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Abstract. In this paper, we give a generalization of the results from [7] and pose an open

problem in quasi-Banach spaces.

1. INTRODUCTION

In 1940, S.M. Ulam [34] gave a talk before the Mathematics Club of the
University of Wisconsin in which he discussed a number of unsolved problems.
Among these was the following question concerning the stability of homomor-
phisms.

Let (G1,%) be a group and let (Ga2,0,d) be a metric group with the metric
d(-,-). Given € > 0, does there exist a 6(e¢) > 0 such that if a mapping
h : G1 — G4 satisfies the inequality

d(h(z xy), h(z) o h(y)) <&
for all x,y € G1, then there is a homomorphism H : G1 — Go with
d(h(x),H(x)) <€

for all x € G17? If this problem has a solution, we say that the homomorphisms
from G; to Gy are stable or the functional equation h(z *y) = h(z) ¢ h(y) is
stable.

OReceived June 2, 2009. Revised September 2, 2009.

92000 Mathematics Subject Classification: Primary 39B72, 46B03, 47Jxx.

OKeywords: Hyers-Ulam-Rassias stability, additive mapping, quasi-Banach space, p-
Banach space.



570 G.Z. Eskandani and P. Gavruta

In 1941, D. H. Hyers [12] considered the case of approximately additive
mappings f : E — E’, where E and E’ are Banach spaces and f satisfies
Hyers inequality

If@+y) — F@) - FW)ll < e
for all x,y € E. It was shown that the limit
n
L(z) = lim f(2"z)

n—oo 2N

exists for all x € E and that L : F — E’ is the unique additive mapping
satisfying
1f(@) - L@)|| < e
In 1950, Hyers’ Theorem was generalized by Aoki [1] for additive mappings
and and independently, in 1978, by Rassias [27] for linear mappings by con-
sidering an unbounded Cauchy difference.

Theorem 1.1. (Th.M. Rassias): Let f : E — E’ be a mapping from a
normed vector space E into a Banach space E' subject to the inequality

1z +y) = fx) = F)Il < e(llz]” + [ly]*) (1.1)

for all x,y € E, where € and p are constants with € > 0 and 0 < p < 1. Then
1
the limit L(z) = lim 2—nf(2”:n) exists for allx € E and L : E — E' is the
n—oo
unique additive mapping which satisfies
2e
—L <
I15() ~ L)l < 5o

for all x € E. Also, if for each x € E the function f(tx) is continuous in
t € R, then L is linear.

l[”

In 1990, Th.M. Rassias [29] during the 27th International Symposium on
Functional Equations asked the question whether such a theorem can also be
proved for p > 1. In 1991, Z. Gajda [6] gave an affirmative solution to this
question for p > 1. It was shown by Z. Gajda [6], as well as by Th.M. Rassias
and P. Semrl [32] that one cannot prove a Th.M. Rassias type theorem when
p = 1. P. Gavruta [8] proved that the function f(x) = zin|z|, if x # 0 and
f(0) = 0 satisfies (1.1) with e = p =1 but

supM > Supw —sup|Inn — A(1)] = oo

0 |z| neN n neN
for any additive function A : R — R. The paper of Th.M. Rassias has provided
a lot of influence in the development of what we now call Hyers—Ulam—Rassias
stability of functional equations (cf. the books of P. Czerwik [3] and D.H.
Hyers, G. Isac and Th.M. Rassias [13]). J.M. Rassias [25] followed the in-

novative approach of Th.M Rassias theorem in which he replaced the factor
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llz||P + |lylI” by ||z||P||y||P for p,q € R with p+ g # 1 (see also [24, 26]). In
1994, a further generalization of Th.M Rassias’ Theorem was obtained by P.
Gavruta [7], in which he replaced the bound €(||z||” + ||y||?) by a general con-
trol function ¢(z,y). G. Isac and Th. M. Rassias [16] replaced the factor
lzl|” + ||yl|P by [|z||”* + ||y||P> in Theorem 1.1 and solved stability problem
when po < p1 < 1lorl < ps < p1, also they asked the question whether
such a theorem can be proved for p; < 1 < p;. P. Gavruta [8] gave a neg-
ative answer to this question. G. Isac and Th.M. Rassias [14] applied the
Hyers-Ulam-Rassias stability theory to prove fixed point theorems and study
some new applications in Nonlinear Analysis. During the last two decades, a
number of papers and research monographs have been published on various
generalizations and applications of the Hyers-Ulam—Rassias stability a number
of functional equations and mappings (see [5, 10, 17, 18, 19, 21, 23, 30, 31]).
Th.M. Rassias [28] has obtained the following theorem and posed a problem:

Theorem 1.2. Let Ey and Fo to be two Banach spaces, and let f : B — Eo
be a mapping such that f(tx) is continuous in t for each fixed x. Assume that
there exists @ > 0 and p € [0,1) such that

1f(z+y) = fl@) = f)l < 0[|” + [[y[|*) (1.2)
for all x,y € X. Then exists a unique liner mapping T : E1 — Eo such that
ko
1F(2) = T(@)l| < -—75 l=lIPs(k, p).

for all x € X, where

NS

k-1
b =14 23
m=2
and any given positive integer k > 2.

Rassias Problem: What is the best possible value of k£ in Theorem 1.27

P. Gavruta et al. have given a generalization of [7] and have answered to
Th. M Rassias problem [11].

In this paper, we give a generalization of the results from [7] and pose an
open problem in quasi-Banach spaces. We recall some basic facts concerning
quasi-Banach spaces and some preliminary results.

Definition 1.3. [2,33] Let X be a real linear space. A quasi-norm is a real-
valued function on X satisfying the following:
(2) ||z|| = 0 for all x € X and ||z|| = 0 if and only if z = 0.
(i7) ||[Ax|| = |Al||z]| for all X € R and all x € X.
(i13) There is a constant K > 1 such that ||z + y|| < K(||z|| + ||y||) for all
z,y € X.
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The pair (X, || - ||) is called a quasi-normed space if || - || is a quasi-norm
on X. The smallest possible K is called the modulus of concavity of || - |. A
quasi-Banach space is a complete quasi-normed space. The most significant
class of quasi-Banach spaces which are not Banach spaces are the L, spaces
for 0 < p < 1 with the L,-norm || - ||,

A quasi-norm || - || is called a p-norm (0 < p < 1) if

[l +yll” < [l=]I” + lly[[”

for all z,y € X. In this case, a quasi-Banach space is called a p-Banach space.
By the Aoki-Rolewicz theorem [33] (see also [2]), each quasi-norm is equiv-
alent to some p-norm. Since it is much easier to work with p-norms than
quasi-norms, henceforth we restrict our attention mainly to p-norms.
G.Z. Eskandani [4] has investigated the Hyers—Ulam—Rassias stability of the
following functional equation

m m

ilf(mxi+ i ;) +f(2$i) = 2f(2mmi).

j=1,j#i i=1 i=1

in quasi-Banach spaces. C. Park [22] has proved the Hyers—Ulam—Rassias sta-
bility of homomorphisms in quasi-Banach algebras. M.S. Moslehian and Gh.
Sadeghi [20] have proved the Hyers—Ulam-Rassias stability of linear mappings
in quasi-Banach modules associated to the Cauchy functional equation and a
generalized Jensen functional equation.

Throughout this paper, assume that k is a fixed integer greater than 1.

2. STABILITY OF CAUCHY FUNCTIONAL EQUATION

Assume that X is a quasi-normed space with quasi-norm || - [|x and that Y
is a p-Banach space with p-norm |.||y. Let K be the modulus of concavity of
- {ly-

Theorem 2.1. Let ¢ : X x X — [0,00) be a mapping such that
1
Z —P(K"x, k"y) < 00 (2.1)
n=0 kP

for all x,y € X. Suppose that a mapping f: X — Y satisfies the inequality

1f (@ +y) = flx) = fW)lly < elz,y) (2.2)
for all x,y € X. Then the limit

Ap(z) = lim kin (k")

n—oo
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exists for all x € X and the mapping Ay : X — Y is a unique additive mapping
satisfying

- 1
1f(z) = Ax(@)lly < [ kknp E (2.3)
n=0
for all x € X, where
or(z) == K" 2 ZK’“ Yo(x,iz)

Proof. By induction on k, we show that

1f (kx) = kf(2)lly < @n(z) (2.4)
for all z € X. Letting y = x in (2.2), we get
1 (22) = 2f (@)lly < o(z,z) (2.5)

for all z € X. So we get (2.4) for k = 2.
Assume that (2.4) holds for k. Letting y = kz in (2.2), we get

1 ((k +1)z) = f(z) = fka)lly < (2, kz) (2.6)
for all z € X. It follows from (2.4) and (2.6) that
1F((k+ D) — (k+ 1) f(2)ly < K|[f((k+1)z) = f(z) — f(k)[ly
+ K| f(kz) — kf(2)]ly

< Ko(z, kx) + Koi(x)

= Pk+1(2)
This completes the induction argument. Replacing x by k"z in (2.4) and
dividing both sides of (2.4) by k"t we get

| f ) — o p )| < e Beha) (27)

for all z € X and all non-negative integers n. Since Y is a p-Banach space, we
have

[0~ s, <3 [

st - Lo
(2.8)

1 gbj’,;(k’x)
kP - kP

=m

<

for all x € X and all non-negative integers n and m with n > m. Therefore,
we conclude from (2.1) and (2.8) that the sequence {z f(k"z)} is a Cauchy



574 G.Z. Eskandani and P. Gavruta

sequence in Y for all x € X. Since Y is complete, the sequence {;%n f(k"x)}
converges in Y for all x € X. So one can define the mapping A : X — Y by

R SR,

Ap(z) = lim - f(k"2) (2.9)
for all x € X. Letting m = 0 and passing the limit n — oo in (2.8), we get
(2.3). Now, we show that A is an additive mapping. It follows from (2.1),
(2.2) and (2.9) that

[Ak(z +y) = Ax(z) = Ax(y) [y = lim. kian(k"w + &) — f(k"2) — f(E"y)]];

1
< : _ n n —
< lhm (k"2 k) =0
for all x,y € X. Hence the mapping Ay is additive. To prove the uniqueness
of Ay, let T': X — Y be another additive mapping satisfying (2.3). It follows
from (2.3) and (2.9) that

|Ap(z) = T(2)|} = Jim knp’Hf(k x) = T(k )%,
1 2 k" )
=~ ﬁ n—oo k(7L+i)p
i=0

1 .. ooc?,z(k‘ix)_
SﬁJL%Z kip =0

forallz € X. So A, =1T. O

Theorem 2.2. Let ®: X x X — [0,00) be a mapping such that

o0

Ty
Zk”p@P(ﬁ, ) <00 (2.10)

n=1

for all x,y € X. Suppose that a mapping f: X — Y satisfies the inequality

If@+y) = f@) = fWly < @(z,y)
for all x,y € X. Then the limit

Ag(z) := nh_)n;o k”f(%)

exists for all x € X and the mapping Ay, : X — Y is a unique additive mapping
satisfying
1, — ~ 1
1f(@) = Ax(@)lly < Z[D_ KPR (2.11)

n=1
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for all x € X, where

k—1
Op(z) = KF2®(2,2) + > KF 0 (x,ix).
=2

Proof. Similar to the proof of Theorem 2.1, we have

If (k) = kf (2) |y < $x(x) (2.12)

for all x € X. Replacing = by % in (2.12) and multiplying both sides of
(2.12) to k™, we get
x x

‘ K (Grt) knf(k%)Hy SR

for all x € X and all non-negative integers n. Since Y is a p-Banach space, we
have

s o) 1 G < 30 ) - !
< Z kipg)z(kil) (2.13)

1 < in=p, T
iz
LS )
1=m-+1
for all x € X and all non-negative integers n and m with n > m. Therefore, we
conclude from (2.10) and (2.13) that the sequence {k" f(z/k™)} is a Cauchy
sequence in Y for all x € X. Since Y is complete, the sequence {k" f(z/k™)}

converges in Y for all x € X. So one can define the mapping A : X — Y by
Ag(z) == lim k”f(in)

n—oo k
for all z € X. Letting m = 0 and passing the limit n — oo in (2.13), we get
(2.11). The rest of the proof is similar to the proof of Theorem 2.1. O

The following result is related to the result of [15].

Theorem 2.3. Let ¢ : [0,00) — [0,00) be a function such that

(1) lim () =0,

t—oo ¢
(2) h(ts) < p()h(s),

(3) ¥(t) <t forallt > 1.
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Suppose that a mapping f : X — Y satisfies the inequality

If (@ +y) = f@) = fFW)lly < 0(&(l2lx) + ¥ (lyllx)) (2.14)

for all x,y € X. Then there exists a unique additive mapping Ax : X — Y
satisfying

1@ — A@ly < —2D i)y (2.15)
(ko — (k)
for all x € X, where
k—1 ‘
ou() = 252 1 3 KFH (1L 4 (i),
=2

Moreover, Ay = Ao for all k > 2.

Proof. Let
p(x,y) = 0(¥(lllx) + ¢(lylx))
for all z,y € X. It follows from (2) that 1 (k") < (1(k))" and

ek "z, k") < 0((k))" (D(l|2l1x) + DIyl x))-

By using Theorem 2.1, we can get (2.15). Now, we show that Ay = A,.
Replacing = by 2"z in (2.15) and dividing both sides of (2.15) by 2", we get

IE2 — a@ly < —— 20 y(iealn
2n(k ;;g(/@) )? (2.16)

< TP (llzllx) P (2")

20 (kP — ap(k)P)»
for all x € X. Using (1) and passing the limit n — oo in (2.16), we get
Ay = As. O

Theorem 2.4. Let q be a mon-negative real number such that ¢ # 1 and
H :[0,00) x [0,00) — [0,00) be a homogeneous function of degree q. Suppose
that a mapping f : X — Y satisfies the inequality

1f(x+y) = f(z) = fy)lly < Hlz]x, [lyllx) (2.17)

for all x,y € X. Then there exists a unique additive mapping Ax : X — Y
satisfying
or(H)
Tzl (2.18)
\kp — km\p

1f(z) — Ax(2)|ly <

for all x € X, where

k—1
oR(H) == K*2H(1,1) + > " KFH(1,49).
=2
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Moreover, Ay = Ag for all k > 2.
Proof. The proof follows from Theorems 2.1 and 2.2. O

For the particular cases H(x,y) = 0(z9 + y9), H(x,y) = 02".y° (r + s = q)
and H(z,y) = min{z?, y?}, we have the following corollaries:

Corollary 2.5. Let 0 and q be non-negative real numbers such that q # 1.
Suppose that a mapping f : X — Y satisfies the inequality

1f(z+y) = f@) = fFW)lly < 0(zl% + lyl%)

for all x,y € X. Then there exists a unique additive mapping A : X — Y
satisfying

1£(2) — Ap@lly < —275 )4
\k;p — kpq\ P
for all x € X, where
k—1
o = 2KF 2 4 KM (149,
=2

Moreover, Ay, = Ay for all k > 2.

Corollary 2.6. Let 0,7, s be non-negative real numbers such that q :=r+s #
1. Suppose that a mapping f : X — Y satisfies the inequality

1f(@+y) = f@) = fFW)lly <0llzllylx

for all x,y € X. Then there exists a unique additive mapping A : X — Y
satisfying

1f(@) - Ap(@)ly < — 2

for all x € X, where

Tzl
\kp — k;pq\p

k—1
o) = KF2 4 ZKk_iis,
i=2
Moreover, Ay = Ag for all k > 2.

The following result is related to the result of [9].

Corollary 2.7. Let q be a non-negative real number such that ¢ # 1. Suppose
that a mapping f : X — Y satisfies the inequality

1f(z+y) = fz) = f)lly <min{[z]%, [yl%}

for all x,y € X. Then there ezists a unique additive mapping A : X — Y
satisfying

Ooy,
1f(z) — Ax(2)]ly < Tlll%
\kp — k;pq\ P
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for all x € X, where
k—1
o = K24+ ZKkii,
i=2
Moreover, A, = Ay for all k > 2.

Open Problem: What is the best possible value of k in Corollaries 2.5, 2.6
and 2.7.

REFERENCES

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc.
Japan, 2 (1950), 64-66.

[2] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, vol. 1,
Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000.

[3] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific,
New Jersey, London, Singapore, Hong Kong, 2002.

[4] G.Z. Eskandani, On the Hyers-Ulam-Rassias stability of an additive functional equation
in quasi-Banach spaces, J. Math. Anal. Appl., 345 (2008), 405-409.

[5] G.Z. Eskandani, H. Vaezi, F. Moradlou, On the Hyers-Ulam-Rassias stability of func-
tional equations in quasi-Banach spaces, Int. J. Appl. Math. Stat., 15 (2009), 1-15.

[6] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991) 431-434.

[7] P. Gavruta, A generalization of the Hyers—Ulam—Rassias stability of approzimately ad-
ditive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.

[8] P. Gavruta, On a problem of G. Isac and Th. M. Rassias concerning the stability of
mappings, J. Math. Anal. Appl., 261 (2001), 543-553.

[9] P. Gavruta,On the Hyers-Ulam-Rassias stability of mappings, in: G.V. Milovanovic(ed.),
Recent Progress in Inequalities, Kluwer, 1998, pp.465-469.

[10] P. Gavruta and L. Cadariu, General stability of the cubic functional equation, Bul. St.
Univ. Politehnica Timisoara, Ser. Mat. Fiz., 47(2002), 57-70.

[11] P. G&vruta, M. Hossu, D. Popescu and C. Céprau, On the stability of mappings and an
anwser to a problem of Th. M Rassias , Annales mathe’matiques Blaise Pascal, tome2,
n%2(1995), 55-60.

[12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.,
27 (1941), 222-224.

[13] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several
Variables, Birkhauser, Basel, 1998.

[14] G. Isac and Th.M. Rassias, Stability of 1-additive mappings: Applications to nonlinear
analysis, Int. J. Math. Math. Sci., 19 (1996), 219-228.

[15] G. Isac and Th.M. Rassias, On the Hyers-Ulam stability of psi-additive mappings, J.
Approx. Theory 72(1993), 131-137.

[16] G. Isac and Th. M. Rassias, it Functional inequalities for approximately additive map-
pings. In: Stability of Mappings of Hyers—Ulam Type, 117-125, Hadronic Presscollect.
orig. Artic., Hadronic Press, Palm Harbour, FL, 1994.

[17] K. Jun and Y. Lee, On the Hyers—Ulam—Rassias stability of a Pexiderized quadratic
inequality, Math. Inequal. Appl., 4 (2001), 93-118.

[18] S. M. Jung, Hyers—Ulam—Rassias Stability of Functional Equations in Mathimatical
Analysis, Hadronic Press, Palm Harbor, 2001.



19]
[20]
[21]
22]
23]
[24]

[25]

On the stability problem 579

Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math.,
27 (1995), 368-372.

M.S. Moslehian and Gh. Sadeghi, Stability of linear mappings in quasi-Banach modules,
Math. Inequal. Appl., 11 (2008), 549-557.

A. Najati and G.Z. Eskandani, Stability of a mized additive and cubic functional equation
in quasi-Banach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331.

C. Park, Hyers—Ulam—Rassias stability of homomorphisms in quasi-Banach algebras,
Bull. Sci. Math., 132 (2008), 87-96.

C. Park and F. Moradlou,Stability of Homomorphisms and Derivations in C*-ternary
Rings, Taiwanese J. Math., (To appear)

J.M. Rassias, On approzximation of approxrimately linear mappings by linear mappings,
J. Funct. Anal., 46 (1982) 126-130.

J.M. Rassias, On approzximation of approximately linear mappings by linear mappings,
Bull. Sci. Math., 108 (1984), 445-446.

J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57(1989), 268-273.
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.
Math. Soc., 72 (1978), 297-300.

Th.M. Rassias, On a modified Hyers—Ulam sequence, J. Math. Anal. Appl., 158 (1991),
106-113.

Th.M. Rassias, Problem 16; 2, Report of the 27*" International Symp. on Functional
Equations, Aequationes Math., 39 (1990), 292—293.

Th.M. Rassias, On the stability of the quadratic functional equation and its applications,
Studia Univ. Babes-Bolyai Math., 43(1998), 89-124.

Th.M. Rassias (ed.), Functional Equations and Inequalities, Kluwer Academic Publish-
ers, Dordrecht, Boston, London, 2000.

Th.M. Rassias and P. Semrl, On the behaviour of mappings which do not satisfy Hyers-
Ulam stability, Proc. Amer. Math. Soc., 114 (1992) 989-993.

S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dor-
drecht, 1984.

S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York,
1960.



