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Abstract. The aim of this paper is to establish common fixed point theorems under gener-
alized (¢ — ¢)-weak contractions in the setting of complete S-metric spaces and we support
our result by some examples. Also an application of our results, we obtain some fixed point
theorems of integral type. Our results extend Theorem 2.1 and 2.2 of Doric [5], Theorem 2.1

of Dutta and Choudhury [6], and many other several results from the existing literature.

1. INTRODUCTION

The classical Banach’s contraction principle is one of the most useful results
in fixed point theory. It is a very popular tool for solving existence problems
in many different fields of mathematics. Banach contraction principle has
been generalized in various ways either by using contractive conditions or by
imposing some additional conditions on the ambient space. In a metric space
setting it can be briefly stated as follows.
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Theorem 1.1. ([3]) Let (X,d) be a complete metric space and T: X — X be
a map satisfying

d(T(z), T(y)) < qd(z,y), forallz,ye X, (1.1)
where 0 < q < 1 s a constant. Then
(C1) T has a unique fixed point u in X ;
(C2) The Picard iteration {x,}5>, defined by
T+l =Txn, n=0,1,2,... (1.2)
converges to u, for any xg € X.

Remark 1.2. (i) A map satisfying (C'1) and (C2) is said to be a Picard
operator (see, [13, 14]).
(ii) Inequality (1.1) also implies the continuity of T'.

In 1997, Alber and Delabrieer in [2] introduced the concept of ¢-weak con-
traction as follows.

Definition 1.3. ([2]) A mapping 7: X — X is called a ¢-weak contraction,
if for each z,y € X, there exists a function ¢: [0,00) — [0, 00) such that ¢ is
positive on (0, +00) and ¢(0) = 0, and

d(T(z), T(y)) < d(z,y) — ¢(d(x,y)). (1.3)

The authors defined such mappings for single-valued maps on Hilbert spaces
and proved a novel fixed point result for weak contraction in the given space.

In 2001, Rhoades [12] has shown that the result which Alber and Delabrieer
have proved in [2] is also valid in complete metric spaces. The result of Rhoades
is as follows.

Theorem 1.4. Let (X, d) be a nonempty complete metric space and let T: X —
X be a ¢p-weak contraction on X. If ¢ is a continuous and nondecreasing func-
tion with ¢(t) > 0 for all t > 0 and ¢(0) = 0, then T' has a unique fized point.

Remark 1.5. If we take ¢(t) = gt where 0 < ¢ < 1, then (1.3) reduces to
(1.1).

Dutta and Choudhury [6] in 2008, have introduced a new generalization of
contraction principle and proved the following theorem.

Theorem 1.6. ([6]) Let (X,d) be a complete metric space and let T: X — X
be a self-mapping satisfying the inequality

P(d(T(x), T(y))) < ¥(d(z,y)) — o(d(z,y)) (1.4)
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where x,y € X, 1, ¢: [0,00) — [0,00) are both continuous and monotone non-
decreasing functions with ¥(t) = 0 = ¢(t) if and only if t = 0. Then T has a
unique fized point.

Remark 1.7. (i) If we take 9 (t) =t for all ¢ > 0, then (1.4) reduces to
(1.3).
(i) If we take ¢ (t) =t for all t > 0 and ¢(t) = (1—q)1p(t) where 0 < g < 1,
then (1.4) reduces to (1.1).

In 2009, Doric [5] generalized Theorem 1.6 for a pair of maps as follows.

Theorem 1.8. ([5]) Let (X,d) be a complete metric space and let S,T: X —
X be two self-mappings satisfying the inequality

Y(d(T(z), S(y))) < v(M(z,y)) — d(M(z,y)) (1.5)
for any x,y € X, where M (z,y) is given by

M(z,y) = max {d(:c, y),d(z,Tx),d(y, Sy), =[d(z, Sy) + d(y, Tx)}}

1
2
and
(1) ¥: [0,00) — [0,00) is a continuous monotone nondecreasing function
with Y (t) = 0 if and only if t = 0,
(2) ¢:[0,00) = [0,00) is a lower semi-continuous function with ¢(t) =0
if and only if t = 0.
Then there exists the unique point u € X such that uw = Tu = Su.

In 2010, Abbas and Doric [1] proved similar results on fixed point in com-
plete metric spaces involving four mappings while Murthy et al. [9] obtained
fixed point results in complete metric spaces under (1, p)-generalized weak
contractive condition.

In 2012, Sedghi et al. [15] have introduced the notion of S-metric space
which is a generalization of a G-metric space and D*-metric space. In [15] the
authors proved some properties of S-metric spaces. Also, they obtained some
fixed point theorems in S-metric space for a self-map (see. [7],[8],[10],[11])

The main purpose of the present work is to generalize above few results in
the setting of S-metric spaces. For this, we need the notion of S-metric space
and its basic properties. So, first we recall the notion and basic properties of
S-metric space.

2. DEFINITIONS AND LEMMAS

We need the following definitions and lemmas in the sequel.
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Definition 2.1. ([15]) Let X be a nonempty set and S: X3 — [0,00) be a
function satisfying the following conditions for all z, y, z, t € X:

(SM1) S(z,y,2z) =0 if and only if z =y = z;

(SM2) S(z,y,2) < S(x,,t) + S(y, y, 1) + S(z, 2, 1).

Then the function S is called an S-metric on X and the pair (X, S) is called
an S-metric space or simply SMS.

Example 2.2. ([15]) Let X = R” and ||.|| a norm on X. Then S(z,y,2) =
ly + 2z —2z|| + ||y — 2| is an S-metric on X.

Example 2.3. ([15]) Let X = R™ and ||.|| a norm on X. Then S(z,y,z) =
|z — z|| + |ly — z|| is an S-metric on X.

Example 2.4. ([16]) Let X = R be the real line. Then S(z,y,2) = | — 2| +
ly — z| for all z,y,z € R is an S-metric on X. This S-metric on X is called
the usual S-metric on X.

Lemma 2.5. ([15], Lemma2.5) In an S-metric space, we have S(z,z,y) =
S(y,y,z) for all x,y € X.

Lemma 2.6. ([15],Lemma2.12) Let (X,S) be an S-metric space. If x,, — x
and y, — y as n — oo then S(xy, T, yn) — S(z,x,y) as n — oo.

Definition 2.7. ([15]) Let (X, S) be an S-metric space.

(1) A sequence {z,} in X converges to x € X if S(zp,xn,z) — 0 as
n — 0o, that is, for each € > 0, there exists ng € N such that for all
n > ng, we have S(z,,x,,x) < e. We denote this by lim, o z, = =
or T, — T as n — Q.

(2) A sequence {z,} in X is called Cauchy if S(zp, Tn, zm) — 0 as n,m —
oo, that is, for each € > 0, there exists ng € N such that for all
n,m > ng, we have S(p, Tn, Tm) < €.

(3) The S-metric space (X, S) is called complete if every Cauchy sequence
in X is convergent in X.

Definition 2.8. Let T be a self mapping on an S-metric space (X,.S). Then
T is said to be continuous at x € X if for any sequence {z,} in X with z,, — =
implies that Tx, — Tz as n — oo.

Definition 2.9. ([15]) Let (X, S) be an S-metric space. A mapping T: X —
X is said to be a contraction if there exists a constant 0 < L < 1 such that

S(Tz, Tz, Ty) < LS(x,x,y) (2.1)
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for all x,y € X.
If the S-metric space (X, S) is complete then the mapping defined as above
has a unique fixed point.

Now, we generalize the definitions of ¢-weak contractions and (i) — ¢)-weak
contractions in S-metric space as follows.

Definition 2.10. (Weak Contraction Mapping) Let (X,S) be an S-metric
space. A mapping T: X — X is said to be ¢-weak contraction if
S(TIE,TIE,Ty) S S($7$ay) —gZ)(S(x,x,y)), (22)

where z,y € X, ¢: [0,00) — [0, 00) is continuous and nondecreasing, ¢(¢) =0
if and only if ¢ = 0 and lim;_,~ ¥(t) = 0.

Remark 2.11. If we take ¢(t) = Lt, where 0 < L < 1 then (2.2) reduces to
(2.1).

Definition 2.12. Let (X, S) be an S-metric space. A mapping 7: X — X is
said to be generalized (¢ — ¢)-weak contraction if for all z,y € X
P(S(T, Tz, Ty)) <P (S(z,2,y)) — ¢(S(x, z,y)), (2.3)

where 1, ¢: [0, 00) — [0, 00) are both continuous and monotone nondecreasing
functions with ¢(t) = 0 = ¢(¢) if and only if ¢t = 0.

Remark 2.13. (i) If we take ¢(t) =t forall t > 0 and ¢(¢) = (1 —L)y(t)
where 0 < L < 1, then (2.3) reduces to (2.1).
(ii) If we take 9 (t) =t for all t > 0, then (2.3) reduces to (2.2).

3. MAIN RESULTS

In this section, we shall establish unique common fixed point theorems in a
complete S-metric space for generalized (1) — ¢)-weak contractions.

Theorem 3.1. Let (X, S) be a complete S-metric space and F,G: X — X be
two self mappings satisfying the inequality
for all x,y,z € X, where N(x,y,z) is given by

1
N(z,y,z) = max{S(aj,y,z), §[S(x,az,Fx) + S(z,2,Gz)],

1
i[S(a:, z,Gz) + S(z, z, Fa:)]}

and
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(A1) ¢: [0,00) — [0,00) is a continuous monotone nondecreasing function
with ¥(t) = 0 if and only if t =0,
(A2) ¢:[0,00) — [0,00) is a lower semi-continuous function with ¢(t) = 0
if and only if t = 0.
Then there exists the unique point v € X such that v = Fv = Gov.
Proof. For any zp € X, we construct the sequence {z,} for n > 0 recursively
as

Tont1 = Grop, Top = Faoni1 (3.2)
and prove that
S(Tp+1, Tnt1, Tn) — 0asn — oo. (3.3)

Suppose now that n is an odd number. Putting z =y =z, and z = z,,_1 in
inequality (3.1), we get
¢(5($n+1,wn+1,xn)) = Y(S(Fwp, Frp, Gry_1))
< ¢(N($m Ly xn—l))

—d(N(p, T,y Tp—1)), (3.4)

which implies
B(S@asts Tt 1, 0)) S DN (@ Ty t): (3.5)
Using the properties of 1) and ¢ functions in the above inequality, we obtain
S(Tnt1, Tnt1, Tn) < N(Tp, Tn,y Tp—1). (3.6)

Now using condition (SM3) and Lemma 2.5, we have
N(xna Tn, xn—l)

= max {S(mn; Tn, xn—l)) %[S(wrw In, Fwn) + S(xn—h Tn—1, Gwn—l)}v
1

[S(@ns 2n, Gatn1) + S(2n-1, @01, Fan)] |

1
Ty Tn,y Tn—1), i[S(xm Tn, Tpy1) + S(Tn_1, Tn_1, wn)L

[\)

:maX{S

—~

[S(l‘n, Tn,s :En) + S(innfb Tn—1, $n+1)]}

1
Tny Tn, $n,1), §[S($n+1> Tn+1, xn) + S(.’En, Tn, xnfl)]a

| =

—

= maX{S

[S(Tn+1, Tnt1, fvn—l)]}

N =
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1
<max {S(.%'n, T, xn—l)u 5[5(33714-17 Tpy1 + xn); S([Bn, Ly xn—l)]7

1

5 [QS(xn+1; Tn+1, wn) + S(xn—la Tn—1, xn)]}
1

) 5[

1
5 28(@n 1, Tnr1, 20) + S, 2n, 20-1)] -

If S(xpt1, Tnt1,Tn) > S(Tn, Tn, Tp—1), then

=max {S(xna T, Tn—1)s 5 [S(Tni1, Tni1, Tn) + S(Tn, Tn, Tno1)),

N(p, Tn, Tpn—1) = S(Tnt1, Tny1,xn) > 0.

It implies that
V(S (Tni1; Tnat, Tn)) S V(S (Tna1, Tnt1, Tn)) — O(S(Tnt1, Tnr1, Tn))  (3.7)

which is a contradiction. So, we have
S(Tnt1s Tnt1, Tn) < N(@n, Tny Tn—1) < S(Xn, Tn, Tn_1). (3.8)

Similarly, we can obtain the same inequality as above in the case when n
is an even number. Therefore the sequence {S(zp+1,Zn+1,2n)} is monotone
decreasing and bounded. So there exists ¢ > 0 such that

nh_)nolo S(Tp+1, Tnt1, Tn) = nh_)nolo N(zp, Ty, xn—1) =c > 0. (3.9)

Letting n — oo in inequality (3.4), we obtain

¥(c) < P(e) = é(c), (3.10)
which is a contradiction unless ¢ = 0. Hence,

lim S(Zp41, Tnt1,2n) = 0. (3.11)
n—o0

Next we prove that {z,} is a Cauchy sequence. Because of (3.11) it is
sufficient to show that {z2,} is a Cauchy sequence. If otherwise, then there
exists € > 0 for which we can find subsequences {Z o i)} and {zay, )} of {w2,}
and increasing sequences of integers {2m(k)} and {2n(k)} such that n(k) is
smallest index for which,

n(k) > m(k) > k, (3.12)

S(Tam(k)s Tam(k) Tan(k)) = €- (3.13)

Further corresponding to m(k), we can choose n(k) in such a way that it is
the smallest integer with n(k) > m(k) and satisfying (3.12). Then

S(Tom (k) Tam(k)> T2n(k)—1) < €- (3.14)
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Now using (3.13), (3.14), (SM2) and Lemma 2.5, we have

e < S(Tomk)> Tom(k)s Tan(k))
= S(xZn(k’% Lon(k)s mZm(k))
< 28(Zan(k) Ton(k)> Tan(k)—1)
+S(Tom(k)> Tam (k) Ton(k)—1)
< e+ 25(Toan(k)s Ton(k)s Tan(k)—1)- (3.15)
Letting k — oo in equation (3.15) and using (3.11), we get
li =5 1
Jim S (o (kys Tam(k)s Tan(k)) = € (3.16)
Again, with the help of (SM2) and Lemma 2.5, we have
S(Tom (k) Tam(k) Lank) < 25(Tam(k)s Tam(k)s Lam(k)—1)
+S(Ton(k)> Tan(k) T2am(k)—1)
= 28(Tomk) T2m(k)> T2m(k)—1)
+S(x2m(k:)—17x2m(k)—1ax2n(k’))' (317)

Also, with the help of (SM2) and Lemma 2.5, we have

S(Tom(k)—15 Tam(k)=1> Ton(k) <

Letting £ — oo in equation (3.18) and
we get

k—o0

Hm S(Zom k) -1, Tam(k)—15 Tan(k)) =

25 (Tom(k)—1> Tam(k)—1> T2m(k))
+S(Tan(k)> Tan(k) Tom(k))
25 (Tom(k) T2m(k)> T2m(k)—1)

+S(x2m(k)a Lom(k)s x2n(k)) (318)

using (3.11), (3.14), (3.16) and (3.17),

(3.19)

Again, note that with the help of (SM2) and Lemma 2.5, we have

<

S($2m(k)7 Lom(k)> x2n(k’)+1)

<

28(Zom(k) T2m(k)> T2m(k)—1)
+S(Ton(k)+1> Tan(k)+15 L2m(k)—1)
28 (Zam(k) T2m(k)> T2m(k)—1)
+28(Ton(k)+1> T2n(k)+15 T2n(k))

FS(Tom(k)—1> Tam(k)—15 Lan(k))-  (3.20)
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Also, with the help of (SM2) and Lemma 2.5, we have
S(J?Qm(k)—l, Lom(k)—1, $2n(k)) = S($2n(k) y Loan(k)» $2m(k)—1)
< 28(Ton(k) T2n (k) T2n(k)+1)

+S(Tom(k)—1> T2m(k)—1> Ton(k)+1)

25(%2n(k)+15 T2n(k)+1> T2n(k))

( (

) )
FS(T2m (k) =15 T2m(k) =15 T2n(k)+1)

) )

IN

25(Ton(k)+1> Tan(k)+1> T2n(k))

+25(Zom (k) - 15 T2m(k)~15 T2m(k))

(T2 (k)15 T2n(k)+1> L2m(k))

= 28(Ton(k)+1> Tan(k)+1> T2n(k))
+28(Zam (k) T2m(k)> T2m(k)—1)
+S(Tam(k)> Tam(k) Ton(k)+1)-  (3.21)

Letting £ — oo in equation (3.21) and using (3.11), (3.19) and (3.20), we get

J S (@am(k)s Tam(k)s Tan(k)+1) = €- (3.22)

Now consider inequality (3.1) and putting = y = Top)—1, 2 = Ton(k), We
obtain

P(S(

P(S(

—O(S(Tam(k)—1> Tom(k)—15 T2n(k)))-
(3.23)

Fw?m 17Fx2m(k) 17G$2n(k)))

Lom(k)—1s T2m(k)— 17x2n(k)))

V(S (Tom(k)> Tam(k)s Ton(k)+1))

IN

Letting k — oo in equation (3.23) and using (3.19) and (3.22), we get
() < (e) —ole) <9le),

which is a contradiction. This shows that {z,} is a Cauchy sequence and
therefore is convergent in the complete S-metric space (X,S). So, suppose
Ty — U as N — 0.

Now we prove that v = Fv = Gv. Indeed, suppose v # Guv, then for
S(v,v,Gv) > 0, there exist Ny, No € N such that

1
S(zan, Top,v) < ZS(U,U,G’U), Vn > Ny, (3.24)

1
S(Tan—1,Ton—1,v) < ZS(U,U,G'U), Yn>N; (3.25)
and

S(x2n, Ton, Ton—1) < S(v,v,Gv), ¥ n > Na. (3.26)
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Let N3 = max{Nj, Na}, then for any n > N3, we have

1
S(xon, Ton,v) < ZS(U, v, Gv),

1
S(r2n—1,T2n-1,v) < ZS(v,v,Gv)
and
S(xon, Ton, Tan—1) < S(v,v, Gv).
Now, putting = x9,—1 and y = v in equation (3.1), we obtain

1[)(5(1’2,1,1‘2”, G’U)) = Qz[)(‘s((F’:‘L?nfl)F’='E2nflvGY'U))
< Y(N(z2n-1,T20-1,v))
—Qb(N(CL'Qn,l,ZEanl,U)),

where

N(xanla To2n—1, U)

(3.27)

(3.28)

(3.29)

(3.30)

= max {S(xgn_l, Ton—1,0), %[S(wzn_l, Ton—1, Fxon—1) + S(v,v, Gv)],
%[S(xzn,l, Ton—1, Gv) + S(v,v, F:rgn,l)]}

= max {S($2n,1, Ton—1,0), %[S(mzn,l, Ton—1,T2,) + S(v,v, Gv)],
%[S(:cgn_l, Zon—1,Gv) + S(v,v, xzn)]}

= max {S(xgn_l, Toan—1,0), %[S(xgn, Ton, Toan—1) + S(v,v, Gv)],
%[S(azgn_l, Ton—1, GU) + S(xan, Tan, v)]}

= max {S(ajgn_l, Top—1,0), %[S(mgn, Ton, Tan—1) + S(v,v, Gv)],
1

5 [25(%‘2”_1, T2n—1, U) + S(”? v, G’U) + S(x2n7 T2, ’U)] }

Using equation (3.27), (3.28) and (3.29) in (3.31), we obtain

1 S(v,v,Gv) + S(v,v,Gv)],

1
N(zop—1,%on—1,v) < max {15(’0, v, Gv), 5[

1
2

=max {iS(v, v, Gv), S(v,v, Gv), gS(v, v, Gv)},

(3.31)

7[2.35(0, v, Gv) + S(v,v, Gv) + iS(U, v, Gv)]}
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that is,
N(zon—1,22n-1,v) < S(v,v,Gv). (3.32)
Now using equation (3.32) in (3.30), we obtain
(S (zan, xon, Gv)) < Y(S(v,v,Gv)) — ¢(S(v,v, Gv)). (3.33)

On letting n — oo in inequality (3.33), we obtain
P(S(v,v,Gv)) < P(S(v,v,Gv)) — ¢(S(v,v, Gv)), (3.34)

which is a contradiction unless S(v,v,Gv) = 0. Hence, we conclude that
v = Gu. This shows that v is a fixed point of G. As

S(v,v, Fv) < 28(v,v,Gv) + S(Fv, Fv,Gv)
= 2S(v,v,v) + S(Gv, Gv, Fv) (by Lemma 2.5)
< S(v,v, Fv),
which is a contradiction. Hence S(v, v, Fv) = 0, that is, v = Fv. Thus v is a
common fixed point of F' and G.
Now to show that the common fixed point of F' and G is unique. For this,

suppose v’ is another common fixed point of F' and G such that z = F'z = Gz
with z # v. From (3.1), we have

»(S(v,v,v"))

P(S(Fv, Fv,Gv'))
< w(N(’U’ v, U/)) - (b(N(v? U, UI))
< P(S(v,v,0")) = ¢(S(v,v,v")),
which is a contradiction unless S(v,v,v") = 0. Thus we conclude that v = v'.

This shows that the common fixed point of F' and G is unique. This completes
the proof. O

If we take max {S(a:, y,2), 5[S(z,z, Fz) + S(z,2,Gz)], 3[S(z,z, G2)

+5(z, z, F:L')]} = S(z,y, z) in Theorem 3.1, then we obtain the following result
as corollary.

Corollary 3.2. Let (X,S) be a complete S-metric space and F,G: X — X
be two self mappings satisfying the inequality
Y(S(Fx, Fy,Gz)) < ¢(S(x,y,2)) — o(S(x,y, 2)), (3.35)

for all x,y,z € X, and where b and ¢ are functions defined as in Theorem
3.1. Then there exists the unique point v € X such that v = Fv = Gu.

Remark 3.3. Corollary 3.2 extends Theorem 2.1 of Dutta and Choudhury
[6] for a pair of maps from complete metric space to that in the setting of
complete S-metric space considered in this paper.
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If we take max {S(x, y,2), 5[S(z,z, Fx) + S(2,2,Gz)], 5[S (2, z, Gz)
—i—S(z,z,Fa;)]} = S(z,y,2) and F' = G =T in Theorem 3.1, then we obtain

the following result as corollary.
Corollary 3.4. Let (X,S) be a complete S-metric space and T: X — X be a
self mapping satisfying the inequality

P(S(Tx, Ty, Tz)) < p(S(x,y,2)) — ¢(S(,y, 2)), (3.36)
for all x,y,z € X, and where ¢ and ¢ are continuous monotone and nonde-
creasing functions defined on [0,00) with ¥ (t) = ¢(t) = 0 if and only if t = 0.
Then T has a unique fized point in X.

Remark 3.5. Corollary 3.4 extends Theorem 2.1 of Dutta and Choudhury [6]
from complete metric space to that in the setting of complete S-metric space
considered in this paper.

Also as a corollary, we have the following result.
Theorem 3.6. Let (X,S) be a complete S-metric space and T: X — X be a
self mapping satisfying the inequality
Y(S(Tz,Ty,Tz)) < p(N(z,y,2)) — ¢(N(z,y,2)), (3.37)
for all x,y,z € X, where N(z,y,z) is given by
1
N@,y.2) = max{S(z,y,2), 5[S(2,2,T2) + S(z,2,T2)),

1
i[S(ac, x,Tz)+ S(z, z, T:L‘)]}

and where 1, ¢ are functions defined as in Theorem 3.1. Then T has a unique
fized point in X.

Proof. Follows from Theorem 3.1 by taking F =G =T. 0

Remark 3.7. Theorem 3.6 extends Theorem 2.2 of Doric [5] from complete
metric space to that in the setting of complete S-metric space considered in
this paper.

The following results are direct consequences of Theorem 3.6.
Corollary 3.8. Let (X, S) be a complete S-metric space and T: X — X be a
mapping. Suppose there exists « € [0,1) such that

S(Tx, Ty, Tz) < « max {S(:c, Y, 2), %[S(x, x,Tx) + S(z,z, Tz)],

% [S(z,2,T2) + S(z,2, Tx)] }, (3.38)

forall x,y,z € X. Then T has a unique fized point.
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Corollary 3.9. Let (X,S) be a complete S-metric space and T: X — X
be a mapping. Suppose there exist nonnegative real numbers o, B and v with
a+ B+ <1 such that

STz, Ty, Tz) < aS(z,y,2)+ g[S(ﬂs,az,Tac) +5(2,2,T2)]
+7 [S(z,2,T2) + S(z,2,Tx)], (3.39)

2
forall x,y,z € X. Then T has a unique fized point.

Proof. Follows from Corollary 3.8, by noting that

aS(z,y,z) + g[S(a?,l',TCL') +5(z,2,Tz)] + %[S(z, x,Tz) + S(z,2,Tx)]

<(a+p+7) max{S(x,y,z),%[S(m,x,Tx) + S(z,2,T?)],

%[S(az, x,Tz)+ S(z, z, Tx)] } (3.40)
O
4. ILLUSTRATIONS
Now we give some examples in support of our results.
Example 4.1. Let X =[0,1]U{2,3,4,...} and
lz—y—=z| if z,y,2€[0,1], x #y # z,
S(z,y,z)=¢ x+y+z ifatleastoneofzoryorz¢]|0,1] and z #y # z,

0 ife=y=2z,

for all z,y,z € X. Then (X, 5) is a complete S-metric space.
Let : [0,00) — [0,00) be defined as
t ifo<t<l,
w(t)_{ﬂ if t>1,
and let ¢: [0,00) — [0,00) be defined as
2 if 0<t<1,
‘b(t)_{; if > 1.
Let T: X — X be defined as
{x—xz if 0<x<1,

Tlr) =91 21 if x€{2,3,4,...}.

Without loss of generality, we assume that x > y > z with « = %, Yy = %

and z = i and discuss the following cases.
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Case I: Let z € [0,1]. Then
Y(S(Tx, Ty, Tz)) = STz, Ty,Tz)
= S(m—x2,y—y2,z—z2>
= -2 - - - (=)
= |e-y-2) -6y -2
< J@-y—2)-@-y—27
= S(x7y7z) - (S(:U,y,z))2
= ¥(S(x,y,2)) = o(S(2,y,2)).
Case II: Let z € {2,3,4,...}. Then
S(Tz,Ty,Tz) = S(x — 1,y — 1,2z — 2%) if 2 € 0, 1]

or
S(Tz, Ty, Tz) = (x—1)+(y—1)+(z—2?)
= r4y+z—22-2
and
STz, Ty, Tz)=S(x—-1,y—1,2—1) ify,z€ {2,3,4,...}
or
STz, Ty,Tz) = z—14y—14z—-1=x+y+2-3
< x4y+z-—2.
Consequently,
(S(Te,Ty,Tz)) = S(Tx,Ty,Tz)
< (z+y+z—2)>
< (z4+y+z—1)(z+y+z+1)
1
= (xt+y+2)?i-1<(z+y+2)? —5
= (S(z,9,2))" = &(S(z,y,2))
1!}(5(1’,:%2)) - ¢(S($,y,2))
Case III: Let x = 2. Then y,z € [0,1], T(z) = 1 and S(Tz,Ty,Tz) =
1+ (y—9?) + (2 — 22) < 2. So, we have 9(S(Tx, Ty, )) (2 ):4. Again
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S(z,y,2) =2+ y+ z. So,
U(S(z,y,2)) = d(S(x,y,2)) = 2+y+2)"—o(2+y+2)°)

1
= 2+y+2)' -3

7
= §+y2+z2+2yz+4y+4z>4

= Y(S(Tx,Ty,Tz)).

Considering all the above cases, we conclude that the inequality used in Corol-
lary 3.4 remains valid for v, ¢ and T constructed in above example and con-
sequently by an application of Corollary 3.4, T" has a unique fixed point which
is 0.

Example 4.2. Let X = [0,1]. We define S: X3 — R, by

S(a.2) = {

for all z,y,z € X. Then (X,S) is a complete S-metric space. We define
F,G: X — X and ¥, ¢ on Ry by F(z) = %, G(z) = 0, ¢(t) = 2t? and
#(t) =t>forallz € X and t € R.

Without loss of generality we assume that x > y > z. Then

0 if r=y=z,
max{z,y,z} if otherwise,

Ty X
F aF ) = {*777 } =5

and
S(z,y,z) = max{z,y,z} = .

Now, we consider

Therefore, we have

1,‘2

2
Thus the inequality (3.35) of Corollary 3.2 holds. Hence F' and G satisfy all

the hypothesis of Corollary 3.2 and 0 is the unique common fixed point of F'
and G.

Example 4.3. Let X = [0,1]. We define S: X3 — Ry by

S(a2) = {

Y(S(Fz, Fy,Gz)) = <22% — 2% =a2? = (S(z,y,2)) — 6(S(z,y, 2)).

0 if x=y=z2,
max{z,y,z} if otherwise,



28 G. S. Salyja, J. K. Kim and W. H. Lim

for all z,y,z € X. Then (X,S) is a complete S-metric space. We define
T: X — X and ¢, ¢ on Ry by T(z) = 2£, ¢(t) = 2t* and ¢(t) = £t for all
rcXandteR,.

Without loss of generality we assume that > y > z. Then, we have

2¢ 2y 2z 2x
ST 7T 7T = {77757}:77
(Tz, Ty, Tz) = max 3°3° 3 3
S(z,y,z) = max{z,y,z} =z,
2
S(z,xz,Tx) = max{zx, z, ?x} =z,

2
S(z,2,Tz) = max{z, z, g} =z,

2
S(z,xz,Tz) = max{z,x, Ez} =z,

2 2
S(z,z,Tx) = max{z, z, g} = g

and

1 1 2
N(z,y,z) = max{z, 5(1’ +2), E(x + ?:r)} =z
Now, we consider
2

$(S(T2,Ty,T2)) = T <a”=[N(zy,2)
= SINGp AP - SNy, )P

= w(N(mayvz>)_¢<N(x7yﬂz)>v
that is,
1!}(S(T$,Ty,TZ)) S w(N(xvyvz)) _QS(N(xayaZ))
Thus the inequality (3.37) of Theorem 3.6 holds. Hence T satisfies all the
hypothesis of Theorem 3.6 and 0 is the unique fixed point of T.

Example 4.4. Let X = [0,1]. We define S: X3 — R, by

- 0 if z= y==z
S(x7 Y, Z) - { max{x7 Y, Z} lf OtherWise,

for all z,y,z € X. Then (X,S) is a complete S-metric space. We define
F,G: X — X and ¢, ¢ on Ry by F(z) = £, G(z) = %, 4(t) = 3t* and
¢(t) = 3t* forall z € X and t € Ry
Without loss of generality we assume that x > y > z. Then, we have
Ty z x
S(F.’I},Fy, GZ) = max{§, 5, g} = 5,
S(z,y,z) = max{x,y,z} =z,
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S(z,z,Gz)

S(z,z,Fx)

and

N(z,y,z) = max {ZL’, 5[3@ + 2]

Now, we consider

Y(S(Fz, Fy,Gz))

S(z,z, Fr) = max{z, x, g} =7z,
= max{z, z, g} =z,
S(z,z,Gz) = max{x, z, g} =z,
= max{z, z, g} = g
1 1
,5[33 + g]} =z.
x? 9
= ? <z [N(a:,y,z)]
4 1
- g[N(JJ,y, Z)]2 - g[N(.ZL‘,y,Z”z
= Y(N(z,y,2)) — ¢(N(z,y,2)),

that is,

(S(Fz, Fy,Gz))

< w(N(xayv Z)) - ¢<N($, Y, Z))

29

Thus the inequality (3.1) of Theorem 3.1 holds. Hence F' and G satisfy all the
hypothesis of Theorem 3.1 and 0 is the unique common fixed point of F' and

G.

Example 4.5. Let X
S(@,y,z) =

[0,1] and let S be the usual S-metric, that is,
|z — z| + |y — 2| for all z,y,z € X be the S-metric on X. Then

(X, S) is a complete S-metric space. We define F,G: X — X and ¢, ¢ on R

by F(z) = x — 22, G(x) = x, ¢(t) = t and ¢(t) =

Without loss of generality, we assume that x > y > z. Then, we have

Y(S(Fx, Fy,Gz))

S(Fz, Fy,Gz)
|Fo — Gz| + |Fy — Gz|
(@ —a®) =z +|(y —y*) — 2|

[(z —2®) — 2] + [(y — v*) — 2]
[(z—2)+ (y— 2)] — (2* +¢*)
[(x —2) + |- (z—y)?

(z —

(=) + = 2] =~ gll@ — =)+ (g~ 2]
S(,y,2) — o(S(x,y, 2))
Y(S(9,2)) ~ (S(.y, 2))

%forallmeXanthI&_.
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that is,

Qj)(S(FZL‘,Fy,GZ)) < w(S(x,y,z)) - ¢(S($,y,2))

Thus the inequality (3.35) of Corollary 3.2 holds. Hence F' and G satisfy all
the hypothesis of Corollary 3.2 and 0 is the unique common fixed point of F
and G.

5. APPLICATIONS

As an application of our results, we introduce some fixed point theorems of
integral type.

Denote @ the set of functions ¢: [0, +00) — [0, +00) satisfying the following
hypothesis:

(H1) ¢ is a Lebesgue-integrable mapping on each compact subset of [0, +00);
(H2) for any & > 0 we have [ ¢(s)ds > 0.

It is an easy matter, to see that the mapping ¢: [0, +00) — [0, 400) defined
by

t
ww=4¢@¢ (5.1)
an altering distance function. Now, we have the following result.

Corollary 5.1. Let (X,S) be a complete S-metric space. Let F,G: X — X
be two self mappings and ¢, u € ®, we have

S(Fz,Fy,Gz)
/0 o(s)ds (5.2)

max {S(r,y,z),%[S(m,z,Fr)—l—S(z,z,Gz)],% [S(z,z,G2)+S(z,2,Fx)] }
<

¢(s)ds

0

max {S(x,y,z),% [S(:p,x,Fﬂc)+S(z,z,Gz)},%[S(z,x,Gz)JrS(z,z,F:v)] }
/ pls)ds,

0
forallxz,y,z € X. Then F' and G have a unique common fized point.

Proof. Follows from Theorem 3.1 by taking

vl = [ ots)ds. o) = [ nls)as (5.3)
]

If we take F' = G = T in Corollary 5.1, then we obtain the following result.
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Corollary 5.2. Let (X,S) be a complete S-metric space and T: X — X be a
mapping, and for ¢, € @, we have

S(Tx,Ty,Tz)
/0 o(s)ds (5.4)

/max {S(z,y,z),% [S(z,z,Tx)+S(2,2,T7)] ,% [S(z,x,T2)+S(7,2,Tx)) }
<

o(s)ds

0

/max {S(m,y,z) ,% [S(z,x,Tx)+S(2,2,T2)], % [S(z,x,T2)+S(2,2,Tx)] }

- wu(s)ds
0
forallx,y,z € X. Then T has a unique fized point.
Proof. Follows from Theorem 3.1 by taking F = G =T and
¢ t
vt = [ o(s)ds. ot = [ uls)as. (55)

If we take max {S(ﬂs, y,2), 5[S(z,z, Fx) + S(z,z,Gz)], 5[S(z,z, G2)
-I-S(Z,Z,F:C)]} = S(z,y,2) in Corollary 5.1, then we obtain the following
result.

Corollary 5.3. Let (X,S) be a complete S-metric space. Let F,G: X — X
be two self mappings and ¢, p € @, we have

S(Fz,Fy,Gz) S(x,y,z) S(x,y,2)
/ sas < [ swds— [T uods (50)
0 0 0

forall x,y,z € X. Then F and G have a unique common fized point.

If we take F' = G = T in Corollary 5.3, then we obtain the following result.

Corollary 5.4. Let (X,S) be a complete S-metric space. Let T: X — X be
a mapping and ¢, u € P, we have

S(Tz,Ty,Tz) S(z,y,z) S(z,y,z)
J sas < [ ads— [T uwds 6)
0 0 0

forall x,y,z € X. Then T has a unique fized point.
The following result is a special case of Corollary 5.4.

Corollary 5.5. Let (X,S) be a complete S-metric space. Let T: X — X be
a mapping. Suppose that there exists k € [0,1) such that for ¢ € ®, we have

S(Tz,Ty,Tz) S(w,y,2)
/ o(s)ds <k / o(s)ds (5.8)
0 0
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forallx,y,z € X. Then T has a unique fized point.

Proof. Follows from Corollary 5.4 by taking u(s) = (1 —k)¢(s) where 0 < k <
1. O

Remark 5.6. Corollary 5.5 extends Theorem 2.1 of Branciari [4] from com-
plete metric space to the setting of complete S-metric space.

6. CONCLUSION

In this paper, we define generalized (¢ — ¢)-weak contractions in S-metric
space and establish some unique common fixed point theorems in the frame-
work of complete S-metric spaces and we give some examples in support of
our results. Also an application of our results, we obtained some fixed point
theorems of integral type. Especially, Theorem 3.1 and Theorem 3.6 respec-
tively extend and generalize Theorem 2.1 and 2.2 of Doric [5] and Corollary
3.2 and 3.4 extend and generalize Theorem 2.1 of Dutta and Choudhury [6]
from complete metric space to that in the setting of complete S-metric space.

Our results also extend and generalize several results from the existing lit-
erature regarding S-metric space.
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