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Abstract. This paper studies approximate solutions for a class of nonlinear diffusion popula-
tion models. Our methods are to use the fundamental solution of heat equations to construct
integral forms of the models and the well-known Banach compression map theorem to prove
the existence of positive solutions of integral equations. Non-steady-state local approximate
solutions for suitable harvest functions are obtained by utilizing the approximation theorem

of multivariate continuous functions.

1. INTRODUCTION

The following equation governed by reaction-diffusion equations
w
11— —

wy = dAw + rw( K)—h(X,w,t)7 (X,t) e Qx Ry (1.1)
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subject to the suitable boundary conditions (such as Dirichlet boundary con-
ditions w(X,t) = 0,X € Q) or initial value conditions w(X,0) = wo(X) has

been used to describe the temporal behavior of population of one species which

ow
inhabits a suitable set Q C R"™, where Aw is the Laplace operator, w; = —,

the parameter r > 0 is the intrinsic growth rate of the species, d > 0 is the
diffusion coefficient, K > 0 is the environmental carrying capacity, w(X,t) is
the population number of a species at time ¢ and location X in , h(X,w,t)
is a harvest function.

When A(X,w,t) =0 and K = 1, (1.1) is often called Fisher’s equation, it
was introduced by Fisher to model the advance of a mutant gene in an infinite
one-dimensional habitat[4]. Since then, such model has been widely studied
by many authors. Here, we only mention a few. In 1979, Ludwig, Aronson and
Weinberger [6] used (1.1) to investigate the critical size of the spruce budworm
survival in a patch of forest and the width of an effective barrier that prevent
spruce budworm transmission. In 2003, Neubert [9] studied the the optimal
capture of a Marine protected area by using a proportional harvest function
and

wy = rw(l — %) + DAw — ¢B(X)w,
w(T,0) =w(T,L) =0,
where 0 < X < L is the size of habitat patch.

In 2007, Roques and Chekroun [10] considered the quasi-constant-yield har-
vest rate dh(X)pc(w), that is, they studied the steady-state solutions (w is

ow —

independent of ¢, that is, 57 = 0) of the following equation
wr = DAw + w(p(X) — v(X)w) — 6h(X)pe(w), (X,t) € Q2 x Ry,

subject to Neumann boundary conditions and a more general setting 2 C R™.

In 2017, by studying the existence of positive solutions of semi-positone
Hammerstein integral equations, Lan and Lin [7] proved that in one-dimensional

habitat
I

wy = rw + dAw — h(X,w,t),
K

with the Dirichlet boundary conditions
w(T,0) =w(T,L) =0,

has steady-state positive solutions for a harvest function h(X,w,t) = o.

Up to now, to the best of our knowledge, existing study is limited basically
to the steady-state solutions, there is very little study on non-steady-state
solutions (that is, 2% # 0).
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The work of this paper is to study non-steady-state local approximate so-
lutions of the initial value problem in higher dimensions
w
1— —

{wt:dAuH—rw( =)= h(X.w,b), (X.1) € R x (0,00),

1.2
w(X,0) =wp(X) >0,wg #0, X € R", (12

where h(X,w,t) = ow is a proportional harvest function, 0 < o < r.

2. PRELIMINARIES

The following result is the approximation theorem for multivariate contin-
uous functions ([2], Proposition 1.2, page 6).

Theorem 2.1. Let Q) C R"™ be bounded, f € C(Q) . Then, for any € > 0, there
exists g € C°(R™) such that |f(x) — g(x)| < € on Q, where g is defined as

9(x) = fa(z) = |  fW)¥aly —2)dy, z€R",a>0,

Rn

[ 1s the continuous expansion of f from Q to R",

1
1—|zf?
0, | > 1,

c-exp(— ), =l <1,

Yi(z) =

¢ >0 such that [p, 1(x)de =1, o (z) = a_"wl(g).

Remark 2.2. We can choose g in Theorem 2.1 to have a compact support
set (that is, there is a compact set N of R™ such that f is only non-zero
on N). In fact, letting R > max {|z|: z € Q}, Br(0) = {x € R": |z| < R},
OBR(0) = {z € R" : |z| = R}, h is the continuous expansion of f from Q to
Bg(0),

d(z,0Br(0

A@.0BrO) 40 4 Br0),
f(x) = q d(z,Q) + d(z,0BR(0))

0, x € R™\Bg(0),

where d(x, D) is the distance from x to the set D. It is easy to verify that f is
continuous and when ||z| > R+ «, g(z) = 0. Hence g has a compact support
set.

Remark 2.3. In Theorem 2.1, if f(z) > 0(z € ), we can take g satisfying
g(x) > 0(x € R™). In fact, according to the expansion theorem of continuous

functions, we can take a non-negative continuous expansion h of f in Remark
2.2 from Q to Bgr(0) and from this obtain g(z) > 0(x € R™).
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Next, we introduce the fundamental solution of heat equations [3]
up — Au =0 (2.1)

and use it to construct the solutions to the initial value problems (2.1) and
the nonhomogeneous
ug — Au = f, (2.2)

where t > 0, x € R, u: R" x[0,00) = R, f: R" x [0,00) — R and Au is the
Laplace operator of u defined by

U U
Au= 5+ 5+ +5=) =
Ty T3 Tn 4%
The function
;e*% reR", t>0
(I)(xjt) = (47Tt)n/2 ) ) ,

0, r€R" t<0,

satisfies (2.1) for (z,t) € R™ x (0,00) and is called to be the fundamental
solution of (2.1).

Lemma 2.4. ([3]) For each time t >0, [p, ®(z,t)dx = 1.

Assume that g € C(R™) [ L>*(R"™), we define

u(e.t) = [ oy 09(w)dy

1 _Jz—y|?

 (4mt2 /R T gly)dy, (re Rt >0).  (23)

Theorem 2.5. ([3]) Let u be defined in (2.3). Then

(1) we C®(R" x (0,00)),
(2) uy —Au=0(z € R",t > 0),
(3) )lim u(z,t) = g(z¥)(x € R",t > 0) for each point z° € R™.

(z,£)—(20,0)
Let (see [3])
CH(R" x [0,00)) = {f : R" x [0,00) = B|f, Dy f, D3 f, fr € C(R" x [0,00))}.

Assume that f € CZ(R" x [0,00)) and f has a compact support set (that
is, there is a compact set N of R™ x [0,00) such that f is only non-zero on
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N), we define

u@?) //n (x —y,t = s)f(y, s)dyds
:/o <47r<t—>>// e g, )y, (2.4)

where x € R™,t > 0.

Theorem 2.6. ([3]) Let u be defined in (2.4). Then
(1) uw e CF(R™ x (0,00)),
(2) wt — Au = f(z,t)(x € R*,t > 0),

(3) lim  wu(z,t) = 0(x € R",t > 0) for each point 2° € R".
(z,t)—(z0,0)

Combining Theorem 2.5 and Theorem 2.6, we have

Theorem 2.7. Let [ € CQ(R" x [0,00)) and it has a compact support set,
g € C(RY)NL*®(R"). If u € C?(R™ x [0,00)) satisfies the equation

u(z,t) = /n O(x —y,t)g dy+/ /n x—y,t —s)f(y,s)dyds, (2.5)

then u satisfies

up — Au = f, (x,t) € R™ x (0, 00),
lim  w(xz,t) =g(z°), (z€ R"t>0) for each point z° € R".

(z,t)—(20,0)

Proof. Let
v(z,t) = /R O(x—y,t)g(y)dy
and .
wlert) = [ [ @eyt—5) (. s)dyds.
0 n

Then

U =v-+w.
By Theorem 2.5, we have
{ v — Av =0, (x,t) € R™ x (0, 00),

lim  v(z,t) =0, (z€ R"t>0) for each point 2° € R". (2.6)
(z,t)—(20,0)

By Theorem 2.6, we have
{ wr — Aw = f, (x,t) € R™ x (0, 00),

lim  w(x,t) = g(2°), (x € R",t>0) for each point 2" € R™.
(,£)—(20,0)

Since u; = vy + wy, Au = Av + Aw, we have the desired result. O
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3. A FIXED POINT OF COMPRESSION MAP

Let x = % and u(z,t) = w(X,t). Then dAwy = Au,. The initial-value

problem (1.2) is transformed into the diffusion equation of the form
wg = Au+ru(l — %) — h(Vdz,u,t), (X,t) € R" x (0,00),
u(z,0) = wo(X,0) = wo(vVdz,0) = g(z) > 0,9 #0, X € R",
where (z,t) € R™ x (0,00), which allows us to study (1.2) by studying (3.1).
Based on the relevant properties and conclusions of heat equations, integral
forms of non-steady-state solutions of (3.1) is constructed, and the existence of

integral equations is proved by applying the well-known Banach compression
theorem.

Let T' > 0 be constant, C7(R"™ x [0,T]) be a set of all real-valued bounded
continuous functions on R™ x [0,T]. For u € Cp(R™ x [0,T]), we define the
norm

(3.1)

||ull = sup{[u(z, t)] : (z,t) € (R" x [0,T])}.
A standard augment shows that Cp(R™ x [0,7]) is a Banach space and the
details are omitted.

To obtain local approximate solutions of (1.2), we define a map A and prove
that A has a fixed point.

Let f € C(R" x R x [0,7]) and it has a compact support set and g €
C(R™)(L*>*(R™). For u € Cp(R"™ x [0,T]), we define a map A by

Au(z, £) = { f;% D+ 0 (@) we gzzi € (Oo’,TL (52)
where
| g(@) e R t=0,
Oz, ulz), 1) = { got Jpn @@ =y, t — ) f(y, uly), s)dyds ve gz,i i(o(?,T],

Then by Theorem 2.5 and Theorem 2.6, we have B(xz,t), C(x,u(z),t) € Cp(R"™x
[0,7]) and A maps Cp(R"™ x [0,T]) into Cp(R™ x [0,T1).

Theorem 3.1. Let A be defined by (3.2). Assume that f with respect to the
second variable satisfies the Lipschitz condition

‘f(yauvt) - fN(y7U’t)| < L|U - U|’
where L is a Lipschitz constant. If LT < 1, then A has a unique fized point u

in Cp(R™ x [0,T]). Further, if f>0 on R"x R' x [0,T7], then u(x,t) >0 for
(x,t) € R" x (0,T].
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Proof. For u,v € Cp(R" x [0,T1]), we get

Au— il < [ [ 0yt s s) — Flosoly.s)o)lduds

IN

/0 /n O(x —y,t —s) - Llu(y, s) — v(y, s)|dyds

t
LHU—UH// O(x —y,t — s)dyds.
0 JRr

According to Lemma 2.4, we have

/@(m—y,t—s)dy:/ Oy, t—s)dy=1, t>s

IN

and so
t
| Au — Av|| < Llju — o] / / B(z — y,t — )dyds < LT||u — v].
0 JR"

Since LT < 1, by the well-known Banach compression theorem, there exists a
unique v € Cp(R"x[0,T]) such that Au = u, and for any ug € Cr(R" x[0,T)),
A™uy — u, where
Uy = A"ug, ||un — ul| < " Huy — ||, = LT < 1.
Let f > 0on R" x R' x [0,T). If there exists (xo,t0) € (R™ x (0,T]) such
that u(zo,to) = 0, by (3.2), we have [n, ®(zo — y,t0)g9(y)dy = 0 and then
g(y) = 0, which contradicts g # 0. O

4. LOCAL APPROXIMATE SOLUTIONS OF (1.2)

Local approximate solutions of (1.2) mean that there exist some T' > 0, for
any M > 0 and € > 0, there is w(® € C?(By(0) x (0,T]) with w(® > 0 on
Bs(0) x (0,T] satisfying

sup{|w'? — dAw© — k| : (X,t) € By (0) x (0, T]} — 0,
( )lil?o )w(e)(X, t) = g(z%)(x € R, t > 0) for each point z° € By;(0)
z,t)—(z",0

as € — 0, where Bys(0) ={X : z € R",|X| < M} and B(w) = rw(l——)—ow.

Leta:r—o,b:%and

0, z <0,

2 a

fo(z) = h(z), 0< ZS 3’
0 -
3 z > b
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Notice that fo(z) = 0 (2 € (—00,0) U (%,oo)), foz) =a—2bz (0< 2 < %). It

is easy to know that fy is non-negative on R! and satisfies Lipschitz condition
with the constant L = a.

Theorem 4.1. Assume g € C(R")(L>®(R")\{0} and T > 0 satisfies

gl + L2 —
g\l Lo m

Proof. Setting f(y,z,t) = fo(z). By Ta < 1 and Theorem 3.1, there is a
unique u € Cp(R" x [0,T)), u(z,t) >0, x € R", 0 < t < T satisfying

u.t)= [ @y gy [ [ o@—yt- 9y )dyds. (42

%. If Ta < 1, then (1.2) has local approximate solutions.

2
Notice that 0 < fy(z) < Z—b, we obtain

u(z,t)] < gz~ / @y, )y + & / / (& -yt — s)dyds
RTL mn

Ta®> a
= gllze= + T
and fo(u(z,t)) = h(u(z,t)) € C(R" x . Hence

u(w,t):/n Bz — y.1) dy+//n (@ — y.t — $)h(u(y, s))dyds.

For any M > 0 and € > 0, by Theorem 2.1 and the Remarks, there is h(¢) with
a compact support set satisfying

h) e C)N(R™ x 0,T)), h' >0, (x,t)eR"x][0,T]
and so |h(u(z,t)) — h()(z,t)] < € on BM(O) x [0,T]. Let

w9 (z, 1) :/ O(x—y,t dy+/ / ®(x—y,t—s)h(y, s)dyds. (4.3)

Since g(z) > 0 and g(z) # 0, then u((z,t) > 0 on B\L}(O) x (0,7]. By
d
Theorem 2.7, we have

(1) w9 e C(°°)<BM( ) % (0,T7),
(2) ul? — Au© = h<€> (2,1) € B (0) x (0,7,

3 o )z, ) = B (0),0 <t <T).
@) (m,t)in(iﬁ,())u (z,t) = g(z )(1‘ 6 %( ),0<t<T)
By

ula, ) — (2, 1)) < /0 [ @t = 9lhuly,) ~ hO ) dyds
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for (z,t) € Ba (0) x [0,7] and Lemma 2.4, we obtain

Vd

¢
lu(z, t) — ul(z, t)| < e/ / O(x —y,t — s)dyds < €T
0 n
and
[A(u(z, 1) = h(u' (z,1)| < alu(z,t) = u')(z,1)| < aeT
for (x,t) € Bar (0) x (0,7T]. Let

Sk

D = ulY@,t) — AuO(z,t) — hO(z,1),
Y = h9,t) - h(u(z, 1)),
Sy = h(u(z,t)) — h(ul(z,1)).

Then for (z,t) € B (0) x (0,71,
Vi

uf (2, 1) — Aul (2, 1) — h(u((2,1))] = [S1+ g + B3l =[Sz + Ty
< e+ |¥s] < (T +1)e— 0

and  lim  u(z,t) = g(2°) as e — 0 for each point 2° € B (0) and

(x,t)—(x0,0) Vd
t>0.
Let X = Vdr and w9 (X, t) = u(9(Vdz,t) € CF(Bp(0) x [0,T]). By (4.1),
(1.2) has local approximate solutions. This completes the proof. 4

5. DISCUSSION

In this paper, local approximate solutions of the initial value problem (1.2)
are obtained for h = rw(l — w) — ow. Since the function ®(z,t) appears
in the integral equation (3.2), it brings great difficulties to the calculation of
approximate solutions. How to calculate approximate solutions is our future
work.

Theorem 2.7 plays a key role in the study of approximate solutions of (1.2).
If f in Theorem 2.7 does not satisfy Lipschitz condition, then the study will
be difficult and we need to use the theory of partial differential equations [1, 5]
and other methods such as topological or variational methods [1, 2, 8].
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