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Abstract. In this paper we establish some results concerning closure products on class

of Hurwitz-Lerch-Zeta functions meromorphic functions in terms of the Srivastava-Attiya

operator. The generalization of the class of univalent functions have been explored and the

proprieties such as disterortion theorem and radii theorem are the main interests of solving

problems. In addition, some interesting properties depending on some integral representa-

tions are discussed.

1. Introduction

The theory of analytic univalent function is a classical problem of complex
analysis which belongs to a geometric function theory.

A large number of generalization of the class of univalent functions have
been explored and proprieties such as distortion theorem and radii theorem
are the main interests of solving problems. To date, various methods have
been used such as method of differential subordinations, method of differential
inequalities and method of arising from the convolution theory. One of the
important studies in the univalent functions is the integrals operator.

Let M denote the class of meromorphic functions f(z) defined by
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f(z) =
1

z
+
∞∑
n=1

anz
n, (1.1)

which is analytic in the punctured unit disk U∗ = {z ∈ C : 0 < |z| < 1} . For
0 ≤ β < 1, we denote by S∗(β) and k(β), the subclasses of M consisting of all
meromorphic functions which are respectively, starlike of order β and convex
of order β in U∗.

For functions fj(z) (j = 1, 2) defined by

fj(z) =
1

z
+
∞∑
n=1

an,jz
n, (1.2)

we denote the hadamard product (or convolution) of f1 and f2 by

(f1 ∗ f2)(z) =
1

z
+
∞∑
n=1

an,1an,2z
n. (1.3)

Now, we recall a general Hurwitz-Lerch Zeta function which, as many au-
thors do, see for example ([1],[6],[8]-[11]).

Φ(z, t, a) =
1

at
+

∞∑
n=1

zn

(n+ a)s
, (1.4)

where Z−10 = {0,−1,−2, ...} , U = {z ∈ C : |z| < 1} , ∂U = {z ∈ C : |z| = 1} .
a ∈ C\Z−0 , t ∈ C when z ∈ U = U∗ ∪ {0} ; R(t) > 1 when z ∈ ∂U .

Several interesting properties and characteristics of the Hurwitz-Lerch Zeta
function Φ(z, t, a) can be found in the recent investigations by Choi and Sri-
vastava [2], Ferreira and Lopez [3], Garg et al. [5], Lin and Srivastava [6], and
Lin et al. [7] and others. Recent results on Φ(z, t, a), can be found in the
expositions [17], [18].

In [4] (see also [14] and [15]), Ghanim defined

Gt,a(z) = (1 + a)s
[
Φ(z, t, a)− as +

1

z (1 + a)s

]
=

1

z
+
∞∑
n=1

(
1 + a

n+ a

)s
zn; (z ∈ U∗). (1.5)

Corresponding to the functions Gs,a(z) and using the hadamard product
for f(z) ∈M , we define a new linear operator.
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Lsa(α, β)f(z) = Φ(z, t, a) ∗Gt,a(z)

=
1

z
+

∞∑
n=1

(α)n+1

(β)n+1

Csa(n)anz
n; (z ∈ U∗).

(1.6)

for β 6= 0,−1,−2, ... and α ∈ C\ {0} . Here Csa(n) =
(

1+a
n+1+a

)s
and, unless

indicated otherwise, throughout this paper the parameter a is constrained to
a ∈ C\

{
Z−0
}
, and s belongs C. Recently Meromorphic functions in terms of

Gaussian and generalized hypergeometric functions were considered by many
authors see for example ([11]-[18] and the authors therein).

Clearly, it follows from (1.6) that

z (Lsa(α, β)f(z))
′

= α (Lsa(α+ 1, β)f(z))− (α+ 1) (Lsa(α, β)f(z)) . (1.7)

Now, for univalently meromorphic function f(z) ∈M the normalization

z2f(z) |z=0= 0 and zf(z) |z=0= 1 (1.8)

is classical. We can obtain interesting results by applying Montel’s normaliza-
tion [8] of the form

z2f(z) |z=0= 0 and zf(z) |z=ρ= 1, (1.9)

where ρ is a fixed point from the unit disk U∗. Note that if ρ = 0 the
normalization (1.9) is the classical normalization (1.8).

Meromorphic multivalent functions have been studied by Mogra et al. [8],
Uralegaddi and Somanatha [18], Srivastava et al. [15], Srivastava and Choi
[12].

In this article, we define the following new subclass M s
a(α, β) of meromor-

phic starlike function in the parabolic region of function M by making use
of the generalized operator Lta with Montel’s normalization. We study its
characteristic properties: for example coefficient inequalities, growth and dis-
tortion inequalities, radii of starlikeness are obtained, we also establish some
new results concerning the convolution products.

For a fixed parameters α ≥ 1
2+β ; 0 ≤ β < 1, denote the set M s

a(α, β)

consisting of those meromorphic function f(z) ∈M with two fixed points (or
classical normalization) which satisfy

∣∣∣∣∣z (Lsa(α, β)f(z))
′

Lsa(α, β)f(z)
+ α+ αβ

∣∣∣∣∣ ≤ R

{
−z (Lsa(α, β)f(z))

′

Lsa(α, β)f(z)
+ α− αβ

}
, (n ∈ N0),

(1.10)
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where Lta(α, β)f(z) given by (1.6). In addition the text further, more let the
subclassM s

a(α, β) satisfying the condition (1.10) with Montel’s (1.9) is denoted
by M s

a(α, β, ρ).

2. Main results

Now we are in a position to prove the main theorems:

Theorem 2.1. Let the function f(z) given by (1.1) be in M s
a(α, β). Then the

integral operator

F (z) = c

1∫
0

ucf(uz) du ; (0 < u ≤ 1, c ∈ (0,∞))

is in M s
a(α, δ), where

δ =
1

α

{
(c+ n+ 1) (n− 1− αβ) + c (n− 1) (1− αβ)

(c+ n+ 1) (n− 1 + αβ) + c (1− αβ)

}
.

Proof. Let f(z) ∈M s
a(α, β). Then

F (z) = c

1∫
0

ucf(uz) du = c

1∫
0

{
uc−1

z
+

∞∑
n=1

anu
n+czn

}
du

=


[
uc

cz

]1
0

+

[ ∞∑
n=1

an
un+c+1

n+ c+ 1

]1
0

 =
1

z
+
∞∑
n=1

can
n+ c+ 1

zn.

It is sufficient to prove that
∞∑
n=1

(n− 1 + αδ)

(1− αδ)

(
c

n+ c+ 1

)
an ≤ 1, (2.1)

is satisfied if

(n− 1 + αδ)

(1− αδ)

(
c

n+ c+ 1

)
≤ (n− 1 + αβ)

(1− αβ)
.

Solving this inequality for δ we will get

δ =
1

α

{
(c+ n+ 1) (n− 1− αβ) + c (n− 1) (1− αβ)

(c+ n+ 1) (n− 1 + αβ) + c (1− αβ)

}
= F (n).

Hence

F (n+ 1)− F (n) =
1

α

[
c (1− αβ)

(c+ n− 1 + αβ) (c+ n+ αβ)

]
> 0,
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for every n, and this completes the proof. �

Theorem 2.2. Let the function f(z) given by (1.1) be in M s
a(α, β). Then

F (z) =
1

c

[
(c+ 1) f(z) + zf ′(z)

]
=

1

z
+

∞∑
n=1

c+ n+ 1

c
anz

n, c > 0,

is in M s
a(α, β) for |z| ≤ r(α, β, δ), where

r(α, β, δ) = inf
n

(
c (1− αδ) (n− 1 + αβ)

(1− αβ) (c+ n+ 1) (n− 1 + αδ)

)
, n = 1, 2, 3, ...

Proof. Let

w =

{
−z (Lsa(α, β)f(z))′

Lsa(α, β)f(z)

}
.

Then it is sufficient to prove that∣∣∣∣ w + 1

w − 1 + αβ

∣∣∣∣ ≤ 1. (2.2)

By simplifying inequality (2.2) we find this is satisfied if

∞∑
n=1

(n− 1 + αδ) (c+ n+ 1)

c (1− αβ)
an |z|n ≤ 1. (2.3)

Since f ∈M s
a(α, β), by using Theorem 1 of Abdullah [1], we get

∞∑
n=1

(n− 1 + αβ)

(1− αβ)
|an| ≤ 1.

Inequality (2.3) is satisfied if

∞∑
n=1

(n− 1 + αδ) (c+ n+ 1)

c (1− αβ)
|z|n ≤

∞∑
n=1

(n− 1 + αβ)

(1− αβ)
,

solving this inequality for |z|n we get

|z|n ≤ c (n− 1 + αβ) (1− αδ)
(1− αβ) (n− 1 + αδ) (c+ n+ 1)

,

then we have

|z| ≤ inf
n

{
c (n− 1 + αβ) (1− αδ)

(1− αβ) (n− 1 + αδ) (c+ n+ 1)

} 1
n

.

This completes the proof. �
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Theorem 2.3. Let the function fi(z) , (i = 1, 2, 3, ...,m) defined by

fi(z) =
1

z
+

∞∑
n=1

an,iz
n, (i = 1, 2, 3, ...,m, n ≥ 1) ,

be in class M s
a(α, β, ρ). Then the arithmetic mean of fi(z) , (i = 1, 2, 3, ...,m)

is defined by

h(z) =
1

m

m∑
i=1

fi(z),

is also in the class M s
a(α, β, ρ).

Proof. Since fi(z) ∈ M s
a(α, β, ρ), (i = 1, 2, 3, ...,m) , by using Theorem 2.3 of

Vijaya and Kasthuri [19] for p = 1, we have

∞∑
n=1

[dn + (1− αβ) ρn]

(
1

m

m∑
i=1

an,i

)
=

1

m

m∑
i=1

( ∞∑
n=1

[dn + (1− αβ) ρn] an,i

)

≤ 1

m

m∑
i=1

(1− αβ) ≤ (1− αβ) .

Which means that h(z) ∈M s
a(α, β, ρ). This completes the proof. �

Theorem 2.4. Let the function fj(z), (j = 1, 2) defined by

fj(z) =
1

z
+
∞∑
n=1

an,j z
n, (an,j ≥ 0, j = 1, 2) ,

be in class M s
a(α, β, ρ). Then the weighted mean of fj(z), (j = 1, 2) defined

by

Wc =
1

2
[(1− c) f1(z) + (1 + c) f2(z)] , (2.4)

is also in the class M s
a(α, β, ρ).

Proof. Since fj(z) = 1
z +

∞∑
n=1

an,jz
n is in the class M s

a(α, β, ρ) for (j = 1, 2),

by (2.4), we have

Wc =
1

z
+
∞∑
n=1

1

2
[(1− c) an,1 + (1 + c) an,2] z

n ≤ 1.

Using Theorem 2.3 of Vijaya and Kasthuri [19] for p = 1 we get

∞∑
n=1

[dn + (1− αβ) ρn]

(1− αβ)
|an,1| ≤ 1 (2.5)
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and
∞∑
n=1

[dn + (1− αβ) ρn]

(1− αβ)
|an,2| ≤ 1. (2.6)

Using (2.5) and (2.6) in (2.4), we have

Wc =
1

2
(1− c) (1− αβ) +

1

2
(1 + c) (1− αβ) ≤ (1− αβ). (2.7)

Therefore Wc ∈M s
a(α, β, ρ). This completes the proof. �
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