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Abstract. In this paper, we prove the Hyers-Ulam-Rassias stability property for the Jensen
functional equations

f(x + y) + f(x + σ(y)) = 2f(x); f(x + y)− f(x + σ(y)) = 2f(y) x, y ∈ E1

for mappings from a normed space E1 into a quasi-Banach space E2.

1. Introduction and preliminaries

The stability problem of functional equations was posed for the first time
by S. M. Ulam [31] in the year 1940. Ulam stated the problem as follows:

Given a group G1, a metric group (G2, d), a number ε > 0 and a mapping
f : G1 −→ G2 which satisfies d(f(xy), f(x)f(y)) < ε for all x, y ∈ G1, does
there exist an homomorphism g: G1 −→ G2 and a constant k > 0, depending
only on G1 and G2 such that

d(f(x), g(x)) < kε
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for all x ∈ G1?

In 1941, D. H. Hyers [7] considered the case of approximately additive map-
pings f : E −→ E′, where E and E′ are Banach spaces and f satisfies the
following inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit T (x) = limn−→+∞
f(2nx)

2n exits for
all x ∈ E and that T : E −→ E′ is the unique additive mapping satisfying

‖f(x)− T (x)‖ ≤ ε.

In 1978, Th. M. Rassias [24] provided a generalization of Hyers’s stability
theorem which allows the Cauchy difference to be unbounded, as follows:

Theorem 1.1. [24] Let f : V −→ X be a mapping between Banach spaces and
let p < 1 be fixed. If f satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (1.1)

for some θ ≥ 0 and for all x, y ∈ V (x, y ∈ V \ {0} if p < 0). Then there
exists a unique additive mapping T : V −→ X such that

‖f(x)− T (x)‖ ≤ 2θ

2p − 2
‖x‖p (1.2)

for all x ∈ V (x ∈ V \ {0} if p < 0).
If, in addition, f(tx) is continuous in t for each fixed x ∈ V , then T is linear.

In 1990, during the 27th International Symposium of functional equations,
Th. M. Rassias asked the question whether such a theorem can also be proved
for values of p greater or equal to one [22]. Z. Gajda [5] following the same
approach as in [24] provided an affirmative solution to Rassias’ question for p
strictly greater than one. However, it was shown independently by Z. Gajda
[5] and Th. M. Rassias and P. Šemrl [27] that a similar result for the case of
value of p equal to one can not be obtained.

The concept of the linear mapping, that was introduced for the first time in
1978 by Th. M. Rassias and followed later by several other mathematicians is
known today as Hyers-Ulam-Rassias stability. During the last decades several
stability problems of functional equations have been investigated by a number
of mathematicians, the reader can be referred for example to the monographs
[9, 12] and [2]-[28],[30].

We consider some basic concepts concerning quasi-β-normed spaces and
some preliminaries results.
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Definition 1.2. Let X be a linear space. A quasi-norm is a real-valued func-
tion on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.
(3) There is a constant K ≥ 1 such that

‖x + y‖ ≤ K(‖x‖+ ‖x‖) (1.3)

for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on
X. The smallest possible K is called the modulus of concavity of ‖ · ‖.

A quasi-Banach space is a complete quasi-normed space.
A quasi-norm ‖ · ‖ is called a β-norm (0 < β ≤ 1) if

‖x + y‖β ≤ ‖x‖β + ‖y‖β (1.4)

for all x, y ∈ X. In this case a quasi-Banach space is called a β-Banach space.
We refer to [1, 29] for the concept of quasi-normed spaces and quasi-Banach
spaces. Given a β-norm, the formula d(x, y) = ‖x− y‖β gives us a translation
invariant metric on X. By the Aoki-Rolewicz Theorem [29] (see also [1]), each
quasi norm is equivalent to some β-norm. Since it is much easier to work with
β-norm than quasi-norm, hence we restrict our attention mainly to β-norm.

In [18] C. Park generalized the concept of quasi-normed spaces as follows

Definition 1.3. Let X be a linear space. A function ‖ · ‖: X −→ [0,∞) is
called a generalized quasi-norm if and only if it satisfies the following proper-
ties:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.
(3) There is a constant K ≥ 1 such that

‖
∞∑

j=1

xj‖ ≤ K
∞∑

j=1

‖xj‖ (1.5)

for all x1, x2, . . . ∈ X with
∑∞

j=1 xj ∈ X.

The pair (X, ‖ · ‖) is called a generalized quasi-normed space if ‖ · ‖ is a gen-
eralized quasi-norm on X. The smallest possible K is called the modulus of
concavity of ‖ · ‖. A generalized quasi-Banach space is a complete generalized
quasi-normed space.

In this paper we consider the Jensen functional equations

f(x + y) + f(x + σ(y)) = 2f(x), x, y ∈ E1, (1.6)
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f(x + y)− f(x + σ(y)) = 2f(y), x, y ∈ E1 (1.7)

where σ: E1 −→ E1 is an involution of E1, i.e., σ(x + y) = σ(x) + σ(y) and
σ(σ(x)) = x for all x, y ∈ E1.

Recently G.H. Kim [16] have improved the stability of equation (1.6) over
an abelian group under the condition

‖f(x + y) + f(x + σ(y))− 2f(x)‖ ≤ ϕ(x) or ϕ(y).

In [17] G.H. Kim proved the Hyers-Ulam-Rassias stability of equation (1.7) in
normed space, with σ(x) = −x and 0 ≤ p < 1. In [2] the stability of other
generalized Jensen functional equations have been investigated.

The stability problems of several functional equations in quasi-Banach spaces
have been extensively investigated by a number of authors, we refer for exam-
ple to [19], [21] and [30].

Our main goal in this paper is to investigate the Hyers-Ulam stability prob-
lem for the equations (1.6) and (1.7) in generalized quasi-Banach spaces and
in quasi-β-Banach spaces.

2. Hyers-Ulam stability of (1.6) with p < 1 and p > 1

In this section we investigate the Hyers-Ulam stability for the equation (1.6).

Theorem 2.1. Let E1 be a normed space, E2 a generalized quasi-Banach
space and f : E1 −→ E2 a mapping which satisfies the inequality

‖f(x + y) + f(x + σ(y))− 2f(x)‖E2 ≤ θ(‖x‖p + ‖y‖p) (2.1)

for some θ ≥ 0, p > 1 and for all x, y ∈ E1. Then there exits a unique mapping
J : E1 −→ E2, defined by

J(x) = lim
n→+∞ 2n{f(

x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)} (2.2)

that is a solution of the Jensen functional equation (1.6) such that

‖f(x)− J(x)‖E2 ≤
2Kθ

2p − 2
‖x‖p +

Kθ

(2p − 1)(2p − 2)
‖x + σ(x)‖p] (2.3)

for all x ∈ E1.

Proof. Suppose that f satisfies the inequality (2.1). Replacing x, y by x
2n ,

(resp. by x
2n+1 + σ(x)

2n+1 ), we obtain

‖f(
x

2n−1
) + f(

x

2n
+

σ(x)
2n

)− 2f(
x

2n
)‖E2 ≤

2θ

2np
‖x‖p, (2.4)
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respectively

‖2f(
x

2n
+

σ(x)
2n

)− 2f(
x

2n+1
+

σ(x)
2n+1

)‖E2 ≤
2θ

2(n+1)p
‖x + σ(x)‖p. (2.5)

Make the induction assumption:

‖f(x)− 2n{f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)}‖E2

≤ 2θK

2p
‖x‖p[1 + 21−p + . . . + 2(n−1)(1−p)] (2.6)

+
2θK

22p
‖x + σ(x)‖p[(1− 1

2
) + (1− 1

22
)21−p + . . .

+(1− 1
2n

)2(n−1)(1−p)].

For n = 1, by using the triangle inequality (1.5), we get

‖f(x)− 2{f(
x

2
) + (

1
2
− 1)f(

x

22
+

σ(x)
22

)}‖E2

≤ K‖f(x) + f(
x

2
+

σ(x)
2

)− 2f(
x

2
)‖E2

+K‖f(
x

4
+

σ(x)
4

)− f(
x

2
+

σ(x)
2

)‖E2

≤ K
2θ

2p
‖x‖p + K

θ

22p
‖x + σ(x)‖p =

2θK

2p
‖x‖p +

2θK

22p
‖x + σ(x)‖p(1− 1

2
).

So (2.6) is true for n = 1. We will show that the induction assumption (2.6)
is true with n replaced by n + 1.

‖f(x)− 2n+1{f(
x

2n+1
) + (

1
2n+1

− 1)f(
x

2n+2
+

σ(x)
2n+2

)}‖E2

= ‖f(x)− 2n{f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)}

+2n{f(
x

2n
) + f(

x

2n+1
+

σ(x)
2n+1

)− 2f(
x

2n+1
)}

+2n+1(
1

2n+1
− 1){f(

x

2n+1
+

σ(x)
2n+1

)− f(
x

2n+2
+

σ(x)
2n+2

)}‖E2

= ‖f(x)− 2n−1{f(
x

2n−1
) + (

1
2n−1

− 1)f(
x

2n
+

σ(x)
2n

)}

+2n−1{f(
x

2n−1
) + f(

x

2n
+

σ(x)
2n

)− 2f(
x

2n
)}
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+2n(
1
2n
− 1){f(

x

2n
+

σ(x)
2n

)− f(
x

2n+1
+

σ(x)
2n+1

)}

+2n{f(
x

2n
) + f(

x

2n+1
+

σ(x)
2n+1

)− 2f(
x

2n+1
)}

+2n+1(
1

2n+1
− 1){f(

x

2n+1
+

σ(x)
2n+1

)− f(
x

2n+2
+

σ(x)
2n+2

)}‖E2

= ‖{f(x)− 2{f(
x

2
) + (

1
2
− 1)f(

x

22
+

σ(x)
22

)}

+2{f(
x

2
) + f(

x

22
+

σ(x)
22

)− 2f(
x

22
)}

+22(
1
22
− 1){f(

x

22
+

σ(x)
22

)− f(
x

23
+

σ(x)
23

)}

+22{f(
x

22
) + f(

x

23
+

σ(x)
23

)− 2f(
x

23
)}

+23(
1
23
− 1){f(

x

23
+

σ(x)
23

)− f(
x

24
+

σ(x)
24

)}+ · · ·

+2n−1{f(
x

2n−1
) + f(

x

2n
+

σ(x)
2n

)− 2f(
x

2n
)}

+2n(
1
2n
− 1){f(

x

2n
+

σ(x)
2n

)− f(
x

2n+1
+

σ(x)
2n+1

)}

+2n{f(
x

2n
) + f(

x

2n+1
+

σ(x)
2n+1

)− 2f(
x

2n+1
)}

+2n+1(
1

2n+1
− 1){f(

x

2n+1
+

σ(x)
2n+1

)− f(
x

2n+2
+

σ(x)
2n+2

)}‖E2

≤ 2θK

2p
‖x‖p[1 + 21−p + . . . + 2n(1−p)]

+
2θK

22p
‖x + σ(x)‖p[(1− 1

2
) + (1− 1

22
)21−p + · · ·+ (1− 1

2n+1
)2n(1−p)].

Now, the inequality (2.6) is proved for all n.
Next, we will show that the sequence functions

Jn(x) = 2n{f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)} (2.7)

is a Cauchy sequence for every x ∈ E1. Combine (2.4) and (2.5) by use of the
triangle inequality (1.5) to show that
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‖Jn+1(x)− Jn(x)‖E2

= ‖2n+1{f(
x

2n+1
) + (

1
2n+1

− 1)f(
x

2n+2
+

σ(x)
2n+2

)}

−2n{f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)}‖E2

≤ 2nK‖f(
x

2n
) + f(

x

2n+1
+

σ(x)
2n+1

)− 2f(
x

2n+1
)‖E2

+2n+1K(1− 1
2n+1

)‖f(
x

2n+1
+

σ(x)
2n+1

)− f(
x

2n+2
+

σ(x)
2n+2

)‖E2

≤ 2nK
2θ

2(n+1)p
‖x‖p + 2nK(1− 1

2n+1
)

2θ

2(n+2)p
‖x + σ(x)‖p

≤ 2n(1−p) 2θK

2p
[‖x‖p +

1
2p
‖x + σ(x)‖p].

Since 21−p < 1, the desired conclusion follows. However, E2 is a generalized
quasi-Banach space, it follows that the functions Jn(x) form a sequence which
converges to some function J(x) for all x in E1.

Let us show now that J is a solution of Jensen functional equation (1.6).
Indeed,

‖Jn(x + y) + Jn(x + σ(y))− 2Jn(x)‖E2

= ‖2n{f(
x + y

2n
) + (

1
2n
− 1)f(

x + y

2n+1
+

σ(x) + σ(y)
2n+1

)}

+2n{f(
x + σ(y)

2n
) + (

1
2n
− 1)f(

x + σ(x)
2n+1

+
y + σ(y)

2n+1
)}

−2n+1{f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)}‖E2

≤ 2nK‖f(
x + y

2n
) + f(

x + σ(y)
2n

)− 2f(
x

2n
)‖E2

+2nK(1− 1
2n

)‖f(
x + σ(x)

2n+1
+

y + σ(y)
2n+1

)

+f(
x + σ(x)

2n+1
+

y + σ(y)
2n+1

)− 2f(
x

2n+1
+

σ(x)
2n+1

)}‖E2

≤ 2n(1−p)Kθ[‖x‖p + ‖y‖p +
1
2p
‖x + σ(x)‖p +

1
2p
‖y + σ(y)‖p].

Here 21−p < 1, then by letting n → +∞, we get that J is a solution of
Jensen functional equation (1.6).

Assume now that there exist two functions Ji : E1 −→ E2 (i = 1, 2) that
are solutions of equation (1.6) with inequality (2.3). First, we will prove by
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mathematical induction that

Ji(
x

2n
) + (

1
2n
− 1)Ji(

x

2n+1
+

σ(x)
2n+1

) =
1
2n

Ji(x), (i = 1, 2). (2.8)

From equation (1.6) it follows that if we replace x and y by x
2n+2 + σ(x)

2n+2 , we
get

Ji(
x

2n+1
+

σ(x)
2n+1

) = Ji(
x

2n+2
+

σ(x)
2n+2

),

for all n ∈ N. Hence we have for n = 1

Ji(
x

2
)− 1

2
Ji(

x

4
+

σ(x)
4

) = Ji(
x

2
)− 1

2
Ji(

x

2
+

σ(x)
2

) =
1
2
Ji(x).

This proves (2.8) for n = 1. The inductive step must now be demonstrated to
hold true for the integer n + 1, that is,

Ji(
x

2n+1
) + (

1
2n+1

− 1)Ji(
x

2n+2
+

σ(x)
2n+2

)

=
1
2
[Ji(

x

2n
) + (

1
2n
− 1)Ji(

x

2n+1
+

σ(x)
2n+1

)]

+Ji(
x

2n+1
)− 1

2
Ji(

x

2n
)− 1

2
Ji(

x

2n+1
+

σ(x)
2n+1

)

=
1
2
[
1
2n

Ji(x)] + 0

=
1

2n+1
Ji(x).

Therefore, the relation (2.8) is true for any naturel number n. Now, we are
able to prove the uniqueness of the mapping J . For all x ∈ E1 and all n ∈ N,
we have

‖J1(x)− J2(x)‖E2

= 2n‖J1(
x

2n
) + (

1
2n
− 1)J1(

x

2n+1
+

σ(x)
2n+1

)

−J2(
x

2n
)− (

1
2n
− 1)J2(

x

2n+1
+

σ(x)
2n+1

)‖E2

≤ 2nK‖J1(
x

2n
)− f(

x

2n
)‖E2 + 2nK‖J2(

x

2n
)− f(

x

2n
)‖E2

+2nK(1− 1
2n

)‖J1(
x

2n+1
+

σ(x)
2n+1

)− f(
x

2n+1
+

σ(x)
2n+1

)‖E2
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+2nK(1− 1
2n

)‖J2(
x

2n+1
+

σ(x)
2n+1

)− f(
x

2n+1
+

σ(x)
2n+1

)‖E2

≤ 2n(1−p) 4K2θ

2p − 2
[(2p + 1)‖x‖p +

1
2p − 1

‖x + σ(x)‖p].

Finally, by letting n → +∞, we obtain J1(x) = J2(x) for all x ∈ E1. This
completes the proof of Theorem 2.1. ¤

In the following theorem, we shall prove a result about Hyers-Ulam stability
of equation (1.6) for the case p < 1.

Theorem 2.2. Let E1 be a normed space and E2 a generalized quasi-Banach
space. If a function f : E1 −→ E2 satisfies the inequality

‖f(x + y) + f(x + σ(y))− 2f(x)‖E2 ≤ θ(‖x‖p + ‖y‖p) (2.9)

for some θ ≥ 0, p < 1 and for all x, y ∈ E1. Then there exits a unique mapping
j: E1 −→ E2, that is a solution of the Jensen functional equation (1.6) such
that j(e) = f(e) and

‖f(x)− j(x)− f(e)‖E2 ≤ Kθ[‖x‖p +
1

2− 2p
‖x− σ(x)‖p], x ∈ E1. (2.10)

If p < 0, then inequality (2.9) holds for x, y 6= 0 and (2.10) for x 6= 0 and
x− σ(x) 6= 0.

Proof. Let f : E1 −→ E2 satisfies the inequality (2.9). Then also f − f(e)
satisfies (2.9). Without loss of generality, we assume that f(e) = 0.

Letting y = −x in (2.9) yields

‖f(x)− 1
2
f(x− σ(x))‖E2 ≤ θ‖x‖p. (2.11)

Now, by replacing x and y by 2n−1x− 2n−1σ(x) in (2.9), we get

‖f(2nx−2nσ(x))−2f(2n−1x−2n−1σ(x))‖E2 ≤ 2θ2(n−1)p‖x−σ(x))‖p. (2.12)

By applying the inductive argument, we obtain

‖f(x)− 1
2n

f(2n−1x− 2n−1σ(x))‖E2 (2.13)

≤ Kθ‖x‖p + K
θ

2
‖x− σ(x))‖p[1 + 2p−1 + 22(p−1) + . . . + 2(n−2)(p−1)]

For n+1, we have
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‖f(x)− 1
2n+1

f(2nx− 2nσ(x))‖E2

= ‖{f(x)− 1
2n

f(2n−1x− 2n−1σ(x))}

+
1

2n+1
{2f(2n−1x− 2n−1σ(x))− f(2nx− 2nσ(x))}‖E2

= ‖{f(x)− 1
2n−1

f(2n−2x− 2n−2σ(x))}

+
1
2n
{2f(2n−2x− 2n−2σ(x))− f(2n−1x− 2n−1σ(x))}

+
1

2n+1
{2f(2n−1x− 2n−1σ(x))− f(2nx− 2nσ(x))}‖E2

= ‖{f(x)− 1
2
f(x− σ(x))}+

1
22
{2f(x− σ(x))− f(2x− 2σ(x))}

+ · · ·
+

1
2n
{2f(2n−2x− 2n−2σ(x))− f(2n−1x− 2n−1σ(x))}

+
1

2n+1
{2f(2n−1x− 2n−1σ(x))− f(2nx− 2nσ(x))}‖E2

≤ K[θ‖x‖p +
2θ

22
‖x− σ(x)‖p + · · ·+ 2(n−1)p

2n+1
2θ‖x− σ(x)‖p]

= Kθ‖x‖p +
θK

2
‖x− σ(x))‖p[1 + 2(p−1) + . . . + 2(n−1)(p−1)].

Which proves the validity of inequality (2.13).
Put for n ∈ N, (n ≥ 1)

jn(x) =
1
2n

f(2n−1x− 2n−1σ(x)), x ∈ E1. (2.14)

From (2.12) we have for n ∈ N and x ∈ E1

‖jn+1(x)− jn(x)‖E2

= ‖ 1
2n+1

f(2nx− 2nσ(x))− 1
2n

f(2n−1x− 2n−1σ(x))‖E2

=
1

2n+1
‖f(2nx− 2nσ(x))− 2f(2n−1x− 2n−1σ(x))‖E2

≤ 2n(p−1) θ

2p
‖x− σ(x)‖p.

Since 2p−1 < 1, hence {jn(x)}n∈N is a Cauchy sequence for every x ∈ E1.
However, E2 is a generalized quasi-Banach space. Therefore, define j(x) =
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limn→+∞ jn(x) for any x ∈ E1. Now, we can verify that j is a solution of the
Jensen functional equation (1.6). For all x, y ∈ E1, we have

‖jn(x + y) + jn(x + σ(y))− 2jn(x)‖E2

=
1
2n
‖f(2n−1x + 2n−1y − 2n−1σ(x)− 2n−1σ(y))

+f(2n−1x + 2n−1σ(y)− 2n−1σ(x)− 2n−1y)
−2f(2n−1x− 2n−1σ(x))‖E2

=
1
2n
‖f(2n−1(x− σ(x)) + 2n−1(y − σ(y)))

+f(2n−1(x− σ(x)) + 2n−1σ(y − σ(y)))
−2f(2n−1(x− σ(x)))‖E2

≤ θ

2p
2n(p−1)[‖x− σ(x)‖p + ‖y − σ(y)‖p].

Since 2p−1 < 1, it follows that j is a solution of Jensen functional equation
(1.6). It remains to prove that there is only one solutions of Jensen functional
equation (1.6) which satisfies (2.10). For the contrary, suppose that there are
two such mappings, say j1 and j2 such that j1(e) = j2(e) = 0. First, we can
verify by induction that

ji(2n−1x− 2n−1σ(x)) = 2nji(x). (2.15)

For all x ∈ E1 and all n ∈ N, we have

‖j1(x)− j2(x)‖E2 =
1
2n
‖j1(2n−1x− 2n−1σ(x))− j2(2n−1x− 2n−1σ(x))‖E2

≤ K

2n
‖j1(2n−1x− 2n−1σ(x))− f(2n−1x− 2n−1σ(x))‖E2

+
K

2n
‖j2(2n−1x− 2n−1σ(x))− f(2n−1x− 2n−1σ(x))‖E2

≤ 2n(p−1) 4K2θ

2p(2− 2p)
‖x− σ(x)‖p.

If we let n → +∞, we get j1(x) = j2(x) for all x ∈ E1. This completes the
proof of Theorem 2.2. ¤

3. Hyers-Ulam stability of (1.7) with p < 1 and p > 1

In this section, we investigate the Hyers-Ulam stability for equation (1.7).
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Theorem 3.1. Let E1 be a normed space and E2 a generalized quasi-Banach
space. If a function f : E1 −→ E2 satisfies the inequality

‖f(x + y)− f(x + σ(y))− 2f(y)‖E2 ≤ θ(‖x‖p + ‖y‖p) (3.1)

for some θ ≥ 0, p > 1 and for all x, y ∈ E1. Then there exits a unique mapping
S : E1 −→ E2, defined by

S(x) = lim
n→+∞ 2nf(

x

2n
) (3.2)

that is a solution of the functional equation (1.7) such that

‖f(x)− S(x)‖E2 ≤
2θK2

2p − 2
‖x‖p +

K2θ

2(2p − 2)
‖x + σ(x)‖p, x ∈ E1. (3.3)

Proof. Suppose that f satisfies inequality (3.1). Substituting x = 0 and y =
x
2 + σ(x)

2 in (3.1) we obtain

‖f(
x

2
+

σ(x)
2

)‖E2 ≤
θ

2p+1
‖x + σ(x)‖p. (3.4)

By replacing x, y by x
2 in (3.1) and applying the triangle inequality (1.5) we

get

‖f(x)− 2f(
x

2
)‖E2 ≤

2θK

2p
‖x‖p +

θK

2p+1
‖x + σ(x)‖p. (3.5)

Now, we will show by induction on n that

‖f(x)− 2nf(
x

2n
)‖E2 ≤ 2θK2

2p
‖x‖p[1 + 21−p + . . . + 2(n−1)(1−p)] (3.6)

+
θK2

2p+1
‖x + σ(x)‖p[1 + 21−p + · · ·+ 2(n−1)(1−p)].

From (3.5) it follows that (3.6) is true for n = 1. Now, we will prove the
validity of the inequality (3.6) for n ∈ N.
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‖f(x)− 2nf(
x

2n
)‖E2

= ‖[f(x)− 2n−1f(
x

2n−1
)] + 2n−1[f(

x

2n−1
)− 2f(

x

2n
)]‖E2

= ‖[f(x)− 2n−2f(
x

2n−2
)] + 2n−2[f(

x

2n−2
)− 2f(

x

2n−1
)]

+2n−1[f(
x

2n−1
)− 2f(

x

2n
)]‖E2

= ‖f(x)− 2f(
x

2
)] + 2[f(

x

2
)− 2f(

x

4
)]

+ · · ·+ 2n−2[f(
x

2n−2
)− 2f(

x

2n−1
)] + 2n−1[f(

x

2n−1
)− 2f(

x

2n
)]‖E2

≤ K[
2θK

2p
‖x‖p +

θK

2p+1
‖x + σ(x)‖p +

4θK

22p
‖x‖p

+
2θK

22p+1
‖x + σ(x)‖p + · · ·+ 2n−2 2θK

2p

1
2(n−2)p

‖x‖p

+2n−2 θK

2p+1

1
2(n−2)p

‖x + σ(x)‖p + 2n−1 2θK

2p

1
2(n−1)p

‖x‖p

+2n−1 θK

2p+1

1
2(n−1)p

‖x + σ(x)‖p]

=
2θK2

2p
‖x‖p[1 + 21−p + · · ·+ 2(n−1)(1−p)]

+
θK2

2p+1
‖x + σ(x)‖p[1 + 21−p + · · ·+ 2(n−1)(1−p)].

This proves (3.6) for all n. Let us now define the sequence functions

Sn(x) = 2nf(
x

2n
), x ∈ E1, n ∈ N. (3.7)

We shall verify that {Sn(x)}n∈N is a Cauchy sequence for every x ∈ E1.
Indeed, in view of (3.5), we get for all natural number n that

‖Sn+1(x)− Sn(x)‖E2 = ‖2n+1f(
x

2n+1
)− 2nf(

x

2n
)‖E2

≤ 2n(1−p)K[
2θ

2p
‖x‖p +

θ

2p+1
‖x + σ(x)‖p].

Since 21−p < 1, we have proved our statement. However, E2 is a generalized
quasi-Banach space, thus we can define S(x) = limn→+∞ Sn(x) for x ∈ E1.
The function S satisfies (1.7). Indeed, by using (3.7) and (3.1), we get
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‖Sn(x + y)− Sn(x + σ(y))− 2Sn(y)‖E2

= 2n‖f(
x

2n
+

y

2n
)− f(

x

2n
+

σ(y)
2n

)− 2f(
y

2n
)‖E2

≤ 2n(1−p)θ[‖x‖p + ‖y‖p].

Hence, from 21−p < 1, we get that S is a solution of equation (1.7).

Assume now that there exist two functions Si : E1 −→ E2 (i = 1, 2) that
are solutions of (1.7) which satisfies the inequality (3.3). First, we will prove
by mathematical induction on n that

Si(
x

2n
) =

1
2n

Si(x). (3.8)

By letting x = y = x
2n + σ(x)

2n in (1.7), we get Si( x
2n + σ(x)

2n ) = 0 for all n ∈ N,
so for n = 1, we have

Si(
x

2
) =

1
2
[2Si(

x

2
) + Si(

x

2
+

σ(x)
2

)− Si(x)] +
1
2
Si(x)

= 0 +
1
2
Si(x)

=
1
2
Si(x).

This proves (3.8) for n = 1. The inductive step must now be demonstrated to
hold true for the integer n + 1, that is,

Si(
x

2n+1
) =

1
2
[2Si(

x

2n+1
) + Si(

x

2n+1
+

σ(x)
2n+1

)− Si(
x

2n
)] +

1
2
Si(

x

2n
)

= 0 +
1

2n+1
Si(x)

=
1

2n+1
Si(x).

Which proves (3.8) for n+1. Now, we will prove the uniqueness of the mapping
S. For all x ∈ E1 and all n ∈ N, we have

‖S1(x)− S2(x)‖E2 = 2n‖S1(
x

2n
)− S2(

x

2n
)‖E2

≤ 2nK‖S1(
x

2n
)− f(

x

2n
)‖E2 + 2nK‖S2(

x

2n
)− f(

x

2n
)‖E2

≤ 2n(1−p) K3θ

2p − 2
[4‖x‖p + ‖x + σ(x)‖p].



Hyers-Ulam stability in quasi Banach spaces 595

Finally, by letting n → +∞, we obtain S1(x) = S2(x) for all x ∈ E1. This
completes the proof of Theorem 3.1. ¤

Theorem 3.2. Let E1 be a normed space and E2 a generalized quasi-Banach
space. If a function f : E1 −→ E2 satisfies the inequality

‖f(x + y)− f(x + σ(y))− 2f(y)‖E2 ≤ θ(‖x‖p + ‖y‖p) (3.9)

for some θ ≥ 0, p < 1 and for all x, y ∈ E1. Then there exits a unique mapping
h: E1 −→ E2, that is a solution of equation (1.7) such that

‖f(x)− h(x)‖E2 ≤
2K2θ

2− 2p
[‖x‖p +

1
2
‖x + σ(x)‖p], x ∈ E1. (3.10)

Proof. If we replace x and y by x + σ(x), we get

‖f(x + σ(x))‖E2 ≤ θ‖x + σ(x)‖p. (3.11)

Substituting x = y = x in (3.9) and using the triangle inequality (1.5) we get

‖f(x)− 1
2
f(2x)‖E2 ≤ Kθ[‖x‖p +

1
2
‖x + σ(x)‖p]. (3.12)

Now, we shall verify that for every n ∈ N, we have

‖f(x)− 1
2n

f(2nx)‖E2 ≤ K2θ‖x‖p[1 + 2p−1 + . . . + 2(n−1)(p−1)] (3.13)

+
K2θ

2
‖x + σ(x))‖p[1 + 2p−1 + . . . + 2(n−1)(p−1)].

The inequality (3.12) means that (3.13) is satisfied for n = 1. Now we have
for n + 1,
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‖f(x)− 1
2n+1

f(2n+1x)‖E2

= ‖[f(x)− 1
2n

f(2nx)] +
1
2n

[f(2nx)− 1
2
f(2n+1x)]‖E2

= ‖[f(x)− 1
2n−1

f(2n−1x)] +
1

2n−1
[f(2n−1x)− 1

2
f(2nx)]

+
1
2n

[f(2nx)− 1
2
f(2n+1x)]‖E2

= ‖[f(x)− 1
2
f(2x)] +

1
2
[f(2x)− 1

2
f(4x))]

+ . . . +
1

2n−1
[f(2n−1x)− 1

2
f(2nx)] +

1
2n

[f(2nx)− 1
2
f(2n+1x)]‖E2

≤ K‖f(x)− 1
2
f(2x)‖E2 +

K

2
‖f(2x)− 1

2
f(4x))‖E2

+ · · ·+ K

2n−1
‖f(2n−1x)− 1

2
f(2nx)‖E2 +

K

2n
‖f(2nx)− 1

2
f(2n+1x)‖E2

≤ K[θK‖x‖p +
θK

2
‖x + σ(x)‖p +

2pθK

2
‖x‖p +

2pθK

4
‖x + σ(x)‖p

+ · · ·+ 2(n−1)p

2n−1
θK‖x‖p +

2(n−1)p

2n−1

θK

2
‖x + σ(x)‖p

+
2np

2n
θK‖x‖p +

2np

2n

θK

2
‖x + σ(x)‖p]

= K2θ‖x‖p[1 + 2p−1 + . . . + 2n(p−1)]

+
K2θ

2
‖x + σ(x)‖p[1 + 2p−1 + . . . + 2n(p−1)].

Which proves the inequality (3.13). Now, put for n ∈ N

hn(x) =
1
2n

f(2nx), x ∈ E1. (3.14)

From (3.12), we have for n ∈ N and x ∈ E1

‖hn+1(x)− hn(x)‖E2 = ‖ 1
2n+1

f(2n+1x)− 1
2n

f(2nx)‖E2

=
1
2n
‖f(2nx)− 1

2
f(2n+1x)‖E2

≤ 2n(p−1)θK[‖x‖p +
1
2
‖x + σ(x)‖p.
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Since 2p−1 < 1, hence {hn(x)}n∈N is a Cauchy sequence for every x ∈ E1.
However, E2 is a complete space, define, therefore

h(x) = lim
n→+∞hn(x), x ∈ E1.

Now, we will show that h is a solution of equation (1.7). Let x, y be two
elements of E1. From (3.9) it follows that

‖hn(x + y)− hn(x + σ(y))− 2hn(y)‖E2

=
1
2n
‖f(2nx + 2nx)− f(2nx + 2nσ(y))− 2f(2ny)‖E2

≤ 2n(p−1)θ[‖x‖p + ‖y‖p].

By letting n → +∞, we get the desired result that

h(x + y)− h(x + σ(y)) = 2h(y),

for all x, y ∈ E1.

Assume now that there exist two functions hi : E1 → E2 (i = 1, 2) that are
solutions of equation (1.7) with (3.10). First, we will prove by mathematical
induction

2nhi(x) = hi(2nx). (3.15)

By letting x = y = 2n−1x in (1.7), we get

hi(2nx)− hi(2n−1x + 2n−1σ(x)) = 2hi(2n−1x), (3.16)

because hi(2n−1x + 2n−1σ(x)) = 0. For n = 1, we have

hi(2x)− hi(x + σ(x)) = hi(2x) = 2hi(x).

By using (3.16) the inductive step hold true for the integer n + 1. Therefore,
the equality (3.15) is true for any naturel number n. Now, we able to prove
the uniqueness of the mapping h. For all x ∈ E1 and all n ∈ N, we have

‖h1(x)− h2(x)‖E2 =
1
2n
‖h1(2nx)− h2(2nx)‖E2

≤ K
1
2n

[‖h1(2nx)− f(2nx)‖E2 + ‖h2(2nx)− f(2nx)‖E2 ]

≤ 4K3θ

2− 2p
2n(p−1)[‖x‖p +

1
2
‖x + σ(x)‖p].

If we let n → +∞, we get h1(x) = h2(x) for all x ∈ E1. This completes the
proof. ¤
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4. Hyers-Ulam stability of equation (1.6) and (1.7) in β-Banach
spaces

Theorem 4.1. Let E1 be a normed space, E2 a β-Banach space and f : E1 −→
E2 a mapping which satisfies the inequality

‖f(x + y) + f(x + σ(y))− 2f(x)‖E2 ≤ θ(‖x‖p + ‖y‖p) (4.1)

for some θ ≥ 0, p > 1 and for all x, y ∈ E1. Then there exits a unique mapping
J : E1 −→ E2, defined by

J(x) = lim
n→+∞ 2nf(

x

2n
) (4.2)

that is a solution of the Jensen functional equation (1.6) such that

‖f(x)− J(x)‖E2 ≤
2K2pθ

(2βp − 2β)
1
β

‖x‖p +
θK2p

2(2βp − 2β)
1
β

‖x + σ(x)‖p (4.3)

Proof. Replacing x = 0 and y = x
2 + σ(x)

2 in (4.1), we find

‖f(
x

2
+

σ(x)
2

)‖E2 ≤
θ

2p+1
‖x + σ(x)‖p, (4.4)

By replacing x, y by x
2 in (4.1) and using the triangle inequality (1.3) we get

‖f(x)− 2f(
x

2
)‖E2 ≤

2Kθ

2p
‖x‖p +

Kθ

2p+1
‖x + σ(x)‖p, (4.5)

for all x ∈ E1. Replacing x by x
2n in (4.5) and multiply both sides of (4.5) to

2n, we get

‖2nf(
x

2n
)− 2n+1f(

x

2n+1
)‖E2 ≤ 2n(1−p)Kθ[2‖x‖p +

‖x + σ(x)‖p

2
] (4.6)

for all x ∈ E1 and all nonnegative integers n. Using (4.6) and the inequality
(1.4), we have

‖2mf(
x

2m
)− 2nf(

x

2n
)‖β

E2
≤

n−1∑

k=m

2k(1−p)βKβθβ[2‖x‖p +
‖x + σ(x)‖p

2
]β (4.7)

for all x ∈ E1 and all nonnegative integers n and m with m < n. This show
that {2nf( x

2n )} is a Cauchy sequence for all x ∈ E1. Consequently, we can
define J : E1 −→ E2 by

J(x) = lim
n−→+∞ 2nf(

x

2n
)

for all x ∈ E1. Putting m = 0 in (4.7) and taking the limit as n −→ +∞,
we obtain (4.3). Let us now show that J is a solution of Jensen functional
equation (1.6). Indeed,
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‖Jn(x + y) + Jn(x + σ(y))− 2Jn(x)‖E2

= 2n‖f(
x

2n
+

y

2n
) + f(

x

2n
+

σ(y)
2n

)− 2f(
x

2n
)‖

≤ 2n(1−p)θ[‖x‖p + ‖y‖p].

Here 21−p < 1, then by letting n → +∞, we get that J is a solution of
equation (1.6). The uniqueness of the mapping J can be proved by using
some computations similar to the ones of the proof of Theorem 2.1. This ends
the proof of Theorem 4.1. ¤

Theorem 4.2. Let E1 be a normed space, E2 a β-Banach space and f : E1 −→
E2 a mapping which satisfies the inequality

‖f(x + y) + f(x + σ(y))− 2f(x)‖E2 ≤ θ(‖x‖p + ‖y‖p) (4.8)

for some θ ≥ 0, p ∈]0, 1[ and for all x, y ∈ E1. Then there exits a unique
mapping j : E1 −→ E2, that is a solution of the Jensen functional equation
(1.6) such that

‖f(x)− j(x)‖E2 ≤
2Kθ

(2β − 2βp)
1
β

‖x‖p +
Kθ

2(2β − 2βp)
1
β

‖x + σ(x)‖p, x ∈ E1.

(4.9)

Proof. Letting x = 0 and y = x + σ(x) in (4.8), we get

‖f(x + σ(x))‖E2 ≤
θ

2
‖x + σ(x)‖p. (4.10)

Replacing x and y by x in (4.8) and using the triangle inequality (1.3), we get

‖f(x)− 1
2
f(2x)‖E2 ≤ Kθ‖x‖p +

θK

4
‖x + σ(x)‖p, (4.11)

for all x ∈ E1. If we replace x in (4.11) by 2nx and multiply both sides of
(4.11) to 1

2n , then we have

‖f(2nx)
2n

− f(2n+1x)
2n+1

‖E2 ≤ 2(p−1)n[Kθ‖x‖p +
θK

4
‖x + σ(x)‖p], (4.12)

for all x ∈ E1 and all nonnegative integers n. Since E2 is a β-Banach space,
we have

‖f(2nx)
2n

− f(2mx)
2m

‖β
E2
≤ Σn−1

k=m2kβ(p−1)[Kθ‖x‖p +
θK

4
‖x + σ(x)‖p]β, (4.13)

for all x ∈ E1 and all nonnegative integers n and m with m < n. Therefore we
conclude that the sequence {f(2nx)

2n } is a Cauchy sequence in E2 for all x ∈ E1.
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Since E2 is complete, so we can define j: E1 −→ E2 by

j(x) = lim
n−→+∞

f(2nx)
2n

for all x ∈ E1. Letting m = 0 and passing the limit n −→ +∞ in (4.13), we
get (4.9). The rest of the proof can be derived by using some computations of
the proof of Theorem 2.1 and Theorem 4.1. ¤
Theorem 4.3. Let E1 be a normed space, E2 a β-Banach space and f : E1 −→
E2 a mapping which satisfies the inequality

‖f(x + y) + f(x + σ(y))− 2f(x)‖E2 ≤ θ(‖x‖p + ‖y‖p) (4.14)

for some θ ≥ 0, p ≤ 0 and for all x, y ∈ E1. Then there exits a unique mapping
h : E1 −→ E2, defined by

j(x) = lim
n→+∞

1
2n

f(2n−1x− 2n−1σ(x)) (4.15)

that is a solution of the Jensen functional equation (1.6) such that

‖f(x)− j(x)‖E2 ≤ θ[‖x‖βp +
‖x + σ(x)‖βp

2β − 2βp
]
1
β , x ∈ E1. (4.16)

Proof. Let f : E1 −→ E2 satisfies the inequality (4.14), then also f − f(e)
satisfies (4.14). Without loss of generality we assume that f(e) = 0. By
letting y = −x in (4.14), we obtain

‖f(x)− 1
2
f(x− σ(x))‖E2 ≤ θ‖x‖p. (4.17)

Now, if we replace x and y in (4.14) by 2n−1x− 2n−1σ(x), we get

‖f(2nx−2nσ(x))−2f(2n−1x−2n−1σ(x))‖E2 ≤ 2θ2(n−1)p‖x−σ(x))‖p. (4.18)

By applying the inductive argument, we obtain

‖f(x)− 1
2n

f(2n−1x− 2n−1σ(x))‖β
E2

(4.19)

= ‖{f(x)− 1
2
f(x− σ(x))}+

1
22
{2f(x− σ(x))− f(2x− 2σ(x))}

+ · · ·+ 1
2n
{2f(2n−2x− 2n−2σ(x))− f(2n−1x− 2n−1σ(x))}‖β

E2

≤ ‖f(x)− 1
2
f(x− σ(x))‖β

E2
+

1
22β

‖2f(x− σ(x))− f(2x− 2σ(x))‖β
E2

+ · · ·+ 1
2nβ

‖{2f(2n−2x− 2n−2σ(x))− f(2n−1x− 2n−1σ(x))‖β
E2

≤ θβ‖x‖pβ +
θβ

2β
‖x− σ(x))‖pβ[1 + 2β(p−1) + · · ·+ 2(n−2)β(p−1)],
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for all x ∈ E1. Put for n ∈ N, (n ≥ 1)

jn(x) =
1
2n

f(2n−1x− 2n−1σ(x)), x ∈ E1. (4.20)

Using (4.18) we get

‖jn+1(x)− jn(x)‖β
E2

= ‖ 1
2n+1 f(2nx− 2nσ(x))− 1

2n f(2n−1x− 2n−1σ(x))‖β
E2

≤ 2βn(p−1) θ
2p ‖x− σ(x)‖βp.

From 2β(p−1) < 1, we deduce that {jn(x)}n∈N is a Cauchy sequence for
every x ∈ E1. Since, E2 is a β-Banach space, we can define the following limit

j(x) = lim
n→+∞ jn(x)

for any x ∈ E1 and we can easily verify that j is a solution of Jensen functional
equation (1.6). The rest of the proof is similar to the proof of Theorem 2.2.

The following results follows by using some ideas of the proof of Theorem
3.1 and Theorem 3.2. ¤

Theorem 4.4. Let E1 be a normed space and E2 a β-Banach space. If a
function f : E1 −→ E2 satisfies the inequality

‖f(x + y)− f(x + σ(y))− 2f(y)‖E2 ≤ θ(‖x‖p + ‖y‖p) (4.21)

for some θ ≥ 0, p > 1 and for all x, y ∈ E1. Then there exits a unique mapping
S : E1 −→ E2, defined by

S(x) = lim
n→+∞ 2nf(

x

2n
) (4.22)

that is a solution of the functional equation (1.7) such that

‖f(x)− S(x)‖E2 ≤
2Kθ

(2βp − 2β)
1
β

[‖x‖p +
‖x + σ(x)‖p

4
], x ∈ E1. (4.23)

Theorem 4.5. Let E1 be a normed space and E2 a β-Banach space. If a
function f : E1 −→ E2 satisfies the inequality

‖f(x + y)− f(x + σ(y))− 2f(y)‖E2 ≤ θ(‖x‖p + ‖y‖p) (4.24)

for some θ ≥ 0, p < 1 and for all x, y ∈ E1. Then there exits a unique mapping
g : E1 −→ E2, defined by

g(x) = lim
n→+∞

1
2n

f(2nx) (4.25)
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that is a solution of Jensen functional equation (1.7) such that

‖f(x)− g(x)‖E2 ≤
2Kθ

(2β − 2βp)
1
β

[‖x‖p +
1
2
‖x + σ(x)‖p], x ∈ E1. (4.26)
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[6] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately ad-
ditive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.

[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.
U. S. A. 27 (1941), 222-224.

[8] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44
(1992), 125-153.

[9] D. H. Hyers G. I. Isac and Th. M. Rassias, Stability of Functional Equations in Several
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[27] Th. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-
Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.

[28] Th. M. Rassias and J. Tabor, Stability of Mappings of Hyers-Ulam Type, Hardronic
Press, Inc., Palm Harbor, Florida, 1994.

[29] S. Rolewicz, Metric Linear Spaces, Reidel/PWN-Polish Sci. Publ., Dordrecht, 1984.
[30] J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann.

Polon. Math. 83 (2004), 243-255.
[31] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ. New York,

1961. Problems in Modern Mathematics, Wiley, New York 1964.


