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Abstract. In this work, existence results for impulsive integro-differential inclusion by us-

ing Martelli and Covitz-Nadler fixed point theorems (FPT) has been studied and proposed

improvement for some of the results with the help of impulsive inequality. Also controllabil-

ity results has been investigated for impulsive integro-differential inclusion problems. This

study will provide useful insights for design problems in engineering leading to controllabil-

ity solutions of Integro differential equation subjected to impulsive perturbations taking into

consideration of nonlocal and delay conditions.

1. Introduction

Most of natural systems has evoloved through dynamic process subjected
to impulsive changes. These processes are modeled using integro differential
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equations with impulsive conditions and widely used in engineering design.
Although results on integro-differential inclusion with impulsive condition has
not been investigated completely. Control theory gives the motivation to study
integro-differential inclusions. For more details see [1], [2], [3], [6], [16], [17].

Moreover, multivalued map play important role in studying inclusions be-
cause these kind of maps look for more than one selections for the systems. The
dynamic processes which depends on multivalued states can be better modeled
using integro-differential inclusions [4], [5], [12]. Many authors studied exis-
tence results of impulsive integro-differential inclusions and their particular
cases. See [8], [9], [13], [14], [15].

Controllability has numerous applications in mathematics such as optimal
control, stabilizability and in many branches of technical and physical sciences
with help of various types of integro-differential equations. If dynamical system
is controllable then the output of the system will be proper that is the system
will have admissible controls from initial state to last state. Very little work
has been towards controllability of inclusion problems.

To study the existence, following impulsive inclusion problem is taken under
consideration,

w′(ξ) ∈ A1w(ξ) + F(ξ, wξ,

∫ ξ

0
k(ξ, η)h(η, wη)dη), ξ ∈ (0,T], ξ 6= Tl, l = 1(1)m,

(1.1)

w(ξ) + (g(wξ1 , · · · , wξp))(ξ) = φ(ξ), −r ≤ ξ ≤ 0, (1.2)

∆w(Tl) = Ilw(Tl), l = 1(1)m, (1.3)

where F : [0,T] × C × X → 2X is multivalued map. 0 < ξ1 < ξ2 < ... <
ξp ≤ T , p ∈ N, F : [0,T] × C × X → 2X is multivalued map. A1 is the
infinitesimal generator of strongly continuous semigroup of linear operators
{T (ξ)}ξ≥0 which are bounded. Linear operators Il(l = 1, 2, ...,m) acts on a
Banach space X. Let the real valued function k be continuous on [0,T]×[0,T],
φ ∈ C and the given functions f, h and g fullfill some assumptions. The
impulsive moments τl are such that 0 ≤ τ0 < τ1 < τ2 < ... < τl < τm+1 ≤ T,
m ∈ N, ∆w(τl) = w(τl + 0)−w(τl−0), where w(τl + 0) and w(τl−0) are right
and left limits of w at τl, respectively.

We prove controllability result of the problem:

w′(ξ) ∈ A1w(ξ) +Bx(ξ) + F(ξ, wξ,

∫ ξ

0
k(ξ, η)h(η, wη)dη),

ξ ∈ (0,T], ξ 6= Tl, l = 1(1)m, (1.4)

w(ξ) + (g(wξ1 , ..., wξp))(ξ) = φ(ξ), −r ≤ ξ ≤ 0, (1.5)

∆w(Tl) = Ilw(Tl), l = 1(1)m, (1.6)
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where B : Y → X is a continuous linear operator satisfying ‖B‖ ≤ N1, for
N1 > 0, Y is a Banach space with x(·) ∈ L2((0,T], Y ), x(·) is a control function,
and g is a completely continuous function.

In [8], Benchohra et al. studied the existence result of following first order
inclusion problem,

y′ ∈ F (ξ, y), ξ ∈ J/J ′,
y(ξ+k ) = Ik(y(ξ−k ), k = 1, ..,m,

y(0) = y0.

In [9], authors studied existence result of the following impulsive inclusion
model using fixed point theorem (FPT) for condensing map:

y′(ξ)−Au(ξ) ∈ F (t, yξ), a.e. ξ ∈ J = [0, b], ξ 6= ξk, k = 1, 2, ..,m,

∆yξ=tk) = Iky(t−k ), k = 1, 2, ...,m,

y(ξ) + (g(yξη1 , ..., yηp))(t) = φ(ξ), t ∈ [−r, 0].

The structure of the paper is organized as: Section 2 includes preliminaries,
hypotheses required to prove results. Sections 3 gives the existence results.
Controllability result is proved in Section 4.

2. Preliminaries

Let X be a Banach space with the norm ‖·‖. Let C = C([−r, 0], X), 0 < r <
∞, be the Banach space which contains all continuous functions φ : [−r, 0]→
X endowed with supremum norm ‖φ‖C = sup{‖φ(ξ)‖ : −r ≤ ξ ≤ 0} and
PC
[
[−r,T], X

]
= {w : [−r,T] → X|w(ξ) is piecewise continuous at ξ 6= τl,

left continuous at ξ = τl, and the right limit w(τl+0) exists for l = 1, 2, ...,m}.
PC
[
[−r,T], X

]
represents Banach space with the supremum norm ‖w‖PC =

sup{‖w(ξ)‖ : ξ ∈ [−r,T] \ {τ1, τ2, ..., τm}}. For any w ∈ PC
[
[−r,T], X

]
and

ξ ∈ [0,T] \ {τ1, τ2, ..., τm}, we denote wξ the element of C given by wξ(θ) =
w(ξ + θ) for θ ∈ [−r, 0] and φ is a given element of C. The existence of
constants K0 ≥ 1, D, L > 0 are assummed such that ‖T (ξ)‖ ≤ K0, ‖φ‖ ≤ D,
|k(ξ, η)| ≤ L.

(1) Let AC(E,X) be the space of all absolutely continuous functions w :
E → X, where E is any closed interval in R,

(2) L1(E,X) = {w : E → X : w is Bochner integrable},
(3) Assume (Z, d) is a metric space,
(4) Pcl(Z) = {Y ⊂ P(Z) : Y is closed},
(5) Pb(Z) = {Y ⊂ P(Z) : Y is bounded},
(6) Pcv(Z) = {Y ⊂ P(Z) : Y is convex},
(7) Pcp(Z) = {Y ⊂ P(Z) : Y is compact},
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(8) Pcp,cv(Z) = Pcp(Z) ∩ Pcv(Z).

Definition 2.1. A function w ∈ PC
(
[−r,T], X

)
∩ AC

(
(Tl, Tl+1), X

)
is said

to be a mild solution of the impulsive inclusion problem (1.1)-(1.3), if there
exists a function v ∈ L1((0,T], X) such that

v(ξ) ∈ F(ξ, wξ,

∫ ξ

0
k(ξ, η)h(η, wη)dη),

ξ ∈ (0,T], ξ 6= Tl, l = 1(1)m a.e. on (0,T] and satisfies the equation

w(ξ) = T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +

∫ ξ

0
T (ξ − η)v(η)dη

+
∑

0<Tl<ξ
T (ξ − Tl)Ilw(Tl).

Definition 2.2. For every φ ∈ C,w1 ∈ X, the system (1.4)-(1.6) is called
controllable on (0,T], if there exists a control x ∈ L2((0,T], X) such that the
mild solution w of (1.4)-(1.6) satisfies w(T) = w1 satisfying

w(ξ) = T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +

∫ ξ

0
T (ξ − η)v(η)dη

+

∫ ξ

0
T (ξ − η)Bx(η)dη +

∑
0<Tl<ξ

T (ξ − Tl)Ilw(Tl).

Theorem 2.3. (Martelli fixed point theorem [18]) Let X be a Banach space
and G : X → Pcp,cv(X) be an upper semi-continuous and condensing map. If
the set M = {y ∈ X : λy ∈ G(y), for some λ > 1} is bounded, then G has a
fixed point.

Lemma 2.4. ([7]) Let for t ≥ t0, the following inequality holds

u(t) ≤ a(t) +

t∫
t0

b(t, s)u(s)ds+

t∫
t0

(

s∫
t0

k(t, s, τ)u(τ)dτ)ds+
∑

t0<τk<t

βk(t)u(tk)

where, u, a ∈ PC([t0,∞),R+), a is nondecreasing, b(t, s) and k(t, s, τ) are
continuous and non-negative functions for t, s, τ ≥ t0 and are nondecreasing
with respect to t, βk(t)(k ∈ N) are nondecreasing for t ≥ t0. Then for t ≥ t0
the following inequality hold:

u(t) ≤ a(t)
∏

t0<τk<t

(1 + βk(t))exp(

t∫
t0

b(t, s)ds) +

t∫
t0

s∫
t0

k(t, s, τ)dτ)ds.
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Theorem 2.5. (Closed Graph Theorem [19]) Let X be a Banach space, F :
J ×X → Pcp,c(X) be an L1 Caratheodary multivalued map with

SF (y) = {g ∈ L1(J,X) : g(ξ) ∈ F (t, y(t)) for a.e. ξ ∈ J = [0,T]} 6= φ

and Γ be a linear continuous mapping from L1(J,X) to C(J,X). Then the
operator

Γ ◦ SF : C(J,X)→ Ppc,c(C(J,X))

y → (Γ ◦ SF )(y) = Γ(S(F (y)))

is a closed graph operator in C(J,X)× C(J,X).

Theorem 2.6. (Covitz and Nadler [11]) Let (X,d) be a complete metric space.
If G : X → Pcl(X) is a contraction, then G has a fixed point in X.

2.1. Hypotheses:

(H1) Let F : [0,T] × C × X → Pb,cp,cv(X) be a measurable function with
respect to ξ for each w ∈ X, upper semi-continuous with respect to w
and the set SF ,w is nonempty.

(H2) Let f : [0,T] × C × X → X and h : [0,T] × C → X be continuous
functions. There exists continuous nondecreasing functions p and q :
[0,T]→ R+ such that

‖f(ξ, ψ,w)‖ ≤ p(ξ)(‖ψ‖C + ‖w‖),
‖h(ξ, ψ)‖ ≤ q(ξ)(‖ψ‖C),

for all ξ ∈ [0,T], ψ ∈ C and w ∈ X, f ∈ F(ξ, wξ,
∫ ξ
0 k(ξ, η)h(η, wη)dη).

(H3) For every positive integer l, there exist functions hl ∈ L1[(0,T],R+]
satisfying

sup
‖ψ‖C ,‖u‖≤l

‖f(ξ, ψ, u)‖ ≤ hl(ξ), a.e. ξ ∈ (0,T],

where f ∈ F(ξ, wξ,
∫ ξ
0 k(ξ, η)h(η, wη)dη).

(H4) For g : Cp → C, there exists a constant G ≥ 0 such that

max
ξ∈[−r,0]

‖ g(wξ1 , wξ2 , ..., wξp) ‖≤ G.

(H5) Let Il : X → X be functions which grantees the existence of constants
Ll satisfying

‖Il(w)‖ ≤ Ll‖w‖, w ∈ X, l = 1, 2, ...,m.
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(H6) The operator W : L2((0,T], Y )→ X is linear and defined as

Wx =

∫ T

0
T (T− η)Bx(η)dη

has an inverse bounded operator W−1 in L2((0,T],Y )
kerW . Then there exist

positive constants N1, N2 satisfying ‖B‖ ≤ N1, ‖W−1‖ ≤ N2.

(H
′
1) There exists a constant G

′
which satisfies

‖(g(wξ1 , ..., wξp))(0)− (g(w̄ξ1 , ..., w̄ξp))(0)‖ ≤ G′‖wξp − w̄ξp‖.

(H
′
2) F : [0,T]×C ×X → Pcp,cv(X) is measurable and for l̄ ∈ L1[(0,T],R],

it satisfies

Hd(F(w),F(w)) ≤ l̄(ξ)‖w − w̄‖, for each w, w̄ ∈ PC([−r,T], X).

(H
′
3) Let h : [0,T] × C → X be a continuous function. Then there exists a

positive constants p∗ such that

‖h(η, w)− h(η, v)‖ ≤ p∗‖w − v‖.

3. Existence results

Theorem 3.1. Assume the hypotheses (H1)-(H5) hold. Then the impulsive
inclusion problem (1.1)-(1.3) has at least one mild solution w on [−r, T ].

Proof. Since the proof of Theorem 3.1 goes on similar line with Theorem 4.1,
we will give the proof in Theorem 4.1. �

Theorem 3.2. Assume the hypotheses (H
′
1)-(H

′
3), (H4), (H5) hold and the fol-

lowing condition satisfied(
K0(G

′ + l∗∗(1 + Lp∗) +
∑

0<Tl<ξ
Ll)

)
< 1.

Then the impulsive inclusion problem (1.1)-(1.3) has at least one mild solution.

Proof. Consider the multivalued operator

F : PC([−r,T], X)→ P(PC([−r,T], X)),
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where,

F (w) = m ∈ PC([−r,T], X) :

m(ξ) =


φ(ξ)− (g(wξ1 , ..., wξp))(ξ), ξ ∈ [−r, 0];

T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +
∫ ξ
0 T (ξ − η)v(η)dη

+
∑

0<Tl<ξ
T (ξ − Tl)Ilw(Tl), ξ ∈ (0,T].

where v ∈ SF ,w,

SF ,w

= {w ∈ L1((0,T], X) : v(ξ) ∈ F(ξ, wξ,

∫ ξ

0
k(ξ, η)h(η, wη)dη) for a.e. ξ ∈ (0,T]}.

Set

∆ = {w ∈ PC([−r,T], X) : w(ξ) = φ(ξ)− (g(wξ1 , ..., wξp))(ξ), ∀ ξ ∈ [−r, 0]}.

Let us consider that the multivalued operator F : ∆ → P(∆) is defined as
above. We prove that F satisfies the Covitz-Nadler fixed point theorem (see
Theorem 2.6).

Step I: F (w) ∈ Pcl(∆), for each w ∈ PC([−r,T], X).
Let {wn}n≥0 ∈ F (w) be such that wn → w in PC([−r,T], X). For every

ξ ∈ (0,T] there exists vn ∈ SF ,w satisfying

wn(ξ) = T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +

∫ ξ

0
T (ξ − η)vn(η)dη

+
∑

0<Tl<ξ
T (ξ − Tl)Ilwn(Tl), i = 1, 2.

Since F has compact values and {vn} converges to v in L1((0,T], X), v ∈ SF ,w.
Then for each ξ ∈ (0,T], wn(ξ)→ w(ξ)

w(ξ) = T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +

∫ ξ

0
T (ξ − η)v(η)dη

+
∑

0<Tl<ξ
T (ξ − Tl)Ilw(Tl), i = 1, 2.

It means that w ∈ F (w).

Step II: There exists δ < 1 such that

Hd(F (w), F (w)) ≤ δ‖w − w̄‖, w, w̄ ∈ PC([−r,T], X).
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Let w, w̄ ∈ PC([−r,T], X) and m ∈ F (w). Then there exists v ∈ SF ,w such
that for each ξ ∈ (0,T], we get,

m(ξ) = T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +

∫ ξ

0
T (ξ − η)v(η)dη

+
∑

0<Tl<ξ
T (ξ − Tl)Ilw(Tl), i = 1, 2.

By using conditions (H
′
2) and (H

′
3), we have

Hd
(
F
(
ξ, wξ,

∫ ξ

0
k(ξ, η)h(η, wη)dη),F(ξ, w̄ξ,

∫ ξ

0
k(ξ, η)h(η, w̄η)dη

))
≤ l̄(ξ)

[
‖wξ − w̄ξ‖+ Lp∗‖wη − w̄η‖

]
,

hence there is y ∈ F(ξ, w̄ξ,
∫ ξ
0 k(ξ, η)h(η, w̄η)dη) such that

‖v(ξ)− y‖ ≤ l̄(ξ)
[
‖wξ − w̄ξ‖+ Lp∗‖wη − w̄η‖

]
.

Consider, the map σ : (0,T]→ P(X) given by

σ(ξ) =

{
y ∈ X : ‖v(ξ)− y‖ ≤ l̄(ξ)[‖wξ − w̄ξ‖+ Lp∗‖wη − w̄η‖]

}
.

As the multivalued operator V (ξ) = σ(ξ) ∩ F(ξ, wξ,
∫ ξ
0 k(ξ, η)h(η, wη)dη) is

measurable, there exists a function ξ → v̄(ξ), is measurable choice for V . So
we have

v̄(ξ) ∈ F(ξ, wξ,

∫ ξ

0
k(ξ, η)h(η, wη)dη),

therefore

‖v(ξ)− v̄(ξ)‖ ≤ l̄(ξ)
(
‖wξ − w̄ξ‖+ Lp∗‖wη − w̄η‖

)
.

We define,

m̄(ξ) = T (ξ)[φ(0)− (g(w̄ξ1 , ..., w̄ξp))(0)] +

∫ ξ

0
T (ξ − η)v̄(η)dη

+
∑

0<Tl<ξ
T (ξ − Tl)Ilw̄(Tl), i = 1, 2.
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Then we have

‖m(ξ)− m̄(ξ)‖ ≤ K0‖g(wξ1 , ..., wξp)− g(w̄ξ1 , ..., w̄ξp)‖

+K0

∫ ξ

0
‖v(η)− v̄(η)‖dη +

∑
0<Tl<ξ

K0Ll‖w(Tl)− w̄(Tl)‖

≤ K0G
′‖wξp − w̄ξp‖

+K0

∫ ξ

0
l̄(η)[‖wξ − w̄ξ‖+ Lp∗‖wη − w̄η‖]dη

+
∑

0<Tl<ξ
K0Ll‖w(Tl)− w̄(Tl)‖

≤ K0G
′‖w − w̄‖PC +K0

∫ T

0
l̄(η)‖w − w̄‖PC

+K0

∫ T

0
l̄(η)Lp∗‖wη − w̄η‖PC ]dη

+
∑

0<Tl<ξ
K0Ll‖w(Tl)− w̄(Tl)‖

≤ [K0G
′
+K0l

∗∗ +K0Lp
∗l∗∗ +

∑
0<Tl<ξ

K0Ll]‖w − w̄‖PC

≤ [K0(G
′
+K0l

∗∗ + Lp∗l∗∗ +
∑

0<Tl<ξ
Ll)]‖w − w̄‖PC ,

where, l∗∗ =
∫ T
0 l̄(η)dη.

Now by exchanging the roles of the w and w̄, we get

Hd(F (w), F (w)) ≤
[
K0(G

′
+Kl∗∗ + Lp∗l∗∗ +

∑
0<Tl<ξ

Ll)

]
‖w − w̄‖PC ,

where ‖w− w̄‖PC = sup{‖w− w̄‖, w ∈ [−r,T]}. Therefore F is a contraction.
By Covitz-Nadler fixed point theorem, F has a fixed point w, which is a mild
solution of the impulsive inclusion problem (1.1)-(1.3). �

4. Controllability result

Theorem 4.1. Suppose that the hypotheses (H1)-(H6) hold. Then the impul-
sive inclusion problem (1.4)-(1.6) is controllable on [−r, T ].

Proof. For any w1 ∈ X, define control function x(ξ) as
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x(ξ) = W−1
{
w1 − T (ξ)

[
(φ(0)− (g(wξ1 , ..., wξp)))(0)]

−
∫ ξ

0
T (ξ − η)v(η)dη −

∑
0<Tl<ξ

T (ξ − Tl)Ilw(Tl)
]}
.

Define the multivalued operator F : PC([−r,T], X) → P(PC([−r,T], X)),
such that

F (w) = m ∈ PC([−r,T], X) :

m(ξ) =


φ(ξ)− (g(wξ1 , ..., wξp))(ξ), ξ ∈ [−r, 0];

T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +
∫ ξ
0 T (ξ − η)v(η)dη

+
∫ ξ
0 T (ξ − η)Bx(η)dη +

∑
0<Tl<ξ

T (ξ − Tl)Ilw(Tl), ξ ∈ (0,T].

where v ∈ SF ,w,
SF ,w

= {w ∈ L1((0,T], X) : v(ξ) ∈ F(ξ, wξ,

∫ ξ

0
k(ξ, η)h(η, wη)dη) for a.e. ξ ∈ (0,T]}.

We prove that F satisfies the assumptions of Martelli’s fixed point theorem
(see Theorem 2.3).

Step I: We prove that F (w) is convex, for each w ∈ PC([−r,T], X) .

If m1 and m2 ∈ F (w), then there exist v1, v2 ∈ SF ,w such that for ξ ∈ (0,T],
we have

mi(ξ) = T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +

∫ ξ

0
T (ξ − η)vi(η)dη

+

∫ ξ

0
T (ξ − η)Bxi(η)dη +

∑
0<Tl<ξ

T (ξ − Tl)Ilw(Tl), i = 1, 2.

For 0 ≤ λ ≤ 1, we get,

(λm1 + (1− λ)m2)(ξ)

= T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +

∫ ξ

0
T (ξ − η)[λv1(η) + (1− λ)v2(η)]dη

+

∫ ξ

0
T (ξ−η)[λBx1(η)+(1−λ)Bx2(η)]dη+

∑
0<Tl<ξ

T (ξ−Tl)Ilw(Tl), i = 1, 2.

Since SF ,w is convex, λm1 + (1− λ)m2 ∈ SF ,w. Therefore, λm1 + (1− λ)m2 ∈
F (w).

Step II: F is a map from bounded sets into bounded sets in PC([−r,T], X).
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Define Bq = {y ∈ PC([−r,T], X) : ‖w‖ ≤ q, w ∈ X}. Then for any positive
constant q̄, we show that

‖F (w)‖ = sup{‖m‖ : m ∈ F (w)} ≤ q̄.
Let w ∈ Bq and m ∈ F (w). Then there exists a v ∈ SF ,w such that

m(ξ) = T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +

∫ ξ

0
T (ξ − η)v(η)dη

+

∫ ξ

0
T (ξ − η)Bx(η)dη +

∑
0<Tl<ξ

T (ξ − Tl)Ilw(Tl).

Therefore, by using hypotheses (H1]), (H3), (H4), (H5) and (H6), we get,

‖m(ξ)‖ ≤ K0(D +G) +K0

∫ T

0
hl(η)dη

+K0

∫ T

0
‖Bx(η)‖dη + Ll

∑
0<Tl<ξ

‖w(Tl)‖

≤ K0(D +G+N1T) +K0‖hl(η)‖L1 + Ll
∑

0<Tl<ξ
‖w(Tl)‖.

Then for each m ∈ F (Bq), we obtain,

‖F (w)‖ ≤ K0(D +G+N1T) +K0‖hl(η)‖L1 + Ll
∑

0<Tl<ξ
‖w(Tl)‖ := q̄.

Step-III: F maps from bounded sets into equicontinuous sets of PC([−r,T], X).
Let ξ1, ξ2 ∈ (0,T] \ {Tl, T2, ..., Tl}, ξ1 < ξ2. Let Bq be a bounded set of

PC([−r,T], X). Let w ∈ Bq, m ∈ F (w) and v ∈ SF ,w be such that

‖m(ξ2)−m(ξ1)‖ ≤ ‖T (ξ2)− T (ξ1)‖[‖φ(0) + ‖g(wξ1 , ..., wξp)‖]

+

∫ ξ2

0
‖T (ξ2 − η)− T (ξ1 − η)‖hl(η)(η)dη

+

∫ ξ2

ξ1

‖T (ξ1 − η)‖hl(η)(η)dη

+

∫ ξ2

0
‖T (ξ2 − η)− T (ξ1 − η)‖‖Bx(η)‖dη

+

∫ ξ2

ξ1

‖T (ξ1 − η)‖‖Bx(η)‖dη
∑

0<Tl<ξ2−ξ1

Ll‖w(Tl)‖

+
∑

0<Tl<ξ1

‖T (ξ2 − Tl)− T (ξ1 − Tl)‖Ll‖w(Tl)‖.
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Since ξ2 → ξ1 and ε is arbitrary small, ‖m(ξ2) −m(ξ1)‖ → 0, since strongly
continuous operators T (ξ) are compact implies the continuity in uniform op-
erator topology. This is the proof of equicontinuity for the intervals where
ξ 6= Tl, l = 1 to m. Equicontinuities for the cases ξ1 < ξ2 ≤ 0 and ξ1 ≤ 0 ≤ ξ2
are obvious. So by Arzela-Ascoli theorem, the operator F : PC([−r,T], X)→
P(PC([−r,T], X)) is completely continuous multivalued map and hence it
proves F is a condensing operator.

Step IV: F has a closed graph.
Let wn → w∗, mn ∈ F (wn) and mn → m∗. We prove that m∗ ∈ F (w∗).

For mn ∈ F (wn) there exist vn ∈ SF ,wn such that for each ξ ∈ (0,T]

mn(ξ) = T (ξ)[φ(0)− (g(wn)ξ1 , ..., (wn)ξp)(0)] +

∫ ξ

0
T (ξ − η)vn(η)dη

+

∫ ξ

0
T (ξ − η)Bxn(η)dη +

∑
0<Tl<ξ

T (ξ − Tl)Ilwn(Tl).

Now we prove the existence of v∗ ∈ SF ,w∗ such that

m∗(ξ) = T (ξ)[φ(0)− (g(w∗)ξ1 , ..., (w∗)ξp)(0)] +

∫ ξ

0
T (ξ − η)v∗(η)dη

+

∫ ξ

0
T (ξ − η)Bx∗(η)dη +

∑
0<Tl<ξ

T (ξ − Tl)Ilw∗(Tl).

Since Il, l = 1(1)m are continuous and g is completely continuous, we get,∥∥∥∥(mn(ξ)− T (ξ)[φ(0)− (g(wn)ξ1 , ..., (wn)ξp)(0)]−
∫ ξ

0
T (ξ − η)Bxn(η)dη

−
∑

0<Tl<ξ
T (ξ − Tl)Ilwn(Tl)

)

−
(
m∗(ξ)− T (ξ)[φ(0)− (g(w∗)ξ1 , ..., (w∗)ξp)(0)]−

∫ ξ

0
T (ξ − η)Bx∗(η)dη

−
∑

0<Tl<ξ
T (ξ − Tl)Ilw∗(Tl)

)∥∥∥∥
→ 0 as n→∞.

Consider, Γ : L1((0,T], X)→ C((0,T], X), a linear continuous operator and

v → Γ(v)(ξ) =
∫ ξ
0 T (ξ − η)v(η)dη.
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From Theorem 2.5, Γ ◦SF(w) is closed graph operator. Furthermore, we have,

mn(ξ)− T (ξ)[φ(0)− (g(wn)ξ1 , ..., (wn)ξp)(0)]−
∫ ξ

0
T (ξ − η)Bxn(η)dη

−
∑

0<Tl<ξ
T (ξ − Tl)Ilwn(Tl) ∈ Γ(SF(wn)).

Since wn → w∗, by using closed graph lemma, we get

m∗(ξ)− T (ξ)[φ(0)− (g(w∗)ξ1 , ..., (w∗)ξp)(0)]−
∫ ξ

0
T (ξ − η)Bx∗(η)dη

−
∑

0<Tl<ξ
T (ξ − Tl)Ilw∗(Tl) =

∫ ξ

0
T (ξ − η)v∗(η)dη,

for some v∗ ∈ SF(w∗).
Step V: We now prove the set

M := {w ∈ PC([−r,T], X) : λw ∈ F (w), for someλ > 1}
is bounded.

Let w ∈M. Then λw ∈ F (w), for some λ > 1 and for each ξ ∈ (0,T]

w(ξ) = λ−1
[
T (ξ)[φ(0)− (g(wξ1 , ..., wξp))(0)] +

∫ ξ

0
T (ξ − η)v(η)dη

+

∫ ξ

0
T (ξ − η)Bx(η)dη +

∑
0<Tl<ξ

T (ξ − Tl)Ilw(Tl)
]
.

Since v(ξ) ∈ F(ξ, wξ,
∫ ξ
0 k(ξ, η)h(η, wη)dη), by using the hypotheses (H2),

(H4), (H5), we obtain that,

‖w(ξ)‖ ≤ K0λ
−1(D +G+N1T) +

∫ ξ

0
λ−1K0p(η)[‖wη‖

+

∫ η

0
Lq(T )(‖wT ‖)‖dT ]dη +

∑
0<Tl<ξ

K0Llλ
−1‖w(Tl)‖.

In [15], Authors obtained bound for ‖w(ξ)‖ and ‖w(ξ)‖ ≤ Q, for some
constant Q using impulsive inequality given in Lemma 2.4. Therefore M is
bounded. By Martelli’s fixed point theorem, F has a fixed point. Hence the
impulsive inclusion problem (1.4)-(1.6) is controllable. �

5. Conclusion

Existence and Controllability of solutions of impulsive integro-differential
inclusions have been proved successfully with the aid of Martelli and Covitz-
Nadler fixed point theorems. We have improved the results using impulsive
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inequality and nonlocal condition which is more precise than usual initial con-
dition. Further it can be extended these results for fractional, mixed impulsive
integro-differential equations which has wide applicability in Engineering and
Biology.
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