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1. Introduction

Integral equations are extensively employed in an optimum theory of control
queuing, radiative transfer, engineering, biology, mechanics, economics and
mathematical physics (see, e.g., [7, 9, 10, 15, 16, 17] and the references therein).
The augmentation of techniques of measures of noncompactness (due to Darbo
[11]) opened a new direction of research to study the solvability of non-linear
integral equations. Recently, many researchers worked on the generalizations
of the Darbo′s fixed point theorem and its applicability in solving various
classes of integral equations that are based on the techniques of measure of
non-compactness (see, e.g., [2, 6, 14, 18, 19, 21]).

Inspired by the above findings, in this article, we first describe ξµ-β, ξµ-β-ψ
condensing operators and to prove related fixed point theorems. In addition,
it was used to examine the solvability of the following non-linear quadratic
Volterra-Stieltjes integral equation:

u(l) =π1(l, u(a1(l)), ..., u(am(l))) + π2(l, u(b1(l)), ..., u(bn(l)))

×
∫ φ(l)

0
g(l, τ, u(c1(l)), ..., u(cp(l)))dτK(φ(l), φ(τ)),

(1.1)

where l ∈ R+ and the integral equation (1.1) is considered in BC(R+). The
functions ar(1 ≤ r ≤ m), bt(1 ≤ t ≤ n), cs(1 ≤ s ≤ p), πi (i = 1, 2), φ and
K(l, τ) defined on their respective domains and verifies the assumptions given
in Section 4. The concept of measure of non-compactness is adopted in this
paper and allows us not merely to look at the existence of a solution of the
mentioned integral equation but also characterize the asymptotic stability of
the solution.

The remainder of the paper was made up in the following way. In Sec-
tion 2, we contribute some definitions and essential theorems related to non-
compactness measures. Section 3, includes new generalizations of the Darbo′s
fixed point theorem and its consequences. Section 4, deals with the resolv-
ability of the integral equation (1.1) by using the obtained result in Section 3.
Finally, an illustrative example with some numerical estimations is provided.

2. Background

In this paper, X denotes the Banach space with the norm ‖.‖ and the
zero element by θ. The closed ball centred at x with radius r is denoted by
B(x, r). An Algebraic operation on the sets is denoted by λU and U + V .
Next, the closure of a set U is denoted by the symbol U and coU, coU denotes
the convex hull and closed convex hull of U , respectively. The family of all
bounded subsets of the spaceX is denoted by MX whereas NX is the subfamily
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comprising all pre-compact subsets of X. Finally, for the sake of writing
assume that Λ denote the class of nonempty, bounded, closed and convex
subsets a Banach space X, and I.E. used to denote integral equation and
MNC stands for a measure of noncompactness.

First of all, we recall the axiomatic concept of a measure of non-compactness.

Definition 2.1. ([8]) Let a function µ : MX −→ R+ is called a measure of
noncompactness if satisfies the following axioms:

(i) The family kerµ = {U ∈ MX : µ(X) = 0} is a nonempty set and
kerµ ⊆ NX ;

(ii) U ⊂ V =⇒ µ(U) ≤ µ(V );
(iii) µ(U) = µ(U);
(iv) µ(coU) = µ(U);
(v) µ(λU + (1− λ))V ≤ λµ(U) + (1− λ)µ(V ), for all λ ∈ [0, 1];

(vi) If Un ∈ MX for n = 1, 2, · · · is decreasing sequence of closed subsets
of X and limn→∞ µ(Un) = 0 then U∞ :=

⋂∞
n=1 Un is nonempty.

The family defined in axiom (i) is called the kernel of the measure of non-
compactness µ and denoted by kerµ. In fact, by the virtue of axiom (vi) we
have µ(U∞) ≤ µ(Un) for any n, thus µ(U∞) = 0. This yields that U∞ ∈ kerµ.

Theorem 2.2. (Schauder′s fixed point theorem [20]) Let Ω be the member of
the family Λ. If P is a continuous and compact mapping on Ω, then P has at
least one fixed point in Ω.

Definition 2.3. (µ-Condensing operator) Let Ω be the member of the family
Λ and P be a self-mapping defined on Ω. A mapping P is said to be a µ-
condensing if

µ(P (A)) ≤ λµ(A)

for some λ ∈ [0, 1) and every nonempty subset A of Ω.

Now, the Darbo′s fixed point theorem concerning the measure of non-
compactness can be described as follows.

Theorem 2.4. (Darbo′s fixed point theorem [11]) Let Ω be the member of
the family Λ and P be a continuous self-mapping defined on Ω. If P is µ-
condensing, then P has at least one fixed point in Ω.

Definition 2.5. ([12]) Let Υ denote the class of those functions β : R+ → [0, 1)
which satisfies the condition β(tn)→ 1 implies tn → 0.
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Definition 2.6. ([19]) Let P be a self-mapping on X and ξ : 2X → [0,+∞).
Then P is said to be ξµ-admissible if

ξ(E) ≥ 1 =⇒ ξ(coP (E)) ≥ 1,

for every E ∈ 2X .

Example 2.7. Let P : BC(R+)→ BC(R+) and there exist ξ : 2BC(R+) → R+

such that
Pu(s) = 2u(s) and ξ(E) = diam(E),

for every u ∈ BC(R+) and E ⊂ BC(R+). Then P is a ξµ-admissible operator.

Example 2.8. Let P : BC(R+)→ BC(R+) and there exist ξ : 2BC(R+) → R+

such that
Pu(s) = eu(s) and ξ(E) = sup{‖u‖ : u ∈ E},

for every u ∈ BC(R+), E ⊂ BC(R+). Then P is a ξµ-admissible operator.

3. Main results

In this section, we provide ξµ-β and ξµ-β-ψ condensing operators and prove
their corresponding fixed point theorems.

Definition 3.1. Let X be a Banach space and P be a self-mapping defined on
X. Then P is said to be a ξµ-β condensing operator if there exist a function
ξ : 2X → [0,+∞) and β ∈ Υ such that

ξ(A)µ(P (A)) ≤ β(µ(A))µ(A) (3.1)

for any bounded set A ∈ 2X .

Theorem 3.2. Let Ω be the member of a class Λ and P be a continuous self-
mapping defined on Ω. Moreover, if P is ξµ-admissible and ξµ-β condensing
operator satisfying the following condition:

(C) there exist closed and convex A0 ⊆ Ω such that

P (A0) ⊆ A0, ξ(A0) ≥ 1, (3.2)

where µ is an arbitrary measure of noncompactness.

Then, P has at least one fixed point in Ω.

Proof. Consider the sequence of the sets {An} defined by

An = co(PAn−1), n = 1, 2, · · · .
Since PA0 ⊆ A0, we have

A1 = co(PA0) ⊆ A0
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and
A2 = co(PA1) ⊆ co(PA0) = A1.

Continuing in this way, we obtain

A0 ⊇ A1 ⊇ A2 ⊇ · · ·An ⊇ An+1 ⊇ · · ·
and also

PAn ⊆ PAn−1 ⊆ co(PAn−1) = An.

If there exists a non-negative integer k such that µ(Ak) = 0, then Ak is pre-
compact set and PAk ⊆ Ak. Thus from Theorem 2.2, we can say that P has
at least one fixed point. If µ(Ak) 6= 0 for all k ∈ N. Since P is a ξµ-admissible
operator, we have

ξ(A1) = ξ(coPA0) ≥ 1.

After some finite number of iteration, we get

ξ(An) ≥ 1, ∀n ≥ 0. (3.3)

Now, since P is a ξµ-β condensing operator, from (3.3), we have

µ(An+1) ≤ ξ(An)µ(An+1)

= ξ(An)µ
(
co(PAn)

)
= ξ(An)µ(PAn)

≤ β(µ(An))µ(An)

≤ µ(An),

(3.4)

which implies that µ(An) is a non-increasing sequence of positive real numbers,
thus there is r ≥ 0 so that µ(An)→ r as n→∞. We claim that r = 0, assume
the contradiction that r 6= 0. Then from (3.4) we have

µ(An+1)

µ(An)
≤ β(µ(An)) < 1, (3.5)

which yields
β(µ(An))→ 1 as n→∞.

Since β ∈ Υ , µ(An) → 0 as n → ∞. Since An+1 ⊆ An from the fact that
PAn ⊆ An for all n ≥ 1. From the above discussion we conclude that {An} is
a nested sequence of sets, on the base of Definition 2.1(axiom vi), we conclude
that A∞ =

⋂∞
n=1An is a nonempty, closed, convex, and compact subset of the

set A0. Finally from Theorem 2.2, we get the desired result. �

Next, we have some definitions in order to prove next results.

Definition 3.3. ([3]) Let Ψ be a family of functions % : [0,∞) → [0,∞)
satisfying the following condition:

(i) % is a non-decreasing function.
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(ii) for all s > 0, lim
n→∞

%n(s) = 0 where %n(s) is n-th iterate of %.

Definition 3.4. Let X be a Banach space and P be a self-mapping defined
on X. Then P is said to be a ξµ-β-ψ-condensing operator if there exists
ξ : 2X → [0,+∞), β ∈ Υ and ψ ∈ Ψ such that

ξ(A)ψ
(
µ(PA)

)
≤ β

(
ψ(µ(A))

)
ψ(µ(A)) (3.6)

for any bounded subset A of Ω.

Theorem 3.5. Let Ω be a member of a class Λ and P be a continuous self-
mapping defined on Ω. Further, if P is a ξµ-admissible and ξµ-β-ψ-condensing
operator satisfying the following condition:

(C) there exists aclosed and convex subset A0 of Ω such that

PA0 ⊆ A0 and ξ(A0) ≥ 1, (3.7)

where µ is an arbitrary measure of noncompactness.

then P has at least one fixed point in Ω.

Proof. Consider the sequence of the sets {An} defined by

An = co(PAn−1) for n = 1, 2, · · · .

Since PA0 ⊆ A0, it implies that

A1 = co(PA0) ⊆ A0

and

A2 = co(PA1) ⊆ co(PA0) = A1.

Continuing in this process we get

A0 ⊇ A1 ⊇ A2 ⊇ · · ·An ⊇ An+1 ⊇ · · ·

and

PAn ⊆ PAn−1 ⊆ co(PAn−1) = An.

If there exists a non-negative integer k such that µ(Xk) = 0, then Ak is pre-
compact set and PAk ⊆ Ak. Thus, from Theorem 2.2, P has at least one fixed
point.

On the other hand, if µ(Ak) 6= 0 for all n then µ(Ak) ≥ 0 for k ∈ N. Since
P is ξµ-admissible operator, from (3.7), we obtain

ξ(A0) = ξ(coTA0) ≥ 1.

Recursively, we have following inequality

ξ(An) ≥ 1, ∀ n ≥ 0. (3.8)
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Now, since P is ξµ-β-ψ condensing operator, from (3.8) we have

ψ(µ(An+1)) ≤ ξ(An)ψ(µ(An+1))

= ξ(An)ψ
(
µ(co(PAn))

)
= ξ(An)ψ

(
µ(PAn)

)
≤ β

(
ψ(µ(An))

)
ψ
(
µ(An)

)
≤ ψ

(
µ(An)

)
, ∀n ∈ N.

(3.9)

As we know that ψ is a non-decreasing function, then µ(An+1) ≤ µ(An) for
all n ∈ N, which implies that µ(An) is a decreasing sequence of positive real
numbers. Thus, there is r ≥ 0 such that µ(An) → r as n → ∞. Hence, we
claim that r = 0, assume the contradiction that r 6= 0, so from (3.9) we can
write

ψ(µ(An+1))

ψ(µ(An))
≤ β(ψ(µ(An))) < 1, (3.10)

which yields

β(ψ(µ(An)))→ 1 as n→∞.
Since, β ∈ Υ we get ψ

(
µ(An)

)
→ 0 as n→∞, also ψ ∈ Γ, therefore µ(An)→ 0

as n → ∞, and we assured that r = 0. Since PAn ⊆ An for all n ≥ 1,
An+1 ⊆ An. Hence, we conclude that {An} sequence is nested of sets, on the
basis of Definition 2.1(axiom vi), we derive that A∞ =

⋂∞
n=1An is a nonempty,

closed and convex subset of the set A0. Finally, from Theorem 2.2, we get the
desired result. �

3.1. Consequences. In this section, we illustrate the existing results from
the literature [2, 11, 19] which certainly conclude from our main results of
Section 3.

Corollary 3.6. Let Ω be a member of a class Λ and P be a continuous self-
mapping defined on Ω. If there exist ξ : 2Ω → [0,+∞) such that P is a
ξµ-admissible operator satisfying the followings conditions:

• for any A ⊂ Ω we have

ξ(A)µ(PA) ≤ ψ(µ(A)), (3.11)

• there exists closed and convex A0 ⊂ Ω such that

PA0 ⊆ A0, ξ(A0) ≥ 1, (3.12)

where µ is an arbitrary measure of noncompactness and ψ : [0,∞) →
[0,∞) is non-decreasing function such that lim

n→∞
ψn(s) = 0 for all s > 0,

then P has at least one fixed point in Ω.



776 V. Nikam, D. Gopal, H. U. Rehman and T. Bantaojai

Proof. Let us define the function

β(s) =


1
2 if s = 0,
ψ(s)
s if 0 < s ≤ µ(Ω),

ψ(µ(Ω))
s if s > µ(Ω).

We need to show that β ∈ Υ, suppose that β(rn)→ 1, implies that {rn} must
be bounded (otherwise, β(rn) → 0) and so has a convergent subsequence say
rnk . Furthermore, suppose that rnk → r0 and since ψ is upper semi-continuous
we get

r0 = lim
k→∞

rnk = lim sup
k→∞

ψ(rnk) ≤ ψ(r0).

Since ψ(t) < t for t > 0, this implies that r0 = 0. So we get rnk → 0, also
rn → 0. It follows that β ∈ Υ and on the other hand form (3.11) we get

ξ(A)µ(PA) ≤ ψ(µ(A)) = β(µ(A))µ(A).

By Theorem 3.2, we get the desired result. �

Corollary 3.7. Let Ω be a member of a class Λ and P be a continuous self-
mapping defined on Ω satisfying

µ(TA) ≤ β (µ (A))µ(A)

for any subset A of Ω, where µ is an arbitrary measure of noncompactness
and β ∈ Υ . Then P has at least one fixed point in Ω.

Proof. Let us substitute ξ(A) = 1 in Theorem 3.2, we get the desired result.
�

Corollary 3.8. Let Ω be a member of a class Λ and P be a continuous self-
mapping defined on Ω satisfying

µ(TA) ≤ λµ(A)

for any subset A of Ω, where µ is an arbitrary measure of noncompactness
and λ ∈ [0, 1). Then P has at least one fixed point in Ω.

Proof. Let us assume that ξ(A) = 1 and β(t) = λ with λ ∈ [0, 1) in Theorem
3.2, we get the desired result. �

4. Application

In this section, we apply Theorem 3.2 to prove the solvability of nonlin-
ear quadratic Volterra-Stieltjes integral equation (1.1). The integral equation
defined on the Banach space BC(R+) equipped with the norm

||u|| = sup {|u(l)| : l ≥ 0} .
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Let us recall the definition of a measure of noncompactness which is introduced
in the paper of Banas [4], will be used throughout the this section. Consider
an X 6= φ subset of BC(R+) and M be a positive number. For u ∈ X and
ε > 0, the modulus of continuity is defined on interval [0,M ] as follows:

ωM (u, ε) = {|u(l1)− u(l2)| : l1, l2 ∈ [0,M ], |l1 − l2| ≤ ε} .

Next, we have

ωM (X, ε) = sup
{
ωM (u, ε) : u ∈ X

}
,

ωM0 (X, ε) = lim
ε→0

ωM (X, ε),

ω0(X) = lim
M→∞

ωM0 (X).

Further, the function D(X) defined in the following way:

D(X) = lim
M→∞

{
sup
u∈X
{sup{|u(l1)− u(l2)| : l1, l2 ≥M}}

}
.

Finally, the formula for µ(X) is given as

µ(X) = ω0(X) +D(X) (4.1)

is the measure of noncompactness in the space BC(R+). We can verify that
µ defined in equation (4.1) has maximum and sub-linearity property but not
a full measure of noncompactness [5]. The kernel of this MNC denoted by
kerµ and consists of nonempty and bounded subsets of BC(R+) such that the
functions tend to the finite limit at infinity and are locally equicontinuous on
R+.

In order to discuss the existence of the solution of the quadratic Volterra-
Stieltjes I.E, let us recall some information about bounded variation and
Volterra-Stieltjes integral [1]. For a real-valued function x defined on [a, b] the

function of bounded variation will be denoted by the symbol
b∨
a
x. The func-

tion x is said to of bounded variation if
b∨
a
x is finite on the interval [a, b]. Now

consider the real-valued function of two variable g(p, q) = g : [a, b]× [a, b]→ R,

in the sequel of above discussion, for fixed number q ∈ [u, v] we have
b1∨
a1

g(p, q)

is the variation of the function p→ g(p, q) on the sub-interval [a1, b1] of [a, b]

and the quantity
b∨

q=a
g(p, q) is total variation on [a, b].
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Let us assume that x and k are real-valued functions on the interval [a, b].
Then, we can define the Stieltjes integral (in the Riemann-Stieltjes sense)∫ b

a
x(t)dk(t) (4.2)

of the function x with respect to the function k, under appropriate assumptions
on the functions x and k [1]. If the integral (4.2) exist, we say that x is Stieltjes
integrable on the interval [a, b] with respect to k.

Let us assume that k(t), ψ(t) are real valued functions on [a, b], then under
suitable consideration composition function k(ψ(t)), is function of bounded

variation on [ψ(a), ψ(b)] and the quantity
ψ(b)∨
ψ(a)

k(ψ(t)) will be meaningful [13].

Further, we assume that g(p, q) = g : [a, b] × [a, b] → R and ψ : [a, b] → R
are real valued functions. For fixed q ∈ [u, v], ψ(q) will be a fixed number

in [ψ(u), ψ(v)] and
ψ(b)∨

ψ(q)=ψ(a)

g(ψ(p), ψ(q)) is the variation of function ψ(p) →

g(ψ(p), ψ(q)) on corresponding subinterval. If we assume that x(t) is con-
tinuous and the composition function k(ψ(t)) is bounded variation then the
integral ∫ ψ(b)

ψ(a)
x(t)dk(ψ(t)), (4.3)

exists and x is Stieltjes integrable on [ψ(a), ψ(b)], with respect to k(ψ).

For the further discussion we are defining the concept of K-bounded varia-
tion. For a positive integer K, let

JK = {X ⊂ I : X can be expressed as a union of K closed or open intervals}.
We know that any interval is union of two sub-intervals, hence JK ⊂ JK+1.

A function f : I → R is called K-bounded variation if f−1([a, b]) ∈ JK for
all [a, b] ⊂ R. Consider the set of all K-bounded variation on interval I as
BV (K).

In order to establish our result, we consider the following basic results [1].

Lemma 4.1. If k is a function of bounded variation on [a, b] and ψ is K-
bounded variation on [a, b], then the composition function k(ψ) is bounded
variation on [a, b].

Lemma 4.2. If x is Stieltjes integrable on the interval [a, b] with respect to
composition function k(ψ) of bounded variation, then∣∣∣∣∣

∫ ψ(b)

ψ(a)
x(t)dk(ψ(t))

∣∣∣∣∣ ≤
∫ ψ(b)

ψ(a)
|x(t)|dt

ψ(t)∨
ψ(a)

k(ψ)

 ,
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where k is a function of bounded variation and ψ is a non-decreasing K-
bounded variation on [a, b].

Lemma 4.3. Let x1, x2 be Stieltjes integrable on the interval [a, b] with respect
to a non-decreasing function k(ψ(t)) such that x1(t) ≤ x2(t) for t ∈ [a, b]. Then∫ ψ(b)

ψ(a)
x1(t)dtk(ψ(t)) ≤

∫ ψ(b)

ψ(a)
x2(t)dtk(ψ(t)).

In the similar fashion, we can consider the Stieltjes integral of the form:∫ ψ(b)

ψ(a)
x(t)dtk(ψ(s), ψ(t)), (4.4)

where k : [a, b] × [a, b] → R and the symbol dt indicates the integration with
respect to the variable t.

Next, in order to prove the existence of solution of integral equation (1.1)
we consider the following assumptions:

(A1) The functions ar(1 ≤ r ≤ m), bt(1 ≤ t ≤ n), cs(1 ≤ s ≤ p) and φ are
continuous functions on R+. Further, φ is a monotonic increasing K-
bounded variation on every bounded interval of R+ such that φ(0) = 0.

(A2) Let π1 : R+×Rm → R and π2 : R+×Rn → R be continuous functions
and ψ : R+ → R+ be a continuous, monotonic increasing function with
ψ(t) < t, ψ(0) = 0 such that for each r > 0, we have

|π1(l, u1, ..., um)− π1(l, v1, ...vm)| ≤ α ψ
(

max
1≤s≤m

|us − vs|
)

and

|π2(l, u1, ..., un)− π2(l, v1, ..., vn)| ≤ λ ψ
(

max
1≤t≤n

|ut − vt|
)
,

(4.5)

where, α and λ are non-negative real numbers, and for all ut, vs ∈
[−r, r] and any l ∈ R+.

(A3) The function g : Θ×Rp → R defined such that, for any fixed r > 0, g
is uniformly continuous on Θ× [−r, r]p, where,

Θ = {(l, τ) : 0 ≤ τ ≤ l}. (4.6)

(A4) The function u(l, τ, u1, u2, ..., up) : Θ×Rp → R is continuous and there
exist continuous and non-decreasing function b : Rp → Rp such that,

u(l, τ, u1, u2, ..., up) ≤ b (|u1|, |u2|, ..., |up|)
for all l, τ ∈ Θ and ut ∈ R for all 1 ≤ t ≤ p .
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(A5) For any positive numbers ε1, ε2 there exist M > 0 such that for l2 >
l1 ≥M the functions π1 : R+ × [−h, h]m, π2 : R+ × [−h, h]n, satisfied
the following conditions for all h > 0,

|π1(l1, u1, u2, · · · , um)− π1(l2, u1, u2, · · · , um)| < ε1,

|π2(l1, u1, u2, · · · , un)− π1(l2, u1, u2, · · · , un)| < ε2.

(A6) The function K = K(l, τ) is continuous on Θ and K(l, 0) = 0.

(A7) The function l→ K(l, τ) has a bounded variation on the interval [0, l]
for fixed l > 0, and l→ ∨lτ=0K(l, τ) is bounded on R+.

(A8) For every ε > 0 there exist δ > 0 such that for all l1, l2 ∈ R+, l1 <
l2, l2 − l1 ≤ δ, the following inequality holds:

l1∨
q=0

[
K(l2, q)−K(l1, q)

]
≤ ε.

(A9) The following equations also true:

lim
M→∞

{
sup

[ l1∨
τ=l2

K(l1, τ) : M ≤ l2 ≤ l1
]}

= 0;

lim
M→∞

{
sup

[ l1∨
τ=l2

K(l1, τ)−K(l2, τ : M ≤ l2 < l1)

]}
= 0;

lim
M→∞

{
sup

[∣∣g(l1, τ, v1, ..., vp)− g(l2, τ, v1, ..., vp)
∣∣ : l1, l2 ≥M, τ ∈ R+,

τ ≤ l2, τ ≤ l1, vi ∈ [−h, h]

]}
= 0, for any h > 0.

(A10) The inequality

α ψ(r) +Mπ1 + (β ψ(r) +Mπ2)B(r̄)Kφ ≤ r
has a positive solution with

α+ βB(r̄0)Kφ ≤ 1.

(A11) If ς (u(t), v(t)) ≥ 0 for all u, v ∈ X ⊂ BC(R+) then ς (f(t), g(t)) ≥ 0
for all f, g ∈ c̄oTX. Moreover ς (u(t), v(t)) ≥ 0 for all u, v ∈ B(0, r0).

Remark 4.4. If K(l, τ) is a function of bounded variation and φ(l) is non-
increasing, K-bounded variation on any bounded interval of R+, then the
composition function K(φ(l), φ(τ)) satisfies the assumptions (A6), (A7), (A8)
and (A9) on respective domains [1].
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Remark 4.5. From assumption (A7) and Lemma 4.1, we have the real number
Kφ <∞, where Kφ is defined below:

Kφ = sup


φ(l)∨

φ(τ)=0

K(φ(l), φ(τ)) : l ∈ R+

 , (4.7)

where the function φ(l)→
φ(l)∨

φ(τ)=0

K(φ(l), φ(τ)) is bounded on R+.

Remark 4.6. By the virtue of assumptions (A2) and (A5) the functions l→
π1(l, 0, , 0, ..., 0) and l→ π2(l, 0, 0, ..., 0) are members of BC(R+) with

Mπ1 = sup{π1(l, 0, 0, ..., 0) : l ∈ R+} ,
Mπ2 = sup{π2(l, 0, 0, ..., 0) : l ∈ R+}.

Next, the existence of solution of equation (1.1) is describe by the following
theorem.

Theorem 4.7. Under the assumptions (A1) to (A11) the integral equation
(1.1) has at least one solution in the space BC(R+). Moreover, the solution
has finite limit at infinity.

Proof. For l ∈ R+, define the operator T on BC(R+) by:

(Tu)(l) =π1(l, u(a1(l)), ..., u(am(l))) + π2(l, u(b1(l)), ..., u(bn(l)))

×
∫ φ(l)

0
g(l, τ, u(c1(l)), ..., u(cp(l)))dτK(φ(l), φ(τ)).

(4.8)

The existence of solution of the integral equation (1.1) is equivalent to fixed
point of the operator (4.8). Let us split the operator in equation (4.8) by
defining the operators Π1, Π2, and I on BC(R+) in the following fashion:

(Π1u)(l) = π1(l, u(a1(l)), ..., u(am(l))),

(Π2u)(l) = π2(l, u(b1(l)), ..., u(bn(l))),

(Iu)(l) =

∫ φ(l)

0
g(l, τ, u(c1(l)), ..., u(cp(l)))dτK(φ(l), φ(τ)),

(4.9)

Then we have

(Tu)(l) = (Π1u)(l) + (Π2u)(l)(Iu)(l).

Now, let us fix a random function u ∈ BC(R+), and for M > 0, ε > 0, the
numbers l1, l2 ∈ [0,M ] such that |l1 − l2| ≤ ε.

Now we prove the continuity of T (u) on R+ by proving the continuity of
Π1(u),Π2(u) and I(u).
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From the assumptions (A6)-(A7) and Remarks 4.4–4.6, we have the follow-
ing inequality:

|(Iu)(l1)− (Iu)(l2)|

≤
∣∣∣∣ ∫ φ(l1)

0
g(l1, τ, u(c1(l1)), ..., u(cp(l1)))dτK(φ(l1), φ(τ))

−
∫ φ(l2)

0
g(l2, τ, u(c1(l2)), ..., u(cp(l2)))dτK(φ(l2), φ(τ))

∣∣∣∣
≤
∣∣∣∣ ∫ φ(l1)

0
g(l1, τ, u(c1(l1)), ..., u(cp(l1)))dτK(φ(l1), φ(τ))

−
∫ φ(l2)

0
g(l1, τ, u(c1(l1)), ..., u(cp(l1)))dτK(φ(l1), φ(τ))

∣∣∣∣
+

∣∣∣∣ ∫ φ(l2)

0
g(l1, τ, u(c1(l1)), ..., u(cp(l1)))dτK(φ(l1), φ(τ))

−
∫ φ(l2)

0
g(l1, τ, c1(l1)), ..., u(cp(l1)))dτK(φ(l2), φ(τ))

∣∣∣∣
+

∣∣∣∣ ∫ φ(l2)

0
g(l1, τ, u(c1(l1)), ..., u(cp(l1)))dτK(φ(l2), φ(τ))

−
∫ φ(l2)

0
g(l2, τ, u(c1(l2)), ..., u(cp(l2)))dτK(φ(l2), φ(τ))

∣∣∣∣
≤
∫ φ(l1)

φ(l2)

∣∣∣∣g(l1, τ, u(c1(l1)), ..., u(cp(l1)))

∣∣∣∣dτK(φ(l1), φ(τ))

+

∫ φ(l2)

0

∣∣∣∣g(l1, τ, u(c1(l1)), ..., u(cp(l1)))dτ [K(φ(l1), φ(τ))−K(φ(l2), φ(τ))]

∣∣∣∣
+

∫ φ(l2)

0

∣∣∣∣g(l1, τ, u(c1(l1)), ..., u(cp(l1)))

− g(l1, τ, u(c1(l2)), ..., u(cp(l2)))

∣∣∣∣dτK(φ(l2), φ(τ))

≤
∫ φ(l1)

φ(l2)
b(|u(c1(l1))|, ..., |u(c2(l1))|) dτ

φ(τ)∨
p=0

K(φ(l1), p)


+

∫ φ(l2)

0
b(|u(c1(l1))|, ..., |u(c2(l1))|) dτ

φ(τ)∨
p=0

[
K(φ(l1), p)−K(φ(l2), p)

]
+

∫ φ(l2)

0
ω1,M
||u|| (g, ε) dτ

φ(τ)∨
p=0

K(φ(l2), p)


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≤ b(||u||, ..., ||u||)
∫ φ(l1)

φ(l2)
dτ

φ(τ)∨
p=0

K(φ(l1), p)


+ b(||u||, ..., ||u||)

∫ φ(l2)

0
dτ

( φ(τ)∨
p=0

K
[
φ(l1), p)−K(φ(l2), p)

])

+ ω1,M
||u|| (g, ε)

∫ φ(l2)

0
dτ

φ(τ)∨
p=0

K(φ(l2), p)

 ,

where

ω1,M
r (g, ε)

= sup
{∣∣g(l1, τ, u(c1(l1)), ..., u(c1(l2)))− g(l2, τ, u(c1(l2)), ..., u(c2(l2)))

∣∣ :

l1, l2, τ ∈ [0,M ], |l1 − l2| ≤ ε, u ∈ [−r, r]
}
,

for an arbitrary number r > 0. Therefore, the above expression can be written
as;

|I(u)(l1)− I(u)(l2)| ≤ B(r̄)

∫ φ(l1)

φ(l2)
dτ

φ(τ)∨
p=0

K(φ(l1), p)


+B(r̄)

∫ φ(l2)

0
dτ

φ(τ)∨
p=0

[
K(φ(l1), p)−K(φ(l2), p)

]
+ ω1,M

||u|| (g, ε)

∫ φ(l2)

0
dτ

φ(τ)∨
p=0

K(φ(l2), p)

 .

≤ B(r̄)

φ(l1)∨
φ(l2)

K(φ(l1), p)


+B(r̄)

φ(l2)∨
p=0

[
K(φ(l1), p)−K(φ(l2), p)

]
+ ω1,M

||u|| (g, ε)

φ(l2)∨
p=0

K(φ(l2), p)

 ,

(4.10)
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where

B(r̄)

= sup{b(||u||, ||u||, ..., ||u||) : sup{||u||| ≤ r : u ∈ BC(R+), r̄ = (r, r, · · · , r)}}.

Since g is continuous function, ω1,M
||u|| (g, ε) → 0 as ε → 0. Hence, from the

assumptions (A7) and (A8), Remarks 4.4 - 4.6, we conclude that (Iu) is con-
tinuous on [0,M ], arbitrariness of M implies the continuity of (Iu) on R+.

Furthermore, in the view of assumption (A2) we deduce

|(Π1u)(l1)− (Π1u)(l2)|
≤ |π1(l1, u(a1(l1)), ..., u(am(l1)))− π1(l2, u(a1(l2)), ..., u(am(l2)))|
≤ |π1(l1, u(a1(l1)), ..., u(am(l1)))− π1(l1, u(a1(l2)), ..., u(am(l2)))|

+ |π1(l1, u(a1(l2)), ..., u(am(l2)))− π1(l2, u(a1(l2)), ..., u(am(l2)))|

≤ αψ
(

max
1≤s≤m

|u(as(l1))− u(as(l2))|
)

+ ω1,M
||u|| (π1, ε)

(4.11)

and

|(Π2u)(l1)− (Π2u)(l2)|
≤ |π2(l1, u(b1(l1)), ..., u(bn(l1))) − π2(l2, u(b1(l2)), ..., u(bn(l2)))|
≤ |π2(l1, u(b1(l1)), ..., u(bn(l1)))− π2(l1, u(b1(l2)), ..., u(bn(l2)))|

+ |π2(l1, u(b1(l2)), ..., u(bn(l2)))− π2(l2, u(b1(l2)), ..., u(bn(l2)))|

≤ λψ
(

max
1≤t≤n

|u(bt(l1))− u(bt(l2))|
)

+ ω1,M
||u|| (π2, ε).

(4.12)

For an arbitrary r > 0. we denote the following quantities:

ω1,M
r (π1, ε)

= sup
{∣∣π1(l1, u(a1(l2)), · · · , u(am(l2)))− π1(l2, u(a1(l2)), ..., u(am(l2)))

∣∣ :

l1, l2 ∈ [0,M ], |l1 − l2| ≤ ε u ∈ [−r, r]
}
,

and

ω1,M
r (π2, ε)

= sup
{∣∣π2(l1, u(b1(l2)), · · · , u(bn(l2)))− π2(l2, u(b1(l2)), ..., u(bn(l2)))

∣∣ :

l1, l2 ∈ [0,M ], |l1 − l2| ≤ ε u ∈ [−r, r]
}
.

Now with regard to the fact that π1 is uniformly continuous on [0,M ] ×
[−r, r]m and π2 is uniformly continuous on [0,M ]× [−r, r]n, we can conclude

that ω1,M
δ (π1, ε) → 0 and ω1,M

δ (π2, ε) → 0 as ε → 0. Linking of assumption
(A5) with estimation (4.11) implies that (Π1u), (Π2u) are continuous on [0,M ]
and by the arbitrariness of M we can say that (Π1u), (Π2u) are continuous
on R+. Thus from equation (4.9), we have (Tu) is continuous on R+.
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Next, let us prove the boundedness of T (u) on R+ utilising the assumptions
(A1)-(A7) and Lemmas 4.1 - 4.3. For any l ∈ R+ and fixed u ∈ BC(R+), we
have

|(Tu)(l)|
≤ |π1(l, u(a1(l)), ..., u(am(l)))|+ |π2(l, u(b1(l)), ..., u(bn(l)))|

×

∣∣∣∣∣
∫ φ(l)

0
g(l, τ, u(c1(l)), ..., u(cp(l)))dτK(φ(l), φ(τ))

∣∣∣∣∣
≤ |π1(l, u(a1(l)), ..., u(am(l)))− π1(l, 0, 0, ...., 0) + π1(l, 0, 0, ...., 0)|

+ |π2(l, u(b1(l)), ..., u(bn(l)))− π2(l, 0, 0, ...., 0) + π2(l, 0, 0, ...., 0)|

×

∣∣∣∣∣
∫ φ(l)

0
u(l, τ, u(c1(l)), ..., u(cp(l)))dτK(φ(l), φ(τ))

∣∣∣∣∣
≤ αψ

(
max

1≤s≤m
|u(as(l))|

)
+Mπ1 + λψ

(
max

1≤t≤n
|u(bt(l))|

)
+Mπ2

× b(|u(c1(l))|, ..., |u(cp(l))|)

∣∣∣∣∣∣
∫ φ(l)

0
dτ

φ(τ)∨
p=0

K(φ(l), p)

∣∣∣∣∣∣
≤ αψ

(
max

1≤s≤m
|u(as(l))|

)
+Mπ1

+

(
λ ψ

(
max

1≤t≤n
|u(bt(l))|

)
+Mπ2

)
B(r̄)

φ(l)∨
p=0

K(φ(l), p)

≤
(
αψ(||u||) +Mπ1

)
+ (λ ψ(||u||) +Mπ2)B(r̄)Kφ,

(4.13)

where Kφ is total variation and B(r̄) was mentioned earlier. This shows that
(Tu) is bounded operator on R+. Thus from (4.11), (4.12) and (4.13) we
conclude that (Tu) maps BC(R+) into itself. Moreover, form the assumption
(A10), there exists r0 such that T maps the ball Br0 ⊂ BC(R+) into itself.

Now, we prove that T is continuous operator on Br0 by proving the continu-
ity of the functions Π1, Π2 and I. For this, take arbitrary u, v ∈ Br0 , l ∈ R+

and ε > 0 such that ||u− v|| ≤ ε. From the assumption (A2) we can write

|(Π1u)(l)− (Π1v)(l)|
= |π1(l, u(a1(l)), ..., u(am(l)))− |π1(l, v(a1(l)), ..., v(am(l)))|

≤ α ψ
(

max
1≤s≤m

|u(as(l))− v(as(l))|
)

and
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|(Π2u)(l)− (Π2v)(l)|
= |π2(l, u(b1(l)), ..., u(bn(l)))− |π2(l, v(b1(l)), ..., v(bn(l)))|

≤ λ ψ
(

max
1≤t≤n

|u(bt(l))− v(bt(l))|
)
.

Hence, we have

||Π1u−Π2v|| ≤ α ψ (||u− v||) (4.14)

and

||Π2u−Π2v|| ≤ λ ψ (||u− v||) . (4.15)

Hence, the functions Π1 and Π2 are continuous on Br0 .
Now, from assumption (A3), (A7) and Lemmas 4.1–4.2, we deduce that

|(Iu)(l)− (Iv)(l)|

≤
∣∣∣∣ ∫ φ(l)

0
[g(l, τ, u(c1(l)), ..., u(cp(l)))− g(l, τ, v(c1(l)), ..., v(cp(l)))]

dτK(φ(l), φ(τ))

∣∣∣∣
≤
∫ φ(l)

0

∣∣∣∣g(l, τ, u(c1(l)), ..., u(cp(l)))− g(l, τ, v(c1(l)), ..., v(cp(l)))]

∣∣∣∣
dτ

(
∨φ(τ)
p=0K(φ(l), p)

)
≤
∫ φ(l)

0
ω3
r0(g, ε)dτ

(
∨φ(τ)
p=0K(φ(l), p)

)
≤ ω3

r0(g, ε)
(
∨φ(l)
p=0K(φ(t), p)

)
≤ ω3

r0(u, ε)Kφ,

(4.16)

where

ω3
r0(g, ε) = sup

{∣∣g(l, τ, u(c1(l)), ..., u(cp(l)))− g(l, τ, v(c1(l)), ..., v(cp(l))
∣∣ :

l, τ ∈ R+, u, v ∈ [−r0, r0], |u− v| ≤ ε
}
.

Since, for any fixed r > 0, g is uniformly continuous on Θ × [−r0, r0]p,
ω3
r0(g, ε) → 0 as ε → 0. By similar argument ω2

r0(π1, ε), ω
2
r0(π2, ε) tends

to zero as ε→ 0, thus, we can say that T is a continuous operator on Br0 .
Now, consider X is any nonempty subset of Br0 and u ∈ X. For M > 0 and

ε > 0 choose the numbers l1, l2 ∈ [0,M ] such that |l1 − l2| ≤ ε. Without loss
of generality we can assume that l1 < l2, and ς (u(l1), u(l2)) ≥ 0 for arbitrary
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u ∈ X, from equation (4.10) we can obtain:

|(Iu)(l1)− (Iu)(l2)|

≤ B(r̄)
(
∨φ(l1)
p=0 K(φ(l1), p)

)
+B(r̄)

(
∨φ(l1)
p=0

[
K(φ(l1), p)−K(φ(l2), p)

])
+ ω1,M

||u|| (g, ε)
(
∨φ(l1)
p=0 K(φ(l2), p)

)
.

(4.17)

Let us define some characteristics functions R(ε) and S(ε) as follows:

R(ε) = sup

{
∨φ(l2)
p=0

[
K(φ(l1), p)−K(φ(l2), p)

]
: l2, l1 ∈ R+, l2 < l1, l2− l1 ≤ ε

}
,

(4.18)

S(ε) = sup

{
∨φ(l1)
p=φ(l2) K(φ(l1), p) : l2, l1 ∈ R+, l2 < l1, l2 − l1 ≤ ε

}
. (4.19)

Obviously, in the view of assumptions (A8) and Remark 4.4, we have, R(ε)→
0, S(ε)→ 0 as ε→ 0 and the equation (4.17) becomes

|(Iu)(l1)− (Iu)(l2)| ≤ B(r̄) (R(ε) + S(ε)) +Kφω
1,M
r0 (g, ε). (4.20)

Also, from equations (4.11) and (4.12), we obtain:

|(Π1u)(l1)− (Π1u)(l2)| ≤ α ψ
(
ωM (u, ε)

)
+ ω1,M

||u|| (π1, ε),

|(Π2u)(l1)− (Π2u)(l2)| ≤ λψ
(
ωM (u, ε)

)
+ ω1,M

||u|| (π2, ε).
(4.21)

Now, from the equations (4.11)-(4.12), (4.18)-(4.20) and (4.21) for fixed
u ∈ X, l1, l2 ∈ [0,M ], l2 < l1, l1 − l2 ≤ ε, we can derive the following
expression:

(Tu)(l1)− (Tu)(l2)

≤ |(Π1u)(l1)− (Π1u)(l2)|+ |(Π2u)(l1)(Iu)(l1)− (Π2u)(l2)(Iu)(l2)|
≤ |(Π1u)(l1)− (Π1u)(l2)|+ |(Π2u)(l1)(Iu)(l1)− (Π2u)(l1)(Iu)(l2)

+ (Π2u)(l1)(Iu)(l2)− (Π2u)(l2)(Iu)(l2)|
≤ |(Π1u)(l1)− (Π1u)(l2)|+ |(Π2u)(l1)((Iu)(l1)− (Iu)(l2))|

+ |(Iu)(l2)((Π2u)(l1)− (Π2u)(l2))|
≤
(
α ψ (ω(u, ε)) + ω1,M

r0 (π1, ε)
)

+ (αψ (||u||) +Mπ1)

(
B(r̄0) (R(ε) + S(ε)) +Kφω

1,M
r0 (g, ε)

)
+B(r̄0)Kφ

(
λ ψ

(
ωM (g, ε)

)
+ ω1,M

||u|| (π2, ε)
)
.

Hence, by using the properties of ψ, π1, π2, g, we have ω1,M
r0 (π1, ε), ω

1,M
r0 (π2, ε),

ω1,M
r0 (g, ε), R(ε) and S(ε) goes to zero as ε → 0. Thus the above expression
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becomes

ωM0 (TX) ≤ α ψ(ωM0 (X)) +B(r̄)Kφλ ψ
(
ωM0 (X)

)
≤ (α+ λ B(r̄)Kφ)ψ

(
ωM0 (X)

)
,

consequently, we get

ω0(TX) ≤ (α+ λ B(r̄)Kφ)ψ (ω0(X)) . (4.22)

Next, we choose that u is arbitrary function from the set X ⊂ Br0 and
l1, l2 ∈ R+ are such that M ≤ l1 < l2. For the further estimations, let us
define some characteristic functions as follows:

P (M) = sup


φ(l1)∨
p=φ(l2)

[K(φ(l1), p)] : M ≤ l2 < l1

 ,

Q(M) = sup


φ(l1)∨
p=0

[K(φ(l1), p)−K(φ(l2), p)] : M ≤ l2 < l1

 .

Moreover, for fixed H > 0 let us put:

WH(M)

= sup

{
|π1(l1, u(a1(l1)), ..., u(am(l1)))− π1(l2, u(a1(l2)), ..., u(am(l2)))| :

M ≤ l2 < l1, u ∈ [−H,H]

}
,

FH(M)

= sup

{
|π2(l1, u(b1(l1)), ..., u(bn(l1)))− π2(l2, u(b1(l2)), ..., u(bn(l2)))| :

M ≤ l2 < l1, u ∈ [−H,H]

}
,

VH(M)

= sup
{
|g(l1, τ, u(c1(l1)), ..., u(cp(l1)))− g(l2, τ, u(c1(l2)), ..., u(cp(l2)))| :
l2, l1 ≥M, τ ∈ R+, τ ≤ l2, τ ≤ l1, u ∈ [−H,H]

}
.

Next, keeping in mind assumptions (A9), we have that P (M), Q(M) tends
to 0 as M → ∞. Moreover, for fixed H > 0 the quantities FH(M), WH(M)
and VH(M) also approaches to 0 as M →∞. Therefore, as per the expression
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(4.20) and (4.21), for M ≤ l2 < l1 and u ∈ X we obtain:

|(Tu)(l1)− (Tu)(l2)|
≤ |π1(l1, u(a1(l1)), ..., u(am(l1)))− π1(l1, u(a1(l2)), ..., u(am(l2)))|

+ π1(l1, u(a1(l2)), ..., u(am(l2)))| − π1(l2, u(a1(l2)), ..., u(am(l2)))|
+ π2(l1, τ, u(b1(l1)), ..., u(bn(l1)))− π2(l1, 0, 0, ..., 0) + π2(l1, 0, 0, ..., 0)

× (Iu)(l1)− (Iu)(l2) + b(|u(c1(l1))|, |u(c2(l1))|, ...|u(cp(l1))|)

×
φ(l2)∨
p=0

K(φ(l2), p)|(Π2u)(l1)− (Π2u)(l2)|

≤ αψ
(

max
1≤s≤m

|u(as(l1))− u(as(l2))| : M ≤ l2 < l1

)
+Wr0(M)

+ αψ

(
max

1≤s≤m
|u(as(l1))|

)
+Mπ1

{
B(r̄0)

(
∨φ(l1)
p=0 K(φ(l2), p)

)
+B(r̄0)

(
∨φ(l1)
p=0

[
K(φ(l1), p)−K(φ(l2), p)

])
+ Vr0(M)

(
∨φ(l1)
p=0 K(φ(l2), p)

)}
+B(r̄0)Kφ

{
λ ψ

(
max

1≤t≤n
|u(bt(l1))− u(bt(l2))| : M ≤ l2 < l1

)
+ Fr0(M)

}
≤ αψ

(
max

1≤s≤m

[
|u(as(l1))− u(as(l2))| : M ≤ l2 < l1

])
+Wr0(M)

+

{(
α ψ

(
max

1≤s≤m
|u(as(l1))|

)
+Mπ1

)(
B(r̄0) (P (M)) +B(r̄0) (Q(M))

)
+ Vr0(M)

(
∨φ(l1)
p=0 K(φ(l2), p)

)}
+B(r̄0)Kφ

{
λψ

(
max

1≤t≤n

[
|u(bt(l1))− u(bt(l2))| : M ≤ l2 < l1

])
+Fr0(M)

}
.

Taking limit as M → ∞ the estimated quantities P (M), Q(M),Wr0(M),
Fr0(M) and Vr0(M) tend to zero and the above inequality becomes:

D(TX) ≤
(
α ψ (D(X)) +B(r̄0)Kφλ ψ (D(X))

)
,

D(TX) ≤ (α+ λB(r̄0)Kφ)ψ (D(X)) .

(4.23)

Finally, combining equation (4.22) and (4.23), we have the following inequality

µ(TX) ≤ (α+ λB(r̄0)Kφ)ψ (ω0(X)) (α+ βB(r̄0)Kφ)ψ (D(X))

≤ (α+ λB(r̄0)Kφ)ψ (µ(X)) .
(4.24)
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Let us define the two functions β(s) and ξµ(t) in the following way:

β(s) =


1
2 if s = 0,
ψ(s)
s if 0 < s ≤ µ(Ω),

ψ(µ(Ω))
s if s > µ(Ω)

and

ξµ(C) =

{
1

(α+λB(r̄0)Kφ)
if ς (x(t), y(t)) ≥ 0, x, y ∈ C,

0 otherwise.

Then equation (4.24) becomes

ξ(X)µ (TX) ≤ β (µ (X))µ (X) . (4.25)

Since by assumption (A11), if ξµ(X) ≥ 1 then ξµ(TX) ≥ 1, hence, T is
ξµ-admissible and ξµ-β condensing operator. Thus from Theorem 3.2 the
Volterra-Stieltjes integral equation (1.1) has at least one solution in BC (R+).
This completes the proof. �

Remark 4.8. (i) The integral equation defined in [6] is obtained from
(1.1) by substituting m = n = p = 1, and define φ(t) = t, f(t, x) ≈
a(t) for all x and g(t, x) = 1,

u(l) = a(l) +

∫ l

0
g(l, τ, u(τ))dτK(l, τ). (4.26)

(ii) If m = n = p = 1, φ(t) = t and f(t, x) ≈ a(t) for all x, then we obtain
class of integral equation defined in [14] ,

u(l) = a(l) + g(l, u(l))

∫ l

0
g(l, τ, u(τ))dτK(l, τ). (4.27)

Example 4.9. Consider the following functional integral equation of Volterra-
Stieltjes type in the Banach space BC(R+).

u(l) = ζ · ln(1 + l)

1 + l
sin(u2(l))

+ δ · arctan

(
l2 + u2(l)

1 + l2

)∫ 3
2

0

(l2 + τ2)e−l
2

+ τ2

l2+τ2

1 + l6 + τ2
u(τ)dτ,

(4.28)

where δ > 0 and ζ > 0 are real numbers. Then the Volterra-Stieltjes integral
equation (4.28) has at least one solution in the Banach space BC(R+).
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In fact, the integral equation (4.28) is obtained from (1.1) by substituting:

m = n = p = 1, φ(l) = l
3
2 ;

K(φ(l), φ(τ)) =
1√

1 + l6
arctan

τ√
1 + l6

;

π1(l, u) = ζ
ln(1 + l)

1 + l
sin(u2(l));

π2(l, u) = δ arctan

(
l2 + u2(l)

1 + l2

)
;

g(l, τ, u(τ)) =
(l2 + τ2)e−l

2
+ τ2

l2+τ2

1 + l6 + τ2
u(τ).

(4.29)

The given Volterra-integral equation (4.28) can be written as

u(l) = ζ · ln(1 + l)

1 + l
sin(u2) + δ · arctan

(
l2 + u2(l)

1 + l2

)
×
∫ 3

2

0
(l2 + τ2)e−l

2
+

τ2

l2 + τ2
u(τ)dτ

(
1√

1 + l6
arctan

τ√
1 + τ6

)
.

For an arbitrary R > 0 the function φ(l) is non-decreasing and satisfies Lips-
chitz condition on [−R,R], hence φ(l) is K-bounded variation on [−R,R], also
we can easily check that

dτK(φ(l), φ(τ)) =
∂K(φ(l), φ(τ))

∂τ
=

1

1 + τ2 + l6
dτ.

Let us prove that the functions π1(l, u) and π2(l, u), satisfies the assumption
(A2). In fact,

|π1(l, u)− π1(l, v)| ≤ ζ
∣∣∣∣ ln(1 + l)

1 + l
sin(u2(l))− ln(1 + l)

1 + l
sin(v2(l))

∣∣∣∣
≤ ζ

∣∣∣∣ ln(1 + l)

1 + l

∣∣∣∣ sin(u2(l))− sin(v2(l))|

≤ ζ

e
|u2 − v2|

≤ ζr

e
|u− v|

and

|π2(l, u)− π2(l, v)| ≤ δ arctan

(
l2 + u2(l)

1 + l2

)
− δ arctan

(
l2 + v2(t)

1 + l2

)
,

and hence
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|π2(l, u)− π2(l, v)| ≤ δ

∣∣∣∣∣∣
sin
(
l2+u2

1+l2

)
− sin

(
l2+v2

1+l2

)
1 + sin

(
l2+u2

1+l2

)
sin
(
l2+v2

1+l2

)
∣∣∣∣∣∣

≤ δ
∣∣∣∣( l2 + u2

1 + l2

)
−
(
l2 + v2

1 + l2

)∣∣∣∣
≤ δ

(
1

1 + l2

) ∣∣u2 − v2
∣∣

≤ δr

2
|u− v|.

Hence, the function π1(l, u) and π2(l, u) satisfied the assumption (A2).
Now for fixed r > 0 and for any u ∈ [−r, r] the limit of π1(l, u) and π2(l, u)

as t→∞ is:

lim
l→∞

π1(l, u) = lim
l→∞

ζ
ln(1 + l)

1 + l
sin(u2(l) = 0

and

lim
l→∞

π2(l, u) = lim
l→∞

δ arctan

(
l2 + u2

1 + l2

)
= δ · π

4
.

Let us assume that r > 0, M > 0 be arbitrary real numbers such that u ∈
[−r, r] and l1 > l2 ≥ M , with this consideration let us verify the assumption
(A5).

|π1(l1, u)− π2(l2, u)| ≤ ζ
∣∣∣∣ ln(1 + l1)

1 + l1
sin(u2)− ln(1 + l2)

1 + l2
sin(u2)

∣∣∣∣
≤ ζ

∣∣∣∣ ln(1 + l1)

1 + l1
− ln(1 + l2)

1 + l2

∣∣∣∣ | sin(u2)|

≤ ζ
(

ln(1 + l1)

1 + l1
+

ln(1 + l2)

1 + l2

)
| sin(u2)|

≤ ζ 2
ln(1 +M)

1 +M
∵ |(u2)| ≤ 1

(4.30)

and

|π2(l1, u)− g(l2, u)| ≤ δ
∣∣∣∣arctan

(
l1 + u

1 + l21

)
− arctan

(
l2 + u

1 + l22

)∣∣∣∣
≤ δ

∣∣∣∣∣∣
sin
(
l1+u
1+l21

)
− sin

(
l2+u
1+l22

)
1 + sin

(
l1+u
1+l21

)
sin
(
l2+u
1+l22

)
∣∣∣∣∣∣

≤ δ

∣∣∣∣∣∣
(
l21+u2

1+l21

)
−
(
l22+u2

1+l22

)
1

∣∣∣∣∣∣
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≤ δ
∣∣∣∣( l21 + u2

1 + l21

)
−
(
l22 + u2

1 + l22

)∣∣∣∣
≤
(
M2 + r2

1 +M2
+
M2 + r2

1 +M2

)
≤ δ(r2 + 1)

1

1 +M2
.

Thus, assumption (A5) is verified. Now, let us verify (A4), we can easily check
the continuity of g = g(l, τ, u(τ)) on the set Θ×R. Moreover, for the arbitrary
(l, τ) ∈ Θ and u ∈ R, we get

|g(l, τ, u(τ))| ≤
∣∣∣∣(l2 + τ2)e−l

2
+

τ2

l6 + τ2 + 1
u(τ)

∣∣∣∣
≤ (l2 + l2)e−l

2
+

l2

l6 + l2 + 1
u(τ)

≤ (2l2)e−l
2

+
l2

l6 + l2
u(τ)

≤ 2

e
+
r

1
.

Thus g verifies the inequality of assumption (A4) with B(r̄) = 2
e + r

1 . Now, fix
r > 0, M > 0 and take l1, l2, τ ∈ R+ such that l1, l2 ≥ M, τ ≤ l1, τ ≤ l2 and
u ∈ [−r, r]. Without loss of generality, suppose that M ≥ 2. Then we have:

|g(l1, τ, u(τ))− g(l2, τ, u(τ))|

≤
∣∣∣∣((l21 + τ2)e−l

2
1 +

τ2

l61 + τ2 + 1
u(τ)

)
−
(

(l22 + l22)e−l
2
2 +

τ2

l62 + τ2 + 1
u(τ)

)∣∣∣∣
≤
∣∣∣((l21 + τ2)e−l

2
1 − (l22 + τ2)e−l

2
2

)∣∣∣+

∣∣∣∣( τ2

l61 + τ2 + 1
− τ2

l62 + τ2 + 1

)∣∣∣∣ |u(τ)|

≤
(

(l21 + τ2)e−l
2
1 + (l22 + τ2)e−l

2
2

)
+

(
τ2

l61 + τ2 + 1
+

τ2

l62 + τ2 + 1

)
r

≤ 4M2e−M
2

+
2M2

M6 +M2
r

≤ 4M2e−M
2

+
2

M4 + 1
r.

Let us verify that K = K(φ(l), φ(τ)) defined by (4.29) satisfies assumption
(A7). To show that function K(φ(l), φ(τ)) is function of bounded variation,
consider

∂K(φ(l), φ(τ))

∂τ
=

1

1 + τ2 + l6
> 0.
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We infer that the function φ(τ)→ K(φ(l), φ(τ)) is increasing on every interval
of the form [0, l]. Since K(φ(l), φ(τ)) is bounded on the set Θ which guaranties
that φ(τ)→ K(φ(l), φ(τ)) is the function of bounded variation on the interval
[0, l]. Moreover, we can have

φ(l)∨
p=0

K(φ(l), p) = K(φ(l), φ(l))−K(φ(l), 0)

=
l
3
2∨

p=0

√
1 + t6 arctan

τ√
1 + t6

≤ π

4
.

From the above estimation we have Kφ ≤ π
4 and assumption (A7) is satisfied.

Let us prove that the function K(φ(l), φ(τ)) defined by (4.29) satisfies the
equalities in the assumption (A9). For this fix the arbitrary l2 < l1 ∈ [0,M ],
we get

K(φ(l1), φ(τ))−K(φ(l2), φ(τ))

=
√

1 + l61 arctan
τ√

1 + l61
−
√

1 + l62 arctan
τ√

1 + l62

≤ π

4

1√
1 +M6

.

The above expression shows that K(φ(l), φ(τ)) satisfies the second equality
assumption A9. Similarly, we can easily verify first equality of assumption
(A9).

Let us proceed to assumption (A10) we have

π1(l, 0) = 0 =⇒ Mπ1 = 0 and π2(l, 0) = δ =⇒ Mπ2 =
δ π

4
.

Considering above estimated values we are easily establish the first inequality
of assumption (A10).

ζr

e
+

(
δ r

2
+
δ π

4

)(
2

e
+
r

1

)
π

4
≤ r,

it implies that (
δ r

2
+
δ π

4

)(
2

e
+
r

1

)
π

4
≤ r

(
1− ζ

e

)
. (4.31)

By the suitable choice of r, δ and ζ, the inequality in (4.31) and second inequal-
ity of assumption (A10) are simultaneously satisfied. Thus all the conditions
of Theorem 4.7 are satisfied. Therefore the Volterra-Stieltjes integral equation
(4.28) has at least one solution in the Banach space BC(R+).
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4.1. Numerical estimations for r, ζ and δ. From the inequality (4.31),
the range of ζ is 0 < ζ < e. Let us discuss the relation between ζ, δ and
r. From the inequality (4.31) for every value of ζ ∈ (0, e) there is a number
κ ∈ R+ such that δ ≤ κ. The Table 1 represents numerical values for which
the integral equation has solution for r = 1

2 , 1,
3
2 .

r = 1
2 r = 1 r = 3

2
ζ κ κ κ

0.25 0.452400 0.518779 0.505579
0.50 0.406593 0.466271 0.454407
0.75 0.360805 0.413763 0.403235
1.00 0.315018 0.361255 0.352063
1.25 0.269231 0.308747 0.30091
1.50 0.223443 0.256239 0.249719
1.75 0.177655 0.203731 0.198547
2.00 0.131868 0.151223 0.147375
2.25 0.086081 0.098715 0.096203
2.50 0.040293 0.046207 0.045031

Table 1. Relation between ζ and κ, (δ ≤ κ)

In the Figure 1 the graphical representation of Table 1 has given. We can
observe that ζ and κ are inversely proportional to each other, moreover ζ lies
in (0, e) then δ lies in (0, 0.6) for r = 1

2 , 1,
3
2 .

ζ

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

κ

0

0.1

0.2

0.3

0.4

0.5

0.6

r=0.5
r=1
r=1.5

Figure 1. Graph of Showing the relation between r, ζ and κ, (δ ≤ κ)

In the similar argument, we can discuss about ζ and κ for r = 2, 3, ..., n.
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5. Conclusion

In this paper, we defined and proved the fixed point theorems for ξµ−admissi-
ble, ξµ-β and ξµ-β-ψ condensing operators. The Corollaries proved in the
Section 3 are the existing results in the literature [2, 11, 19]. The nonlinear
quadratic Volterra-Stieltjes integral equation is the generalization of the main
results in [6, 14], and is derived by using the function of bounded variation
and Riemann-Stieltjes integral. We investigated the solvability of nonlinear
quadratic Volterra-Stieltjes integral equation by using ξµ-admissible and ξµ-β-
condensing operator. Finally, we have provided the numerical values for which
the illustrative example has a solution.
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