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Abstract. In this paper, we give a generalization of the results from [7] and pose an open

problem in quasi-Banach spaces.

1. Introduction

In 1940, S.M. Ulam [34] gave a talk before the Mathematics Club of the
University of Wisconsin in which he discussed a number of unsolved problems.
Among these was the following question concerning the stability of homomor-
phisms.

Let (G1, ∗) be a group and let (G2, ¦, d) be a metric group with the metric
d(·, ·). Given ε > 0, does there exist a δ(ε) > 0 such that if a mapping
h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) ¦ h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x),H(x)) < ε

for all x ∈ G1? If this problem has a solution, we say that the homomorphisms
from G1 to G2 are stable or the functional equation h(x ∗ y) = h(x) ¦ h(y) is
stable.
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In 1941, D. H. Hyers [12] considered the case of approximately additive
mappings f : E → E′, where E and E′ are Banach spaces and f satisfies
Hyers inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)
2n

exists for all x ∈ E and that L : E → E′ is the unique additive mapping
satisfying

‖f(x)− L(x)‖ ≤ ε.

In 1950, Hyers’ Theorem was generalized by Aoki [1] for additive mappings
and and independently, in 1978, by Rassias [27] for linear mappings by con-
sidering an unbounded Cauchy difference.

Theorem 1.1. (Th.M. Rassias): Let f : E −→ E′ be a mapping from a
normed vector space E into a Banach space E′ subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and 0 ≤ p < 1. Then

the limit L(x) = lim
n→∞

1
2n

f(2nx) exists for all x ∈ E and L : E −→ E′ is the
unique additive mapping which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in
t ∈ R, then L is linear.

In 1990, Th.M. Rassias [29] during the 27th International Symposium on
Functional Equations asked the question whether such a theorem can also be
proved for p ≥ 1. In 1991, Z. Gajda [6] gave an affirmative solution to this
question for p > 1. It was shown by Z. Gajda [6], as well as by Th.M. Rassias
and P. S̆emrl [32] that one cannot prove a Th.M. Rassias type theorem when
p = 1. P. Găvruta [8] proved that the function f(x) = xln|x|, if x 6= 0 and
f(0) = 0 satisfies (1.1) with ε = p = 1 but

sup
x 6=0

|f(x)−A(x)|
|x| ≥ sup

n∈N
|n lnn−A(n)|

n
= sup

n∈N
| lnn−A(1)| = ∞

for any additive function A : R→ R. The paper of Th.M. Rassias has provided
a lot of influence in the development of what we now call Hyers–Ulam–Rassias
stability of functional equations (cf. the books of P. Czerwik [3] and D.H.
Hyers, G. Isac and Th.M. Rassias [13]). J.M. Rassias [25] followed the in-
novative approach of Th.M Rassias theorem in which he replaced the factor
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‖x‖p + ‖y‖p by ‖x‖p‖y‖p for p, q ∈ R with p + q 6= 1 (see also [24, 26]). In
1994, a further generalization of Th.M Rassias

,
Theorem was obtained by P.

Găvruta [7], in which he replaced the bound ε(‖x‖p + ‖y‖p) by a general con-
trol function ϕ(x, y). G. Isac and Th. M. Rassias [16] replaced the factor
‖x‖p + ‖y‖p by ‖x‖p1 + ‖y‖p2 in Theorem 1.1 and solved stability problem
when p2 ≤ p1 < 1 or 1 < p2 ≤ p1, also they asked the question whether
such a theorem can be proved for p2 < 1 < p1. P. Găvruta [8] gave a neg-
ative answer to this question. G. Isac and Th.M. Rassias [14] applied the
Hyers-Ulam-Rassias stability theory to prove fixed point theorems and study
some new applications in Nonlinear Analysis. During the last two decades, a
number of papers and research monographs have been published on various
generalizations and applications of the Hyers-Ulam–Rassias stability a number
of functional equations and mappings (see [5, 10, 17, 18, 19, 21, 23, 30, 31]).

Th.M. Rassias [28] has obtained the following theorem and posed a problem:

Theorem 1.2. Let E1 and E2 to be two Banach spaces, and let f : E1 → E2

be a mapping such that f(tx) is continuous in t for each fixed x. Assume that
there exists θ ≥ 0 and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (1.2)

for all x, y ∈ X. Then exists a unique liner mapping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ kθ

k − kp
‖x‖ps(k, p).

for all x ∈ X, where

s(k, p) = 1 +
1
k

k−1∑

m=2

mp

and any given positive integer k > 2.

Rassias Problem: What is the best possible value of k in Theorem 1.2?
P. Găvruta et al. have given a generalization of [7] and have answered to

Th. M Rassias problem [11].
In this paper, we give a generalization of the results from [7] and pose an

open problem in quasi-Banach spaces. We recall some basic facts concerning
quasi-Banach spaces and some preliminary results.

Definition 1.3. [2, 33] Let X be a real linear space. A quasi-norm is a real-
valued function on X satisfying the following:

(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.

(iii) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all
x, y ∈ X.
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The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm
on X. The smallest possible K is called the modulus of concavity of ‖ · ‖. A
quasi-Banach space is a complete quasi-normed space. The most significant
class of quasi-Banach spaces which are not Banach spaces are the Lp spaces
for 0 < p < 1 with the Lp-norm ‖ · ‖p.

A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.
By the Aoki–Rolewicz theorem [33] (see also [2]), each quasi-norm is equiv-

alent to some p-norm. Since it is much easier to work with p-norms than
quasi-norms, henceforth we restrict our attention mainly to p-norms.

G.Z. Eskandani [4] has investigated the Hyers–Ulam–Rassias stability of the
following functional equation

m∑

i=1

f
(
mxi +

m∑

j=1,j 6=i

xj

)
+ f

( m∑

i=1

xi

)
= 2f

( m∑

i=1

mxi

)
.

in quasi-Banach spaces. C. Park [22] has proved the Hyers–Ulam–Rassias sta-
bility of homomorphisms in quasi-Banach algebras. M.S. Moslehian and Gh.
Sadeghi [20] have proved the Hyers–Ulam–Rassias stability of linear mappings
in quasi-Banach modules associated to the Cauchy functional equation and a
generalized Jensen functional equation.

Throughout this paper, assume that k is a fixed integer greater than 1.

2. Stability of Cauchy functional equation

Assume that X is a quasi-normed space with quasi-norm ‖ · ‖X and that Y
is a p-Banach space with p-norm ‖.‖Y . Let K be the modulus of concavity of
‖ · ‖Y .

Theorem 2.1. Let ϕ : X ×X → [0,∞) be a mapping such that

∞∑

n=0

1
knp

ϕp(knx, kny) < ∞ (2.1)

for all x, y ∈ X. Suppose that a mapping f : X → Y satisfies the inequality

‖f(x + y)− f(x)− f(y)‖Y ≤ ϕ(x, y) (2.2)

for all x, y ∈ X. Then the limit

Ak(x) = lim
n→∞

1
kn

f(knx)
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exists for all x ∈ X and the mapping Ak : X → Y is a unique additive mapping
satisfying

‖f(x)−Ak(x)‖Y ≤ 1
k

[ ∞∑

n=0

ϕ̃p
k(k

nx)
knp

] 1
p (2.3)

for all x ∈ X, where

ϕ̃k(x) := Kk−2ϕ(x, x) +
k−1∑

i=2

Kk−iϕ(x, ix).

Proof. By induction on k, we show that

‖f(kx)− kf(x)‖Y ≤ ϕ̃k(x) (2.4)

for all x ∈ X. Letting y = x in (2.2), we get

‖f(2x)− 2f(x)‖Y ≤ ϕ(x, x) (2.5)

for all x ∈ X. So we get (2.4) for k = 2.
Assume that (2.4) holds for k. Letting y = kx in (2.2), we get

‖f(
(k + 1)x

)− f(x)− f(kx)‖Y ≤ ϕ(x, kx) (2.6)

for all x ∈ X. It follows from (2.4) and (2.6) that

‖f(
(k + 1)x

)− (k + 1)f(x)‖Y ≤ K‖f(
(k + 1)x

)− f(x)− f(kx)‖Y

+ K‖f(kx)− kf(x)‖Y

≤ Kϕ(x, kx) + Kϕ̃k(x)

= ϕ̃k+1(x)

This completes the induction argument. Replacing x by knx in (2.4) and
dividing both sides of (2.4) by kn+1, we get

∥∥∥ 1
kn+1

f(kn+1x)− 1
kn

f(knx)
∥∥∥

Y
≤ 1

kn+1
ϕ̃k(knx) (2.7)

for all x ∈ X and all non-negative integers n. Since Y is a p-Banach space, we
have

∥∥∥ 1
kn+1

f(kn+1x)− 1
km

f(kmx)
∥∥∥

p

Y
≤

n∑

i=m

∥∥∥ 1
ki+1

f(ki+1x)− 1
ki

f(kix)
∥∥∥

p

Y

≤ 1
kp

n∑

i=m

ϕ̃p
k(k

ix)
kip

(2.8)

for all x ∈ X and all non-negative integers n and m with n ≥ m. Therefore,
we conclude from (2.1) and (2.8) that the sequence { 1

kn f(knx)} is a Cauchy
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sequence in Y for all x ∈ X. Since Y is complete, the sequence { 1
kn f(knx)}

converges in Y for all x ∈ X. So one can define the mapping Ak : X → Y by

Ak(x) := lim
n→∞

1
kn

f(knx) (2.9)

for all x ∈ X. Letting m = 0 and passing the limit n → ∞ in (2.8), we get
(2.3). Now, we show that A is an additive mapping. It follows from (2.1),
(2.2) and (2.9) that

‖Ak(x + y)−Ak(x)−Ak(y)‖Y = lim
n→∞

1
kn

∥∥f(knx + kny)− f(knx)− f(kny)
∥∥

Y

≤ lim
n→∞

1
kn

ϕ(knx, kny) = 0

for all x, y ∈ X. Hence the mapping Ak is additive. To prove the uniqueness
of Ak, let T : X → Y be another additive mapping satisfying (2.3). It follows
from (2.3) and (2.9) that

‖Ak(x)− T (x)‖p
Y = lim

n→∞
1

knp

∥∥f(knx)− T (knx)
∥∥p

Y

≤ 1
kp

lim
n→∞

∞∑

i=0

ϕ̃p
k(k

n+i
x)

k
(n+i)p

≤ 1
kp

lim
n→∞

∞∑

i=n

ϕ̃p
k(k

ix)
kip

= 0

for all x ∈ X. So Ak = T. ¤

Theorem 2.2. Let Φ : X ×X → [0,∞) be a mapping such that
∞∑

n=1

knpΦp(
x

kn
,

y

kn
) < ∞ (2.10)

for all x, y ∈ X. Suppose that a mapping f : X → Y satisfies the inequality

‖f(x + y)− f(x)− f(y)‖Y ≤ Φ(x, y)

for all x, y ∈ X. Then the limit

Ak(x) := lim
n→∞ knf

( x

kn

)

exists for all x ∈ X and the mapping Ak : X → Y is a unique additive mapping
satisfying

‖f(x)−Ak(x)‖Y ≤ 1
k

[ ∞∑

n=1

knpΦ̃p
k(

x

kn
)
] 1

p (2.11)
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for all x ∈ X, where

Φ̃k(x) := Kk−2Φ(x, x) +
k−1∑

i=2

Kk−iΦ(x, ix).

Proof. Similar to the proof of Theorem 2.1, we have

‖f(kx)− kf(x)‖Y ≤ Φ̃k(x) (2.12)

for all x ∈ X. Replacing x by
x

kn+1
in (2.12) and multiplying both sides of

(2.12) to kn, we get
∥∥∥kn+1f

( x

kn+1

)− knf
( x

kn

)∥∥∥
Y
≤ knΦ̃k(

x

kn+1
)

for all x ∈ X and all non-negative integers n. Since Y is a p-Banach space, we
have

∥∥∥kn+1f
( x

kn+1

)− kmf
( x

km

)∥∥∥
p

Y
≤

n∑

i=m

∥∥∥ki+1f
( x

ki+1

)− kif
( x

ki

)∥∥∥
p

Y

≤
n∑

i=m

kipΦ̃p
k(

x

ki+1
)

≤ 1
kp

n∑

i=m+1

kipΦ̃p
k(

x

ki
)

(2.13)

for all x ∈ X and all non-negative integers n and m with n ≥ m. Therefore, we
conclude from (2.10) and (2.13) that the sequence {knf(x/kn)} is a Cauchy
sequence in Y for all x ∈ X. Since Y is complete, the sequence {knf(x/kn)}
converges in Y for all x ∈ X. So one can define the mapping Ak : X → Y by

Ak(x) := lim
n→∞ knf

( x

kn

)

for all x ∈ X. Letting m = 0 and passing the limit n → ∞ in (2.13), we get
(2.11). The rest of the proof is similar to the proof of Theorem 2.1. ¤

The following result is related to the result of [15].

Theorem 2.3. Let ψ : [0,∞) → [0,∞) be a function such that

(1) lim
t→∞

ψ(t)
t

= 0,

(2) ψ(ts) ≤ ψ(t)ψ(s),

(3) ψ(t) < t for all t > 1.
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Suppose that a mapping f : X → Y satisfies the inequality

‖f(x + y)− f(x)− f(y)‖Y ≤ θ
(
ψ(‖x‖X) + ψ(‖y‖X)

)
(2.14)

for all x, y ∈ X. Then there exists a unique additive mapping Ak : X → Y
satisfying

‖f(x)−Ak(x)‖Y ≤ σk(ψ)θ

(kp − ψ(k)p)
1
p

ψ(‖x‖X) (2.15)

for all x ∈ X, where

σk(ψ) := 2Kk−2 +
k−1∑

i=2

Kk−i(1 + ψ(i)).

Moreover, Ak = A2 for all k ≥ 2.

Proof. Let
ϕ(x, y) = θ

(
ψ(‖x‖X) + ψ(‖y‖X)

)

for all x, y ∈ X. It follows from (2) that ψ(kn) ≤ (
ψ(k)

)n and

ϕ(knx, kny) ≤ θ
(
ψ(k)

)n(
ψ(‖x‖X) + ψ(‖y‖X)

)
.

By using Theorem 2.1, we can get (2.15). Now, we show that Ak = A2.
Replacing x by 2nx in (2.15) and dividing both sides of (2.15) by 2n, we get

‖f(2nx)
2n

−Ak(x)‖Y ≤ σkθ

2n(kp − ψ(k)p)
1
p

ψ(‖2nx‖X)

≤ σkθ

2n(kp − ψ(k)p)
1
p

ψ(‖x‖X)ψ(2n)
(2.16)

for all x ∈ X. Using (1) and passing the limit n −→ ∞ in (2.16), we get
Ak = A2. ¤
Theorem 2.4. Let q be a non-negative real number such that q 6= 1 and
H : [0,∞)× [0,∞) → [0,∞) be a homogeneous function of degree q. Suppose
that a mapping f : X → Y satisfies the inequality

‖f(x + y)− f(x)− f(y)‖Y ≤ H(‖x‖X , ‖y‖X) (2.17)

for all x, y ∈ X. Then there exists a unique additive mapping Ak : X → Y
satisfying

‖f(x)−Ak(x)‖Y ≤ σk(H)

|kp − kpq| 1p
‖x‖q

X (2.18)

for all x ∈ X, where

σk(H) := Kk−2H(1, 1) +
k−1∑

i=2

Kk−iH(1, i).
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Moreover, Ak = A2 for all k ≥ 2.

Proof. The proof follows from Theorems 2.1 and 2.2. ¤
For the particular cases H(x, y) = θ(xq + yq), H(x, y) = θxr.ys (r + s = q)

and H(x, y) = min{xq, yq}, we have the following corollaries:

Corollary 2.5. Let θ and q be non-negative real numbers such that q 6= 1.
Suppose that a mapping f : X → Y satisfies the inequality

‖f(x + y)− f(x)− f(y)‖Y ≤ θ(‖x‖q
X + ‖y‖q

X)

for all x, y ∈ X. Then there exists a unique additive mapping Ak : X → Y
satisfying

‖f(x)−Ak(x)‖Y ≤ θσk

|kp − kpq| 1p
‖x‖q

X

for all x ∈ X, where

σk := 2Kk−2 +
k−1∑

i=2

Kk−i(1 + iq),

Moreover, Ak = A2 for all k ≥ 2.

Corollary 2.6. Let θ, r, s be non-negative real numbers such that q := r +s 6=
1. Suppose that a mapping f : X → Y satisfies the inequality

‖f(x + y)− f(x)− f(y)‖Y ≤ θ‖x‖r
X‖y‖s

X

for all x, y ∈ X. Then there exists a unique additive mapping Ak : X → Y
satisfying

‖f(x)−Ak(x)‖Y ≤ θσk

|kp − kpq| 1p
‖x‖q

X

for all x ∈ X, where

σk := Kk−2 +
k−1∑

i=2

Kk−iis,

Moreover, Ak = A2 for all k ≥ 2.

The following result is related to the result of [9].

Corollary 2.7. Let q be a non-negative real number such that q 6= 1. Suppose
that a mapping f : X → Y satisfies the inequality

‖f(x + y)− f(x)− f(y)‖Y ≤ min{‖x‖q
X , ‖y‖q

X}
for all x, y ∈ X. Then there exists a unique additive mapping Ak : X → Y
satisfying

‖f(x)−Ak(x)‖Y ≤ θσk

|kp − kpq| 1p
‖x‖q

X
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for all x ∈ X, where

σk := Kk−2 +
k−1∑

i=2

Kk−i,

Moreover, Ak = A2 for all k ≥ 2.

Open Problem: What is the best possible value of k in Corollaries 2.5, 2.6
and 2.7.
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