, v)
= lim supn→∞ d(vn, v), (2.21)

which is a contradiction. Hence, x = v. �

Lemma 2.17. Let (X, d) be a complex valued CAT (0) space and let {xn}
be a sequence in X. Then {xn} is a Cauchy sequence if and only if |∆ −
limn d(xn, xn+m)| = 0.

Proof. Suppose {xn} ⊂ X is a Cauchy sequence. Then {xn} is convergent in
X, hence {xn} is bounded. So that for some 0 ≺ c ∈ C, we have d(xn, xn+m) ≺
c, so that |d(xn, xn+m)| ≺ |c|. Clearly, |∆− limn d(xn, xn+m)| = 0.
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Conversely, suppose |∆− limn d(xn, xn+m)| = 0. We see that w∆(xn) = {0},
and

| lim sup
n→∞

d(xn, xn+m)| = 0. (2.22)

This means that {xn} is a Cauchy sequence. �

3. Existence of fixed points in complex valued CAT (0) spaces

In this section we prove the existence of a unique fixed point of F class of
nonlinear mappings satisfying (2.8) in complex valued CAT (0) spaces. Our
results generalize and extend several known results, including the famous Ba-
nach contraction principle [13] and Jaggi and Dass [30] among others.

Theorem 3.1. Let (X, d) be a complete complex valued CAT (0) space and
T : X → X be a mapping on X such that

T ∈ F :=M1 ∪M2 ∪M3. (3.1)

Then T has a unique fixed point.

Proof. To prove this theorem, we consider the following three cases:

Case I: Suppose that T ∈ M1 and x0 is an arbitrary point of X. Define a
sequence of points {xn} generated recursively by xn+1 = Txn, that is,

x1 = Tx0, x2 = Tx1 = T (Tx0) = T 2x0, · · · , xn+1 = Tn+1x0. (3.2)

Note that,

d(xn, xn+1) = d(Txn−1, Txn)

- αd(xn,Txn)[1+d(xn−1,Txn−1)]
1+d(xn−1,xn) + βd(xn−1, xn)

= αd(xn,xn+1)[1+d(xn−1,xn)]
1+d(xn−1,xn) + βd(xn−1, xn)

= αd(xn, xn+1) + βd(xn−1, xn). (3.3)

This implies that

d(xn, xn+1) -
β

1− α
d(xn−1, xn). (3.4)

Let h = β
1−α ∈ [0, 1). Then we have

d(xn, xn+1) - hd(xn−1, xn)
...
- hn+1d(x0, x1). (3.5)

Hence, for each m > n, we have

d(xn, xm) - d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)
- [hn + hn+1 + · · ·+ hm−1]d(x0, x1)

- hn

1−hd(x0, x1). (3.6)
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This implies that

|d(xn, xm)| ≤ hn

1− h
|d(x0, x1)| −→ 0 as m,n→∞. (3.7)

Therefore, the sequence {xn} is a Cauchy sequence by Lemma 2.6. Since X is
complete, there exists x ∈ X such that xn −→ x as n→∞. We claim that x
is a unique fixed point of T.

Since T is continuous, we have xn+1 = Txn −→ Tx. But xn+1 −→ x, which
implies that Tx = x. That is, x is a fixed point of T.

Next, we show that x is a unique fixed point of T. Suppose there exists
another fixed point x∗ of T. Then by (3.1), we have

d(x, x∗) = d(Tx, Tx∗)

- αd(x∗,Tx∗)(1+d(x,Tx))
1+d(x,x∗) + βd(x, x∗)

= α.0
1+d(x,x∗) + βd(x, x∗)

= βd(x, x∗). (3.8)

This implies that x = x∗.

Case II: Suppose that T ∈M2, this means that

T ∈M2 = {T : X → X : T is continuous satisfying

d(Tx, Ty) - αd(x,Tx)d(y,Ty)
d(x,y) + βd(x, y)}, (3.9)

where α, β ∈ [0, 1) such that α+ β < 1 for each x, y ∈ X, x 6= y.
Let x0 be an arbitrary point ofX.Define a sequence of points {xn} generated

recursively by xn+1 = Txn, that is,

x1 = Tx0, x2 = Tx1 = T (Tx0) = T 2x0, · · · , xn+1 = Tn+1x0. (3.10)

Note that

d(xn, xn+1) = d(Txn−1, Txn)

- αd(xn−1,Txn−1)d(xn,Txn)
d(xn−1,xn) + βd(xn−1, xn)

= αd(xn−1,xn)d(xn,xn+1)
d(xn−1,xn) + βd(xn−1, xn)

= αd(xn, xn+1) + βd(xn−1, xn). (3.11)

It implies that

d(xn, xn+1) -
β

1− α
d(xn−1, xn). (3.12)

If we put h = β
1−α ∈ [0, 1), then we have

d(xn, xn+1) - hd(xn−1, xn)
...
- hn+1d(x0, x1). (3.13)
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Now, for each m > n, we obtain that

d(xn, xm) - d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)
- [hn + hn+1 + · · ·+ hm−1]d(x0, x1)

- hn

1−hd(x0, x1). (3.14)

This implies that

|d(xn, xm)| ≤ hn

1− h
|d(x0, x1)| −→ 0 as m,n→∞. (3.15)

Therefore, the sequence {xn} is a Cauchy sequence by Lemma 2.11. Since X
is complete, there exists x ∈ X such that xn −→ x as n→∞. We claim that
x is a unique fixed point of T.

Since T is continuous, xn+1 = Txn −→ Tx. But xn+1 −→ x, which implies
that Tx = x.

Next, we show that x is a unique fixed point of T. Suppose there exists
another fixed point x∗ of T. Then by (3.9), we have

d(x, x∗) = d(Tx, Tx∗)

- αd(x,Tx)d(x∗,Tx∗)
d(x,x∗) + βd(x, x∗)

= α.0
d(x,x∗) + βd(x, x∗)

= βd(x, x∗). (3.16)

This implies that x = x∗.

Case III: Suppose that T ∈M3, this means that

T ∈M3 = {T : X → X : T is continuous satisfying

d(Tx, Ty) - αd(x,Tx)d(y,Ty)
d(x,y)+d(x,Ty)+d(y,Tx) + βd(x, y)}, (3.17)

where α, β ∈ [0, 1) such that α+ β < 1 for each x, y ∈ X.
Let x0 be an arbitrary point ofX.Define a sequence of points {xn} generated

recursively by xn+1 = Txn, that is,

x1 = Tx0, x2 = Tx1 = T (Tx0) = T 2x0, · · · , xn+1 = Tn+1x0. (3.18)

Since, d(xn−1, xn) - d(xn−1, xn) + d(xn−1, xn+1), we have

d(xn, xn+1) = d(Txn−1, Txn)

- αd(xn−1,Txn−1)d(xn,Txn)
d(xn−1,xn)+d(xn−1,Txn)+d(xn,Txn−1) + βd(xn−1, xn)

= αd(xn−1,xn)d(xn,xn+1)
d(xn−1,xn)+d(xn−1,xn+1)+d(xn,xn) + βd(xn−1, xn)

= αd(xn−1,xn)d(xn,xn+1)
d(xn−1,xn)+d(xn−1,xn+1) + βd(xn−1, xn)

- αd(xn, xn+1) + βd(xn−1, xn). (3.19)

It implies that

d(xn, xn+1) -
β

1− α
d(xn−1, xn). (3.20)
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Let h = β
1−α ∈ [0, 1). Then we have

d(xn, xn+1) - hd(xn−1, xn)
...
- hn+1d(x0, x1). (3.21)

Now, for each m > n, we have

d(xn, xm) - d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)
- [hn + hn+1 + · · ·+ hm−1]d(x0, x1)

- hn

1−hd(x0, x1). (3.22)

This implies that

|d(xn, xm)| ≤ hn

1− h
|d(x0, x1)| −→ 0 as m,n→∞. (3.23)

Therefore, the sequence {xn} is a Cauchy sequence by Lemma 2.11. Since X
is complete, there exists x ∈ X such that xn −→ x as n→∞. We claim that
x is a unique fixed point of T.

Since T is continuous, we have xn+1 = Txn −→ Tx. But xn+1 −→ x, this
implies that Tx = x.

Next, we show that x is a unique fixed point of T. Suppose there exists
another fixed point x∗ of T, then by (3.17), we have

d(x, x∗) = d(Tx, Tx∗)

- αd(x,Tx)d(x∗,Tx∗)
d(x,x∗)+d(x,Tx∗)+d(x∗,Tx) + βd(x, x∗)

= α.0
d(x,x∗) + βd(x, x∗)

= βd(x, x∗). (3.24)

This implies that x = x∗.
Therefore in all cases T ∈ F :=M1 ∪M2 ∪M3 has a unique fixed point.

This completes the proof. �

4. Strong and ∆-convergence theorems in complex valued
CAT (0) spaces

In this section we prove the following convergence results for the F class of
nonlinear mappings in the framework of complex valued CAT (0) spaces.

Lemma 4.1. Let D be a nonempty closed convex subset of a complex valued
CAT (0) space (X, d) and T : D → D be a mapping on D such that

T ∈ F :=M1 ∪M2 ∪M3. (4.1)
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If for an arbitrary chosen x0 ∈ D, the sequence {xn} is generated by the
Picard-Ishikawa hybrid iterative process (2.14), with real sequences {αn} and
{βn} in (0, 1) satisfying 0 < a ≤ αn, βn ≤ b < 1, for some a, b ∈ R, then

(i) limn→∞ |d(xn, x)| exists for x ∈ F (T ).
(ii) limn→∞ |d(xn, Txn)| = 0.

Proof. We consider the following cases:

Case I: Suppose T ∈M1. Then by (2.14) and Lemma 2.2, we have

d(xn+1, x) = d(Tvn, Tx)

- λd(x,Tx)(1+d(vn,T vn))
1+d(vn,x) + γd(vn, x)

= λ.0.(1+d(vn,T vn))
1+d(vn,x) + γd(vn, x)

= γd(vn, x). (4.2)

Next, we have the following estimates:

d(vn, p) = d((1− αn)xn ⊕ αnTun, x)
- (1− αn)d(xn, x) + αnd(Tun, Tx)

- (1− αn)d(xn, x) + αn

[
λd(x,Tx)(1+d(un,Tun))

1+d(un,x) + γd(un, x)
]

= (1− αn)d(xn, x) + αnγd(un, x). (4.3)

d(un, x) = d((1− βn)xn ⊕ βnTxn, x)
- (1− βn)d(xn, x) + βnd(Txn, Tx)

- (1− βn)d(xn, x) + βn

[
λd(x,Tx)(1+d(xn,Txn))

1+d(xn,x) + γd(xn, x)
]

= (1− βn)d(xn, x) + βnγd(xn, x)
= (1− βn(1− γ))d(xn, x). (4.4)

Using (4.4) in (4.3), we have

d(vn, x) - (1− αn)d(xn, x) + αnγ(1− βn(1− γ))d(xn, x)
= (1− αn(1− γ(1− βn(1− γ))))d(xn, x). (4.5)

Using (4.5) in (4.2), we have

d(xn+1, x) - γ(1− αn(1− γ(1− βn(1− γ))))d(xn, x). (4.6)

Since γ(1− αn(1− γ(1− βn(1− γ)))) < 1, from (4.6) we obtain

d(xn+1, x) - d(xn, x). (4.7)

This means that {d(xn, x)} is decreasing, so limn→∞ |d(xn, x)| exists. This
proves part (i). Suppose

lim
n→∞

|d(xn, x)| = k. (4.8)
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Next, we prove part (ii). We first show that limn→∞ |d(un, x)| = k. From
relation (4.4), we have

d(un, x) - (1− βn(1− γ))d(xn, x). (4.9)

Thus

lim
n→∞

|d(un, x)| ≤ k. (4.10)

From (4.5), we obtain that

lim
n→∞

|d(vn, x)| ≤ k. (4.11)

Using (4.3), we get that

d(vn, x) - (1− αn)d(xn, x) + αnγd(un, x)
- (1− αn)d(xn, x) + αnd(un, x). (4.12)

This implies that

αnd(xn, x) - d(xn, x)− d(vn, x) + αnd(un, x). (4.13)

Therefore,

d(xn, x) -
1

αn
[d(xn, x)− d(vn, x)] + d(un, x). (4.14)

which implies that

lim inf
n→∞

|d(xn, x)| ≤ 1

α
lim
n→∞

[|d(xn, x)− d(vn, x)|] + lim inf
n→∞

|d(un, x)|. (4.15)

Hence

k ≤ lim inf
n→∞

|d(un, x)|. (4.16)

By (4.10) and (4.16), we have

lim
n→∞

|d(un, x)| = k. (4.17)

Next, by Lemma 2.8, we have

d2(un, x) = d2((1− βn)xn ⊕ βnTxn, x)
- (1− βn)d2(xn, x) + βnd

2(Txn, x)− βn(1− βn)d2(xn, Txn)
- (1− βn)d2(xn, x) + βnd

2(xn, x)− βn(1− βn)d2(xn, Txn)
- d2(xn, x)− βn(1− βn)d2(xn, Txn). (4.18)

This implies that

βn(1− βn)d2(xn, Txn) - d2(xn, x)− d2(un, x). (4.19)

Hence, we have

d2(xn, Txn) - 1
βn(1−βn)

[
d2(xn, x)− d2(un, x)

]
- 1

β(1−β)

[
d2(xn, x)− d2(un, x)

]
. (4.20)
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This implies that

|d2(xn, Txn)| ≤ 1

β(1− β)
|
[
d2(xn, x)− d2(un, x)

]
|. (4.21)

It follows from (4.8) and (4.17) and (4.21) that

lim
n→∞

|d(xn, Txn)| = 0. (4.22)

Case 2 and Case 3: Similarly, we can prove (i) and (ii) for the cases T ∈M2

and T ∈M3, respectively. The proof of Lemma 4.1 is completed. �

Next, we have the following lemmas as a consequence of Lemma 4.1.

Lemma 4.2. Let D be a nonempty closed convex subset of a complex valued
CAT (0) space (X, d) and T : D → D be a mapping on D such that

T ∈ F :=M1 ∪M2 ∪M3. (4.23)

If for an arbitrary chosen x0 ∈ D, the sequence {xn} is generated by the
Picard-Mann hybrid iterative process (2.12), with a real sequence {αn} in (0, 1)
satisfying 0 < a ≤ αn ≤ b < 1, for some a, b ∈ R, then

(i) limn→∞ |d(xn, x)| exists for x ∈ F (T ).
(ii) limn→∞ |d(xn, Txn)| = 0.

Proof. Using arguments in the the proof of Lemma 4.1, the result follows. �

Lemma 4.3. Let D be a nonempty closed convex subset of a complex valued
CAT (0) space (X, d) and T : D → D be a mapping on D such that

T ∈ F :=M1 ∪M2 ∪M3. (4.24)

If for an arbitrary chosen x0 ∈ D, the sequence {xn} is generated by the
Picard-Krasnoselskii hybrid iterative process (2.13), with ` in (0, 1), then

(i) limn→∞ |d(xn, x)| exists for x ∈ F (T ).
(ii) limn→∞ |d(xn, Txn)| = 0.

Proof. It follows from the arguments similar to those in the proof of Lemma
4.1. �

Theorem 4.4. Let D be a nonempty closed convex subset of a complex valued
CAT (0) space (X, d) and T : D → D be a mapping on D such that

T ∈ F :=M1 ∪M2 ∪M3. (4.25)

If for any x0 ∈ D, the sequence {xn} is generated by the Picard-Ishikawa hybrid
iterative process (2.14), with real sequences {αn} and {βn} in (0, 1) satisfying
0 < a ≤ αn, βn ≤ b < 1, for some a, b ∈ R, then {xn} is ∆-convergent to a
fixed point x of T.
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Proof. First, suppose that T ∈ M1. Then it follows from Lemma 4.1 that
limn→∞ |d(xn, x)| exists for x ∈ F (T ) and also limn→∞ |d(xn, Txn)| = 0.
Therefore, {xn} is bounded.

We first show that w∆(xn) ⊆ F (T ). If u ∈ w∆(xn), then there exists a
subsequence {un} of {xn} such that A({un}) = {u}. Using Lemma 2.4, it
follows that there exists a subsequence {vn} of {un} such that ∆-limn vn = v
for some v ∈ D. Using Lemma 2.9, we see that v ∈ F (T ). By Lemma 4.1,
limn→∞ |d(xn, v)| exists. We claim that u = v. Assume on contrary that
u 6= v. Then by the uniqueness of asymptotic center, we obtain that

lim supn→∞ d(vn, v) ≺ lim supn→∞ d(vn, u)
- lim supn→∞ d(un, u)
≺ lim supn→∞ d(un, v)
= lim supn→∞ d(xn, v)
= lim supn→∞ d(vn, v). (4.26)

This implies that

lim sup
n→∞

|d(vn, v)| < lim sup
n→∞

|d(vn, v)|, (4.27)

which is a contradiction. Therefore, we have u = v ∈ F (T ). Hence, we obtain
w∆(xn) ⊆ F (T ).

Next, we show that {xn} is ∆-convergent to a fixed point of T. To do
this, we show that w∆(xn) consists of exactly one point. Suppose {un} is a
subsequence of {xn}. Then by Lemma 2.9, there exists a subsequence {vn} of
{un} such that ∆-limn vn = v for some v ∈ D. Suppose A({un}) = {u} and
A({xn}) = {x}. We have previously established that u = v and v ∈ F (T ).

Finally, we claim that x = v. If this is not the case, then the existence of
limn→∞ |d(xn, v)| and uniqueness of asymptotic centers imply that

lim supn→∞ d(vn, v) ≺ lim supn→∞ d(vn, x)
- lim supn→∞ d(xn, x)
≺ lim supn→∞ d(xn, v)
= lim supn→∞ d(vn, v). (4.28)

This implies that

lim sup
n→∞

|d(vn, v)| < lim sup
n→∞

|d(vn, v)|, (4.29)

which is a contradiction. Therefore, we have x = v ∈ F (T ). Hence,

w∆(xn) = {x}.
Similarly, we can prove that {xn} is ∆-convergent to the fixed point x of T

for the cases T ∈M2 and T ∈M3, respectively. The proof of Theorem 4.4 is
completed. �
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Next, we establish the following theorems as consequence of Theorem 4.4.

Theorem 4.5. Let D be a nonempty closed convex subset of a complex valued
CAT (0) space (X, d) and T : D → D be a mapping on D such that

T ∈ F :=M1 ∪M2 ∪M3. (4.30)

If for an arbitrary chosen x0 ∈ D, the sequence {xn} is generated by the
Picard-Mann hybrid iterative process (2.12), with a real sequence {αn} in (0, 1)
satisfying 0 < a ≤ αn ≤ b < 1, for some a, b ∈ R, then {xn} is ∆-convergent
to a fixed point x of T.

Proof. The proof of Theorem 4.5 follows on the similar lines as in the proof of
Theorem 4.4. �

Theorem 4.6. Let D be a nonempty closed convex subset of a complex valued
CAT (0) space (X, d) and T : D → D be a mapping on D such that

T ∈ F :=M1 ∪M2 ∪M3. (4.31)

If for any x0 ∈ D, the sequence {xn} is generated by the Picard-Krasnoselskii
hybrid iterative process (2.13), with ` in (0, 1), then {xn} is ∆-converges to
ass fixed point x of T.

Proof. The proof of Theorem 4.6 follows on the similar lines as in the proof of
Theorem 4.4. �

Lemma 4.7. Let D be a nonempty closed convex subset of a complex valued
CAT (0) space (X, d) and T : D → D is a mapping on D such that

T ∈ F :=M1 ∪M2 ∪M3. (4.32)

Then, {xn} is ∆-convergent to a point x and |d(xn, Txn)| → 0 as n → ∞,
imply x ∈ D and Tx = x.

Proof. First, suppose T ∈M1. Then we have

lim supn→∞ d(Tx, xn) - lim supn→∞[d(Tx, Txn) + d(Txn, xn)]

- lim supn→∞

[
λd(x,Tx)(1+d(xn,Txn))

1+d(xn,x)

]
+β lim supn→∞ d(xn, x)
+ lim supn→∞ d(Txn, xn)

= β lim supn→∞ d(xn, x) + lim supn→∞ d(Txn, xn).
(4.33)

This implies that

lim sup
n→∞

|d(Tx, xn)| ≤ lim sup
n→∞

|d(xn, x)|+ lim sup
n→∞

|d(Txn, xn)|. (4.34)

Since lim supn→∞ |d(Txn, xn)| = 0, we have

lim sup
n→∞

|d(Tx, xn)| - lim sup
n→∞

|d(xn, x)| = r(x, xn). (4.35)
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Similarly, we can prove the results for the cases T ∈ M2 and T ∈ M3,
respectively. The proof of Lemma 4.7 is completed. �

5. Applications to convex minimization problem

Suppose that (X, d) is a complex valued CAT (0) space and f is a proper and
convex function from the set X to (−∞,∞]. Then an optimization problem is
to find x ∈ X such that

f(x) = min
y∈X

f(y). (5.1)

The set of minimizers of f is denoted by argminy∈X f(y).

In 1970, Martinet [42] introduced an important tool for solving this problem.
This method is called the proximal point algorithm (abbreviated, PPA). In
1976, Rockafellar [49] established that the PPA converges to the solution of
the convex minimization problem in Hilbert spaces.

Suppose f is a proper, convex and lower semi-continuous function on a
Hilbert space H which attains its minimum. The PPA is defined as follows:
x1 ∈ H and

xn+1 = argmin
y∈H

[
f(y) +

1

2λn
‖y − xn‖2

]
(5.2)

for all n ∈ N, where λn > 0 for all n ∈ N. It was established that the sequence
{xn} converges weakly to a minmizer of f provided

∑∞
n=1 λn =∞. Moreover,

Guler [22] proved that PPA does not necessarily converge strongly in general.

In 2000, Kamimura and Takahashi [32] combined the PPA with the Halpern
algorithm [25] to obtain strong convergence results.

In 2013, Bac̆ák [12] introduced the PPA in a CAT (0) space (X, d) as follows:
let x1 ∈ X and

xn+1 = argmin
y∈X

[
f(y) +

1

2λn
d2(y, xn)

]
(5.3)

for each n ∈ N, where λn > 0 for all n ∈ N. It was proved based on the concept
of Fejér monotonicity that if f has a minimizer and

∑∞
n=1 λn = ∞, then the

sequence {xn} is ∆-convergent to its minmizer. Since then, several authors
have constructed some PPA and proved interesting results in the framework
of CAT (0) spaces (see, e.g. [17], [54]).

The Mann and Ishikawa PPA are given as follows:{
zn = argminy∈X [f(y) + 1

2λn
d2(y, xn)],

xn+1 = (1− αn)xn ⊕ αnTzn,
(5.4)

for all n ≥ 1, where {αn} is a real sequence in [0, 1].
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zn = argminy∈X [f(y) + 1

2λn
d2(y, xn)],

wn = (1− αn)xn ⊕ αnTzn,
xn+1 = (1− βn)xn ⊕ βnTwn,

(5.5)

for all n ≥ 1, where {αn}, {βn} are real sequences in [0, 1].

Motivated by the results above, we introduce the following modified Picard-
Ishikawa hybrid PPA, which is constructed as follows:

zn = argminy∈X [f(y) + 1
2λn

d2(y, xn)],

un = (1− αn)xn ⊕ αnTzn,
vn = (1− βn)xn ⊕ βnTun,
xn+1 = Tvn,

(5.6)

for all n ≥ 1, where {αn}, {βn} are real sequences in [0, 1].

Next, we prove the following results.

Lemma 5.1. Let (X, d) be a complete complex valued CAT (0) space and
f : X → (∞,∞] be a proper, convex and lower semi-continuous function.
Suppose that T : X → X is a mapping on X satisfying

T ∈ F :=M1 ∪M2 ∪M3, (5.7)

such that ω = F (T ) ∩ argminy∈X f(y) is nonempty for each T ∈ F . Suppose
that {xn} is a sequence generated by the PPA (5.6), where {αn} and {βn} are
real sequences such that 0 < a ≤ αn, βn ≤ b < 1 for all n ∈ N, for some
a, b ∈ R and {λn} is a sequence such that λn ≥ λ > 0 for some λ ∈ R. Then

(i) limn→∞ |d(xn, x)| exists for all x ∈ ω,
(ii) limn→∞ |d(xn, zn)| = 0,

(iii) limn→∞ |d(xn, Txn)| = 0.

Proof. The proof of Lemma 5.1 follows on the similar lines as in the proof of
Lemma 4.1. Therefore, the proof is omitted. �

Theorem 5.2. Let (X, d) be a complete complex valued CAT (0) space and
f : X → (∞,∞] be a proper, convex and lower semi-continuous function.
Suppose that T : X → X is a mapping on X satisfying

T ∈ F :=M1 ∪M2 ∪M3, (5.8)

such that ω = F (T ) ∩ argminy∈X f(y) is nonempty for each T ∈ F . Suppose
that {xn} is a sequence generated by the PPA (5.6), where {αn} and {βn} are
real sequences such that 0 < a ≤ αn, βn ≤ b < 1 for all n ∈ N, for some
a, b ∈ R and {λn} is a sequence such that λn ≥ λ > 0 for some λ ∈ R. Then
the sequence {xn} is ∆-convergent to a point of ω.
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Proof. From, Proposition 2.14 and Lemma 5.1 (ii), for each T ∈ F , we have

d(Jλxn, xn) - d(Jλxn, zn) + d(zn, xn)
= d(Jλxn, Jλnxn) + d(zn, xn)

= d
(
Jλxn, Jλ

(
λn−λ
λn

Jλnxn ⊕ λ
λn
xn

))
+ d(zn, xn)

- d
(
xn,
(

1− λ
λn

)
Jλnxn ⊕ λ

λn
xn

)
+ d(zn, xn)

-
(

1− λ
λn

)
d(xn, Jλnxn) + λ

λn
d(xn, xn) + d(zn, xn)

=
(

1− λ
λn

)
d(xn, zn) + d(zn, xn). (5.9)

This implies that

|d(Jλxn, xn)| ≤
(

1− λ

λn

)
|d(xn, zn)|+ |d(zn, xn)| −→ 0 as n→∞. (5.10)

We next show that

w∆(xn) :=
⋃

{un}⊂{xn}

A({un}) ⊂ ω. (5.11)

Suppose that u ∈ w∆(xn), then there exists a subsequence {un} of {xn} such
that A({un}) = {u}. Hence, there exists a subsequence {vn} of {un} such that
∆-limn→∞ vn = v for some v ∈ D. By Lemma 4.4, we have v ∈ ω. Hence,
u = v by Lemma 2.15. This implies that w∆(xn) ⊂ ω.

Next, we show that the sequence {xn} is ∆-convergent to a point of ω.
Hence, it suffices to show that w∆(xn) consists of exactly one point. Suppose
{un} is a subsequence of {xn} such that A({un}) = {u} and let A({xn}) = {x}.
Since u ∈ w∆(xn) ⊂ ω and {d(xn, u)} converges, it follows by Lemma 2.15 that
x = u. Therefore, w∆(xn) = {x}. The proof of Theorem 5.2 is completed. �

6. Numerical examples

In this section, we give some numerical examples to validate our analytical
results. We compare the speed of convergence of various proximal point al-
gorithms discussed in section 5, viz: the Mann-type proximal point algorithm
(5.4) denoted by PPAM, the Ishikawa-type proximal point algorithm (5.5) de-
noted by PPAI and the Picard-Ishikawa hybrid-type proximal point algorithm
(5.6) denoted by PPAPI. All the codes were written in Matlab (R2010a) and
run on PC with Intel(R) Core(TM) i3-4030U CPU @ 1.90 GHz.

Example 6.1. Suppose X = [1, 2] with the partial order ” - ”. Define the
metric ”d” by

d(x, y) = |x− y|
√

2ei
π
4 = |x− y|(1 + i),

for each x, y ∈ X. Let T : X → X be defined by Tx = x + 1
x −

1
2 . Define

f : X → (−∞,∞] by f(x) = 1
2d

2(x, 1). Take ` = ν = 0.3. Then, we can easily
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see that (X, d) is a complete complex valued CAT (0) space, T ∈ F and f is a
proper, convex and lower semi-continuous mapping with

ω = F (T ) ∩ argmin
y∈X

f(y) = {2}.

By the proximity operator [19], we know that

argmin
y∈X

[
f(y) +

1

2
d2(y, x)

]
= proxfx =

x+ 1

2
.

Next, we compute the iterates of PPAM (5.4), PPAI (5.5) and PPAPI (5.6).
The numerical experiments of all iterations for approximating the common
element ω = {2} is given in the graphs below.

We consider the following three cases:

Case I: Take x1 = 1.9, αn = 1
5n+1 , and βn = n

10n+1 .

Case II: Take x1 = 1.84, αn = 1
2n+1 , and βn = 1

5n+1 .

Case III: Take x1 = 1.2, αn = n
9n+1 , and βn = 1

4n+1 .

Next, we present the following graphs of errors versus iteration numbers (n)
for each case.
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Figure 1. Error versus iteration number (n)
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Figure 2. Error versus iteration number (n)
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Figure 3. Error versus iteration number (n)
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Remark 6.2. Clearly, from Figure 1, Figure 2 and Figure 3 of Case I, Case
II and Case III respectively, we see that our proposed Picard-Ishikawa hybrid
type proximal point algorithm PPAPI converges faster to the minimizer of
a convex function and the fixed point of the mapping T than the modified
Mann-type proximal point algorithm PPAM and the modified Ishikawa-type
proximal point algorithm PPAI.
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équations intégrales, Fund. Math., 3 (1922), 133-181.

[14] V. Berinde, Iterative approximation of fixed points, Lecture Notes in Mathematics,
Springer-Verlag Berlin Heidelberg, 2007.



Fixed point theorems for convex minimization problems in CAT (0) spaces 695

[15] M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, In Fundamental
Principles of Mathematical Sciences, vol. 319, Springer, Berlin, 1999.

[16] F. Bruhat and J. Tits, Groupes reductifs sur un corps local. I. Donnees radicielles valuees
Inst Hautes Etudes Sci Publ Math., 41 (1972), 5-251.

[17] P. Cholamjiak, A. AN Abdou and Y.J. Cho, Proximal point algorithms involving fixed
points of nonexpansive mappings in CAT (0) spaces, Fixed Point Theory and Appl.,
2015: 227 (2015).

[18] B.S. Choudhury, N. Metiya and P. Konar, Fixed point results for rational type con-
traction in partially ordered complex valued metric spaces, Bull. Inter. Math. Virtual
Institute, 5 (2015), 73-80.

[19] P.L. Combettes and J.C. Pesquet, Proximal splitting methods in signal processing, In:
H.H. Bauschke, R. Burachik, P.L. Combettes, V. Elser, D.R. Luke and H. Wolkowicz,
(eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp.
185-212 Springer, New York, 2011.

[20] A.K. Debey, U. Mishra and W.H. Lim, Generalized common fixed point results for three
self-mappings in complex valued b-metric spaces, Nonlinear Funct. Anal. Appl., 24(2)
(2019), 255-267.

[21] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive
mappings, In monographs and textbooks in Pure and Applied Mathematics, vol. 83,
Marcel Dekker Inc., New York, 1984.

[22] O. Guler, On the convergence of the proximal point algorithm for convex minimization,
SIAM J. Control Optim. 29 (1991), 403-419.

[23] B.K. Dass and S. Gupta, An extension of Banach contraction principle through rational
expression, Indian J. Pure Appl. Math., 6 (1975), 1455-1458.

[24] S. Dhompongsa and B. Panyanak, On ∆-convergence theorems in CAT (0) spaces, Com-
put. Math. Appl., 56 (2008), 2572-2579.

[25] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967),
957-961.

[26] L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive
mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.

[27] H. Humaira, M. Sarwar and P. Kumam, Common fixed point results for fuzzy map-
pings on complex-valued metric spaces with homotopy results, Symmetry 2019, 11, 61,
doi:10.3390/sym11010061, 17 pages.

[28] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974),
147150.

[29] D.S. Jaggi, Some unique fixed point theorems, Indian J. Pure and Appl. Math., 8(2)
(1977), 223-230.

[30] D.S. Jaggi and B.K. Dass, An extention of Banach’s fixed point theorem through rational
expression, Bull. Cal. Math., 72 (1980), 261-266.

[31] J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive
curvature, Comment. Math. Helv., 70 (1995), 659-673.

[32] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone oper-
ators in Hilbert spaces, J. Approx. Theory, 106 (2000), 226-240.

[33] S.H. Khan and M. Abbas, Strong and ∆-convergence of some iterative schemes in
CAT (0) spaces, Comput. Math. Appl., 61 (2011), 109-116.

[34] S.H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory and Appl.,
2013(69) (2013), 10 pages.

[35] J.K. Kim and S. Dashputre, Fixed point approximation for SKC-mappings in hyperbolic
spaces, J. Inequ. Appl., 2015:341 (2015), 16 pages.



696 G. A. Okeke, M. Abbas and M. de la Sen

[36] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear
Anal. TMA., 68 (2008), 3689-3696.

[37] W.A. Kirk, Fixed point theorems in CAT (0) spaces and R-trees, Fixed Point Theory
Appl. DOI: 10.1155/S1687182004406081, vol. 2004, (2004), 309-316.

[38] M.A. Krasnosel’skii, Two observations about the method of successive approximations,
Usp. Mat. Nauk, 10 (1955), 123-127.

[39] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976),
179-182.

[40] L.-J. Lin, C.-S. Chuang and Z.-T. Yu, Fixed point theorems and ∆-convergence theorems
for generalized hybrid mappings on CAT (0) spaces, Fixed Point Theory and Appl.,
2011:49 (2014), 15 pages.

[41] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-
510.
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