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Abstract. We characterize the solution set for a second-order cone linear fractional opti-
mization problem (P). We present sequential Lagrange multiplier characterizations of the
solution set for the problem (P) in terms of sequential Lagrange multipliers of a known
solution of (P).

1. INTRODUCTION AND PRELIMINARIES

Jeyakumar et al. [4] proved the sequential Lagrange multiplier optimality
conditions for convex optimization problem, which held without any constraint
qualification and which were expressed by sequences. Such optimality condi-
tions have been studied for many kinds of convex optimization problems. In
particular, Kim et al. [2] investigated sequential Lagrange multiplier optimal-
ity conditions for a semidefinite linear fractional optimization problem, which
hold without any constraint qualification. Kim et al. [3] also obtained sequen-
tial Lagrange multiplier optimality conditions for a second-order cone linear
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fractional optimization problem, which hold without any constraint qualifica-
tion.

Optimization problems often have multiple solutions. Mangasarian [13]
presented simple and elegant characterizations of the solution set for a convex
optimization problem over a convex set when one solution is known. These
characterizations have been extended to various classes of optimization prob-
lems [5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17]. In particular, Jeyakumar et
al. [5] gave Lagrange multiplier characterizations of the solution set of a con-
vex optimization problem involving convex inequality constraints in terms of
Lagrange multipliers of a known solution.

In this paper, we present sequential Lagrange multiplier characterizations of
the solution set of a second-order cone linear fractional optimization problem
in terms of sequential Lagrange multipliers of a known solution.

Recently, second-order cone optimization problems have been intensively
studied [1].

In this paper, we consider the following second-order cone optimization
problem:

T
L. cr+a«a
(P) Minimize — ———
diz+p
subject to =z € K, a;frx:bi,izl,---,m,
where ¢,d € R", o, are given real numbers, a; € R, i = 1,--- ;m and
bi,i = 1,--- ,m are given real numbers, K = {z = (21,22, -+ ,x,) | 21 2

Vai+ai+o+a2}
Let F={z € K |a]z=0b;,i=1,---,m}.

2. OPTIMALITY THEOREMS

The authors [3] established the following sequential Lagrange multiplier
optimality theorem for (P), which holds without any constraint qualification;

Theorem 2.1. ([3]) Let x € F. Then & is an optimal solution of (P) if and
only if there exist )\é eR,i=1,--- ,m and v; € K such that

— T 1' [ l i — :| =
c q(:c)d—i—lirélo ;)\Za v =0

and
lim v}z = 0,
l—o00

where q(T) = 2;’21%
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The closedness of the set |J Y., Al(a;, b;) + (—K) x R can be used as
A ER

a constraint qualification for the optimal solution of (P) as in the following
theorem [3];

Theorem 2.2. ([3]) Let & € F'. Suppose that |J > vy Ni(ai, b))+ (—K) xR
)\iER
1s closed in R™ x R. Then the following are equivalent:
(i) & is an optimal solution of (P);
(i) there exist y; € R,i =1,--- ,m such that

m T —
cCIT+a
ZH Vi~ g gl teek
and

T —

(s e T
e ety BN N AP S

deJrB”B v=—

(iii) there exist y; € R,i =1,--- ,m such that

m A7
Zyiaz Tz d+ce K
i=1
and
m A7 T
(;yzaz_dT_ Bd—FC) z=0

3. CHARACTERIZATIONS OF SOLUTION SETS

Let S be the set of solutions of (P). Let # € S. Then by Theorem 2.1, there
exist a sequence {y!} in R, i =1,---,m and a sequence {v;} in K such that

c—q(T)d+ ll—lglo [Z yla; — vl] =0
i=1

and
lim v/ 7 = 0,
l—00

_ Tita
T dTz+B”

By using the above sequences {y!} and {v;}, we can characterize the solution
set S as follows:

where ¢(Z)
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Theorem 3.1. The set S of solutions of (P) is as follows:
S={FeF |c—q@d+ lim |3 yla;— v =0, lim of 7 = 0},
l—00 P l—00

Tita

dTz+3"

Proof. Let T € S be any fixed. Then ¢(Z) = ¢(Z) and so (c — ¢(z)d)Tz =
(c — q(@)d)'%. Since ¢ — q(z)d + hm [2111 yla; — vl} =0,

where q(T) =

—g(@)d)Tz + li HaTg) — ol 7| =
(c = q(2)d)" @ + lim Ei_lzyl(“’ ) - fz| =0
and

—adDDTTF + 1 LaT7) — oTF| =
(c = a(@d)"F + lim [izlyxazac) of@| =o.

Hence, we have hm [Zl Y al'z) —of'z } = llim [ZZ 1Y al7) — o7 }
—00

Since lim vlT:E = (),
=0

Ji Yool ) = i [S-al D)~ 7]
SincefES’and%ES,
m m
lliglozy’b’ = fim LZ; yibi = vj x]

Thus lim vl T = 0. Hence, we have
l—o00

Sc{zeF|c—q@)d+ hm [Zyzaz—vl} =0, hm 1 v Iz =0}.
The converse is true by Theorem 2.1. Consequently,
S={zeF|c—q@)d+ hm [Zylaz vl} =0, hm vl T = 0}.
O

When d =0, a =0, 8 =1, (P) becomes the following second-order cone
program (SOCP):
(SOCP) Minimize ¢’z

subject to = € K, a;rx:bi,izl,---,m.
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Let S be the set of solutions of (SOCP) and let z € S. Then, by Theorem
2.1 there exist a sequence {y!} in R, i = 1,--- ,m and a sequence {v;} in K
such that

m
o Jim [ vlos —u] =0
1=

and

lim v/ z = 0.
l—00

By using the above sequences {y!} and {v;}, we have the following theorem
from Theorem 3.1:

Theorem 3.2. The set S of soluttions of (SOCP) is as follows:
S={zeF| limvT=0}.
l—00

Suppose that |J Y%, Ai(ai, b;) + (—K) x RT is closed in R™ x R. Let S
N ER
be the set of solutions of (P) and let # € S. Then by Theorem 2.2, there exist
yi € Rji=1,---,m and v € K such that
= . Iz +a
A

vTE =0, (3.2)

d+c—v=0 and (3.1)

By using the above 7; and v, we can characterize the solution set S as
follows;

Theorem 3.3. We have the solution set S:

m
S:{§€F|C—q(f)d—{—zyzal—U:O’ UT%J:O}’
i=1

where q(T) = ;;gi%
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