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Abstract. In this paper, we propose a corresponding Wronskian method that can be used
in quaternionic differential equations. By considering M (C,2) consisting of 2 x 2 matrixes
that correspond to the basis of quaternions, we define the Wronskian applicable to the
quaternionic differential equations. In addition, we propose some steps for finding another
solution using the reduction of the order of quaternionic homogeneous differential equations,

and show how the steps can be used in examples.

1. INTRODUCTION

The representation of rotation and transformation using quaternions is use-
ful for modeling three-dimensional motion over time, so quaternionic differ-
ential equations are used for kinematic modeling, attitude dynamics, fluid
mechanics, quantum mechanics, etc.(see [10]). Since Hamilton introduced the
quaternions, many studies have been conducted on the holomorphicity and
regularity of the quaternionic functions by the algebraic properties of quater-
nions(see [1, 11, 12]). In addition to studying quaternion functions of the real
variables, we examined the properties of functions for special quaternion vari-
ables, such as dual quaternions and split quaternions(see [5, 6, 7, 8, 9]).
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Let H be a quaternionic field denoted by
H={q|q=x0+ix1+ jra+ kzrs, z, €¢R(r=0,1,2,3)},
where {i, j, k} satisfying
= =k=—1,ij=—ji=k, jk=—-kj=1i, ki=—ik=7j,  (1L.1)
consists of the elements of H. Let ¥ : R — H be a quaternionic function of a
real variable such that
W(t) = uo(t) + iur(t) + jua(t) + kus(t),

where u, : R — R (r = 0,1, 2,3) are real-valued functions of the real variable
t. Let F be the set of real-valued functions of a real variable. Then, we can
denote W(t) as ¥(t) € H® F. These notations are referred to by [3]. The
first and second derivative of quaternionic functions with respect to the real
variable ¢ are denoted by

vt = Loy amd v = Lo

dt dt? ’

respectively.

Put the 2 x 2 matrices

(10 (i0 (0 1 (0 i
“=\o1 ) 2" o )27\ 1 0) 3=\ i o)

satisfying the following relations computed by the multiplication of matrix
algebra:

2 2 2 2
60260, 61 262263: —ep,
€1€2 = —€2€1 = €3, €263 = —€3€2 = €1, €361 = —€1€3 = €2.

Then, we can express the quaternion as

To+1x1 T+ ix3 )

= egxo + e1x1 + eaxrs + e3xrsy = . .
q 070 121 272 373 <—x2—|—2x3 T — i1

and if z; and zo are denoted by z; = zg + ix1 and 29 = x9 + ir3 with the
conjugation of z; and zo are z; = xg — ix1 and Zg = x9 — ix3, we can write ¢

as
I S R
q—<_22 Zl) (1.2)
The set M (2,C) denoted by

M<2,<c>={q|q=(

Z1 Z9
—Z2 z1

>7 21, 72 € C}

is isomorphic to H whose elements consist of {1,1, j, k} satisfying (1.1).
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Consider the existence and uniqueness for the quaternionic initial value
problems

U =W + BU + v, U(ty) = f, ¥(t) =g, (1.3)
where
a(t) = ao(t) +1a1(t) + jaz(t) + kas(t), B(t) = bo(t) +ibi(t) + jba(t) + kbs(t),
Y(t) = co(t) +ica(t) + jea(t) + kes(t)
in H® F for ty € I, being an open interval I of R. Also,
f=l+ifi+jifotkfs and g=go+igi+jg2+kgs
in H.
Theorem 1.1. Let I be an open interval containing the point t = ty. If o, B,y

in Equation (1.3) are continuous functions of t on I, then Equation (1.3) has
a unique solution W on I.

Referring to [3] and [10], if o, 3, in Equation (1.3) are continuous functions
of t on an open interval I containing the point ¢t = %, then the initial value
problem (1.3) has a solution ¥ on this interval and this solution is unique.
By using the matrix representation (1.2), we can write the quaternionic initial
value problem (1.3) as follows:

q’/f ‘I)/zl _ m1 o M2 ‘1’/1 ‘I’/z
—_—/ —_— — - - —_— —_— (14)
-0y Py —f2 [ -0y Py
1%} 1] (I>1 (I)Q )\1 >\2
(S n) (& e (% R)
o b\ [ F B
by b ) \ -F F

N\ _ (G G
-3, @, ) \ -Gy Gi )

and

where

" 1 /i 1 1! /) / ! - / ! -
O] = ug +iuy, Dy = uy +ius, P} =ug +iuy, Py = uy +ius,

Q1 = ug + 1wy, P2 =up +iuz, p1 = ag +iay, p2 = az +iag,
V] = b() —i—ibl, vy = by +ib3, A= Co +i01, Ay = ¢y +’i03,
Fir=fo+ifi, Fo = fa+ifs, Gi1=go+ig1, G2 = g2 + ig3.

The functions a,, b, ¢, (r = 0,1,2,3) are continuous real functions of ¢ on
an open interval I. Using the proof method in [2], the linear system (1.4) has

a unique solution
O, Py
Py Py
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on [ satisfying the initial conditions in (1.3).

2. LINEAR INDEPENDENCE AND DEPENDENCE OF SOLUTIONS

By referring to the Wronskian method discussed in Kou and Xia [10] and
Leo and Ducati [3, 4], we propose the Wronskian method that can be used in
quaternionic differential equations. Without loss of generality, our discussion
is presented on quaternionic second-order differential equations for simplicity.

Consider the linear independence and dependence of the solutions of second
order homogeneous differential equations such that

' = oV + B, (2.1)

where each component of o and § is a quaternionic continuous function of ¢
on an open interval I. The general solution of equation (2.1) is given in the
form ¥ = pq + £p by two linearly independent solutions ¢ and &, where

© = @0+ ip1+ jp2 + ks
and

§=2% +i& +j&2 + k&3
in H® F for tg € [ and ¢, p € H.

In complex analysis, the concept of the Wronskian for second order homo-
geneous differential equations is a useful criterion to distinguish linear inde-
pendence and dependence of two solutions of a homogeneous second order
differential equation, defined by

v s
and W € C ® F. However, in the form of Equation (2.2), it is not possible to
determine whether the quaternionic solutions ¢ and £ of Equation (2.1) are
independent or dependent on each other. Since the commutative rule does
not hold for the product, W may not be zero even if ¢ and £ are linearly
dependent on each other. In other words, if £ = ¢q,

= — &Y, when p, £ C®F, (2.2)

W=t —&¢' = pp'q — pqgy'.
When ¢ is a real constant, the property of Wronskian holds with W = 0.
When ¢ is a non-real constant in quaternions, since ¢’'q # g, it may be that
W # 0. Therefore, let us consider the following expression to determine the
linear independence of two solutions of homogeneous second order differential
equation such that Equation (2.1) is true for the quaternionic functions.

Let us consider two linearly dependent solutions of Equation (2.1), that is,
& = pq, where p, £ € H® F and q is a constant in quaternions. Without loss
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of generality, suppose the quaternionic constant multiple is calculated on the
right. We can also write as

$1 P2 > < mo 2 >
= - = d e - ,
< —p2 P1 and ¢ —2 T
where ¢1 = o + i1, P2 = Y2 + i3, N1 = & + &1 and Ny = &2 + 1€3.

We define the quaternionic Wronskian such that

1 P2 M e
w=| 2o TR (2.3)
1 2 T T
—¢2 o1 - W
In detail,
W = (' +n5 ) (P1 ¢1 + b2 d2) + (—
+ (- +m ) (61 ¢ — ¢ d2)
+ (b — 12 0)) (=61 B2 + b2 d1) + (m T+ m2 ) (S 61 + by b2
= (|2 + ) (U * + 1621 + (=t 70— nh ) (61 b1 + 62 62)
+ (R TR ) (1 ¢y — @1 d2) + (m T A2 ) (—d1 By — b bh)
+

(ol — 2 M) (=61 B2+ B2 d1) + (Im]? + 22 (16112 + |94 ]?).

i — 0y ) (61 61 + b2 B2
(m '+ e ) (=61 &) — P2 @)
(

+ o+

Theorem 2.1. Let o and  in Equation (2.1) be quaternionic continuous
functions of t on an open interval 1. If two solutions ¢ and & of Equation
(2.1) on I are linearly dependent on I, then the quaternionic Wronskian is

zero for any t in 1.

Proof. Suppose two solutions ¢ and £ of Equation (2.1) on I are linearly
dependent on I. The quaternionic Wronskian is

= (I7, 2+ [h?) (1 2 + |621?) + (= T — 7y T) (d1 61 + 62 2
+ (R TR ) (1 ¢y — 1 d2) + (m T A2 TR (—d1 ) — b2 bh)
(=2 1) (=61 ba + B2 1) + (Im > + [mal?) (16412 + |65 ]?).

Since two solutions ¢ and £ of Equation (2.1) on I are linearly dependent on
I, we can express £ as q for the quaternionic constant ¢ = qo+1iq1 +jq2 + kqs.
By using the matrix expression, we can write

_( m m _( 1 P2 [ @ Q2
f_<—772 771>’ _<—¢2 ¢1> and q_<—Q2 Q1>
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and then, we have
m=Q1 ¢1— Q2 b2, 2= Q2 1+ Q1 P2,
=01 01— Q2 d2, T2 =Q1 ¢2+ Q2 ¢1.
Thus, W has the following components
m | + [ = (1017 + Q2 (|611% + 195 [7),
0y T+ 0 T2 = (1@ + [Q2f*) (61 ¢1+¢2 ),
— T+ = (1@ + [Q2*) (62 61" — 61 62),
m '+ R = (11 + Q) (61 61’ + 62 62),
m oy — 2 ) = (‘QI‘Q + ‘Qﬂ ) (b1 5 — &) b2),
m | + [l = (1017 + |Q2)(|61]* + 2).

By calculating the above equations, W is obtained as zero. O

Example 2.2. For the following homogeneous second order differential equa-
tion
U 450+ (1 — k)W =0, (2.4)
the quaternionic functions ¢ = exp(—it) and £ = exp((i — j)t) form a basis
of solutions of Equation (2.4) on any interval. Indeed, by the expression of
the elementary functlons (see [1]), we can write as ¢ = cost — isint and
= cos V2t + ¢ f sin v/2t. Then, we have
W = —3 —sin? 2t — 2 cos® t cos 2t — i(cos 2t sin 2t + 2sin 2tsin®t) # 0 (2.5)

for any tg in I. For this example, the form of the Wronskian presented above
is represented in Appendix 1. Thus, ¢ and £ are linearly independent on I.

3. REDUCTION OF ORDER FOR HOMOGENEOUS DIFFERENTIAL EQUATIONS

Let ¢ be a solution of Equation (2.1) on some interval I. Looking for a
solution in the form £ = @7 and substituting ¢ and its derivatives

=o'+ and ¢ =¢"174+207 + 1"
into Equation (2.1),
4,0”7 + 2g0’7" + gm‘" = ago'T + ozgm" + Bepr.
Since ¢ is a solution of Equation (2.1),
' = ag't + Bor

is satisfied, so we obtain
20/ + 7" = apt’
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and then,
" -1 —1, .t
"= (¢ Tap —2¢p )T (3.1)

For homogeneous second order equations with quaternion constant coefficients,
a(t) and B(t) replace to o and [, respectively, at least one solution is in
the form of a quaternionic exponential, ¢ = exp(qt), and since % exp(qt) =
gexp(qt) (see Appendix 2), Equation (3.1) reduces to

ot = (a0 — 2q) 7. (3.2)
Let us introduce the quaternionic function o = ¢7’. Observing that
o =7+ ot = qor’ + 7.
Equation (3.2) can be rewritten as follows:
o' =qot’' + (a—2q) 7 = qo + (a — 2q)0 = (o — q)o.
This equation can be immediately integrated; its solution reads
o = exp((a — )t).

Thus, the second solution of the homogeneous second order differential equa-
tion with constant coefficients is given by

§ = exp(qt) /exp(—qt) exp((a — q)t) dt. (3.3)

The solution of this integral will give interesting information about the second
solution of quaternionic differential equations with constant coefficients when
the associated characteristic quadratic equation has a unique solution. To
solve the integral in Equation (3.3), we first consider by observing that

gq=q+X, p=po+Y,

X =iq1 + jg2 + kg3, Y = ip1 + jp2 + kpa,

(X =gt +a+a, [Y|=1/pl+p3+03

X Y
e? = e cos(| X |t) + x| sin(| Xt), eP' = Pl cos(|Y[t) + v sin(|Y']t).
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Using these notations, we obtain the following formulas

/ edtelt dt

- 1/‘f(wfl?())’f{cos((lX| +Y])t) + cos((|X| — [Y])t)} dt

2
-X-Y+XxY1 (qo+po)t COS oS
- X[V / {eos((|X] = Y])t) (IXT+ YD)} dt

|Y| 2/ (qO+po)t{51n((|X| +|Y|)t) —sin((|X]| — [Y])t)} dt

X1

X1z / e 0 sin((|X] + [Y])e) + sin((|X] — [Y])6)} dt,

and the specific calculation process can be checked in Appendix 3. So, we
express the formula we need by using the following,

X & —iq —jg — kg3, Y < i(ar —q1) + j(az — q2) + k(az — g3),

Xl =/t + @+ V] =01 — a)? + (a2 — 022 + (a5 — o)’

we have the solution & of Equation (2.1). The formula of £ and the specific
calculation process can be seen in Appendix 4.

Example 3.1. For the homogeneous second order equation
U+ 50 + (1 — k)W =0, ¢ = exp(—it),
find £ as a solution:

Wehave a = —j,q=—i, X =i, Y =i—4, |X| =1, Y| =v2, X Y =1
and X x Y = —k. So, we obtain

/ exp(—gt) exp((a — q)t) dt

= 1/e(q"“’O)t{COS((IXI +Y)t) + cos((|X] = [Y])t)} dt
~X-Y+XxY1

+ ‘XHY| 3 / (‘IO"FPO)t{COS((‘X’ ‘Y‘)t) — COS((‘X‘ + ‘Y‘)t)} dt
+ g [ €O (X + Y e) —sin((1X] ¥ o)
! éé/ (P sin((|X] + [Y)1) + sin((1X] — [Y])1)} dt
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1 1 . 1 .
:2{1+\/§sm((1—|—\f2)t)+1_\/§sm((1—\/§)t)}
-1-k1 1 . 1 .
+ 7 2{1_\/§sm((1—\/§)t)—1+\[sm((1+\/§)t)}

+i—j1{_ 1

V221 1+V2 —\f
1 1

+12{ — +\/§COS(<1+ V2)t) — \fcos(( \/§)t)}

1
= 2\[{(sm((l +V2)t) — sin((1 \/5)75))

—i(cos((1 + V2)t) — cos((1 — V2)t))
+7((V2 = 1) cos((1 + V2)t) + (V2 + 1) cos((1 — V2)1))

+k((V2 = 1) sin((1 + v2)t) + (V2 + 1) sin((1 — ﬁ)t))}

cos((1+V2)t) +

cos((1 = V2)0)}

and
£ = exp(qt) / exp(—qt) exp((a — q)t) dt
= (cost — isint) /exp(qt) exp((a — q)t) dt

1 . ) .
= E(Sm(ﬂt) + j cos(V/2t) — ksin(V2t))

= j(cos(V2t) +

Z;;' sin(v2#)) = j exp((i — )t).

Example 3.2. Find another solutions for the following equation
k
U 40+ 5= 0

having ¢ = exp(—#t) as a solution.
Wehavea =—i,¢g=-3 xXx=1Li+1, Y =-Li+ij|X|=
Y|=—=, X-Y =0and X x Y = 1k. Hence, we can write

1
V2’

/ exp(—gt) exp((a — g)t) dt

- ;/€(q°+p°)t{cos((|X| + [Y])t) + cos((|X| = [Y])t)} dt
X Y+XxYl1

X1V

/ el0FP0)t Leos((1X| — |Y|)E) — cos((|X| + [Y])t)} di
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+ g [ €O (X + YD) —sin((X] - [¥]o)
+ s [ O X+ YD) +sin((X] - V) d

:i/(cosx/ﬁt—kl) dt+§/(1—cosx/§t) dt

—|—_Z+] sm\ftdt%—/sm\[tdt
2v2

1 t j
= Qﬂsin\/ﬁt—i-Q—';cosx/it—l—k(z—

Thus, the solution £ is obtained as follows:

2\/§sin\/§t> .

£ = exp(qt) /exp(—qt) exp((a — q)t) dt

_ (cos \;5 _ 1}7 - \%) / exp(—qt) exp((a — q)t) dt

A
COS —= — 1—= SN —=

1 .t
:ﬁx/f NG RRRN RaG

N 1 t +k<t t 1 . t>
COS —= —COS —= — ——=S1n ——
]2 V2 2 V2 2v2 V2

1 B ek t
"2 < VR R ﬁ)j
(oo

(15 ) (357

4. CONCLUSION

.

l\D\M

The set H of quaternions is generated by {1,i,7,k} and M(C,2) is the set
generated by {eg, e1, €2, e3} with a relationship equal to {1,4, j, k}. Moreover,
H is isomorphic to M(C,?2), where each e, (r = 0,1,2,3) is a matrix with
2 x 2 complex entities. By substituting the expression in M(C,2) for the
quaternionic functions of one real variable, this paper defines the quaternionic
Wronskian which determine the independence and dependency of solutions of
a quaternionic homogeneous second-order equation. This substituting makes
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it easy to construct the quaternionic Wronskian, and it is easy to use, since
the calculation proceeds using the complex-valued function.

In addition, we propose a step of reduction of order applicable to quater-
nionic differential equations(QDE). This is a method of deriving an applicable
solution if QDE corresponds to the form of a homogeneous second-order equa-
tion without having to distinguish whether or not this method can be applied.

Appendix 1. Equation (2.5) can be obtained from the following calculation.

cost —isint 0 cos\@t—kismi\‘[ft
sl sin\/§t
W = 0 cost +isint =5
—sint —icost 0 —\/isin\/ﬁt—i—icosﬂt
0 —sint +icost cos /2t
_ sin/2t
V2 V2
- sin /2t
cos \/575 — 17
— COS \@t

—/2sin V2t — i cos /2t

Appendix 2. We show that

d
7 exp(qt) = qexp(qt).

For a quaternion ¢ = qo + X with X = iq1 + jq2 + kg3, we can write

qot X .
exp(qt) = e®*(cos(| X |t) + x| sin(| X |t)).

So, we obtain

d
I exp(qt)

- jt {eqot(cos(]X]t) + é’ sin(\X\t))}

X
= goel’ <cos(|X|t) + x| sin(|X|t)> + e (—| X | sin(| X |t) + X cos(|X|t))

X X
= qoe®! (cos(|X|t) + x| sin(|X|t)> + et X (|X| sin(| X |¢) + cos(|X|t)>

= (go + X)e®? <cos(X\t) + é‘ Sin(|X|t)>

= gexp(qt).
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Appendix 3. Let us consider the expression of [ e?eP* dt. For two quater-
nions q = qo+q1i+q2j+qsk and p = po+p1i+p2j+psk, let X = qri+qoj+qsk
and Y = pi1i+poj+psk. Then we can write ¢ = go+ X and p = pg+Y. Also,
we have

X|=\/E+B+a, [Y|=\/p+p3+p3, XY =aqp + @p2+ asps,

and

X xY = (g2p3 — g3p2)i + (gsp1 — q1p3)j + (q1p2 — @2p1)k-
Since the exponential function for quaternions is exp(qt) = e%!(cos(| X |t) +

é—‘ sin(|X|t)), we can express the following:

/eqtept dt = /e(qOerO)tcos(]Xt) cos(|Y'|t) dt

X Y+XxY
| XY

/ @0 tP0)t gin (|X[¢) sin(|Y|t) dt
Y (go+po)t ;
+ iG] e cos(|X|t) sin(|Y|t) dt

+W el Po)t gin(|X|t) cos(|Y|t) dt.

Also, each component of the above formulas can be expressed as follows:
/ @0 P0)t cos(|X[1) cos(|Y]t) dt

= ;/G(QOero)t{cOS(ﬂX’ + Y t) + cos((|X| — |Y])t)} dt,

/e(qOerO)tsin(]X\t) sin(|Y'|t) dt

1

=5 [ o eos((1X] - Y1)e) ~ cos((1X| + V1)0)}

e(qo-i-po)t COS(|X|t) SIH(|Y|t) dt

—

=2 / PO sin((|X] + [Y])t) — sin((|X] = [Y])1)} dt
and
/ e@+P0)t sin(|X|t) cos(|Y[t) dt

=5 [ o sin (X + ¥ ) + sin((1X] - [¥ )} .
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Hence, we can obtain

/ edtePt dt

— ;/e(qo+p°)t{cos((|X| +Y)t) + cos((|X] = [Y]))} dt
X - Y+XxY1

(XY 2

/6<qo+po>t{cos(<|x| — [Y)t) = cos((|X| + [Y])t)} dt

+ 1373 | €O (X + V1)) = sin(1X] = [V)0)) d
+ |§|;/e(qO“’O)t{sin((]X] + Y )t) +sin((|X| — |Y])t)} dt.
Moreover, since the following formulas
/eat cos(ft) dt = o2 j_ 7 et (a cos(ft) + ,Bsin(ﬁt))
and
/eat sin(f8t) dt = o2 ﬂlLBQ e (a sin(ft) — ﬁcos(,@t))

are satisfied, we obtain

/ @00 cos((| X| 4 [V)t) dt
e(q0+po)t
(@0 +po + (X[ + Y]
x { (a0 + po) cos((1X] + [Y)t) + (1] + Y sin(1X| + Y 1)},

/ (0PN cos((|1X| — |Y])t) dt
e(q0+po)t
(g0 +po)* + (| X| = [Y])?
X {(qo + po) cos((|X| = [Y])t) + (| X]| — [Y]) sin((| X] - \Y\)t)},

/ PO in((1X] + |Y|)8) dt
e(@0+po)t
(0 +po)” + (X[ V]
% { (g0 + po) sin((|X] + Y )t) = (1X] + Y]} cos((1X| + Y }1)}
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and

/ @0 t0)t gin (1X | — [V])E) dt
e(q0+po)t
(g0 +po) + (X[~ [Y])?
x { a0 + po) sin((1X]  [¥[)1) — (1] = [¥]) cos(|X]  [Y])1) }.

Thus, we can rewrite [ e?eP! dt as follows:

/ edtePt dt

_ |XHY‘+X'Y—X><Y e(Q0+p0)t
21 XY (90 + po)? + (| X[+ [Y])?

x (g0 + po) cos((1X| + [Y1)t) + (1X| + [¥ ) sin((1X] + [V ])1))
X[V - X Y +X xY eldo+po)t
21XV (a0 +po)? + (X[ = V]2
x (g0 + po) cos((1X| = [Y1)t) + (1X] = [¥ ) sin((1X] — [¥])1))
X|Y|+ |X|Y e(d0+po)t
2AXNYT (a0 + po)? + (X] + V]2

x (a0 + po) sin((|X] + [Y])1) = (|X] + Y]} cos((|X] + [ ])1))
X|Y|— |X|Y e(ao+po)t
2AXNYT (a0 +po)? + (1X] — [¥])2
x ( (g0 + po) sin((1X| = [Y])1) = (|X] = [Y]) cos((|X] — [¥])1))
el teos((|X] + [V ])0)
21XV (g0 + po) + ([ XT+V])2}
x (XY +X Y = X x Y) (g0 +po) — (X|Y| + [X[Y)(| X+ [Y]))
elwotPoltsin((|X| + |Y|)t)
21XV (g0 + po) + (IXT + Y1)}
X ((XIY]+X Y = X x YV)(X] + [Y]) + (X]Y] + [X]Y) (a0 + o))
ela o)t cos((|X| — [Y])1)
21XV (a0 + p0)? + (IX]— Y1)}
% ((XNY] = XY + X x Y)(q0 +po) — (X|Y] = [XY)(X] = V]))

_l’_

+
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el sin (|.X] — [¥'])1)
21XV [{(q0 + po)2 + (1X] — [V])%}
x (XY= XY + X x YV)(X] = [V]) + (X[Y] = XY ) a0 + po) )

_|_

Letting,
_ (X[Y[+ XY - X xY)(q0 +po) — (XY + [X|Y)(IX] + |Y])
Cl — B P} )
2[X[Y [{(q0 + po)* + (IX] + [Y])?}
, = KIVI+ XY = X x V)(IX] + [V]) + (X]V] + | X]¥) (g0 + po)

21X (g0 + po)? + (1X] +[Y])?} ’

(XY - X-Y 4+ X xY)(q0 +po) — (X[Y] - [X[Y)(|X]| - [Y])

Cs = QXY [{(g0 + p0)2 + (X] — |V )2}

and

(XY= X -V 4+ X < V)(X]| = [Y]) + (X]Y] = [X[Y) (g0 + po)
21X[1Y (g0 +po)* + (1X] = [Y])?} ’

Cy=
then, we have

/eqtept dt = el TPy cos((| X | + |Y|)E) + Cosin((| X] + |Y])t)
+ Ccos((|X] = [Y])t) + Cysin((|X| = [Y])1)}.

Appendix 4. Let’s look at the expression e? [ e~ %e(*= 9t dt. We replace
the preceding p with a — ¢, that is, replace pg with ayg — qp and Y with
ila1 — q1) + jlaz — q2) + k(as — gq3), then we have

ot [ earten gy~ oY1)+ cos2LX] +1Y o)
+ %(sin(@]X\ +[Y])t) + sin(|Y [1))
+ Deos(¥ 1) + cos((21X] — [Y])1)

+ %(sin((zy)q — [Y])t) - sin(|Y |1))
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X ¢, .
] 71(51n(|Y|t) —sin((2|X] + |Y])t))

+ 2 eos((21X] + [¥])1) — cos([¥]1)

- %(Sin(@\X\ — |Y])t) +sin([Y]t))

Cy
+ = (cos((2X] = [Y])2) — cos(|Y[£))}.
Putting
1 X 1 X
Ay = 5(01 + WIOQ% By = 5(03 + moﬁx)a
X
Di=A_+ B_, Dy = m(Af — Bf)a D3 = AJrv

X X

Dy=——A, Ds=B.,, Dg=—-—B

then, we finally obtain
et / e~ e0=Dt gt = cos(|Y |t) Dy + sin(|Y'|t) Dy

+ cos((2| X | + |Y])t) D3 + sin((2|X | + [Y])t) Dq4
+ cos((2|X| — |Y|)t) D5 + sin((2|X| — |Y[)t) Ds.
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