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Abstract. This paper studies approximate solutions for a class of nonlinear diffusion popula-

tion models. Our methods are to use the fundamental solution of heat equations to construct

integral forms of the models and the well-known Banach compression map theorem to prove

the existence of positive solutions of integral equations. Non-steady-state local approximate

solutions for suitable harvest functions are obtained by utilizing the approximation theorem

of multivariate continuous functions.

1. Introduction

The following equation governed by reaction-diffusion equations

wt = d∆w + rw(1− w

K
)− h(X,w, t), (X, t) ∈ Ω×R+ (1.1)
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subject to the suitable boundary conditions (such as Dirichlet boundary con-
ditions w(X, t) = 0, X ∈ Ω) or initial value conditions w(X, 0) = w0(X) has
been used to describe the temporal behavior of population of one species which

inhabits a suitable set Ω ⊂ Rn, where ∆w is the Laplace operator, wt =
∂w

∂t
,

the parameter r > 0 is the intrinsic growth rate of the species, d > 0 is the
diffusion coefficient, K > 0 is the environmental carrying capacity, w(X, t) is
the population number of a species at time t and location X in Ω, h(X,w, t)
is a harvest function.

When h(X,w, t) ≡ 0 and K = 1, (1.1) is often called Fisher’s equation, it
was introduced by Fisher to model the advance of a mutant gene in an infinite
one-dimensional habitat[4]. Since then, such model has been widely studied
by many authors. Here, we only mention a few. In 1979, Ludwig, Aronson and
Weinberger [6] used (1.1) to investigate the critical size of the spruce budworm
survival in a patch of forest and the width of an effective barrier that prevent
spruce budworm transmission. In 2003, Neubert [9] studied the the optimal
capture of a Marine protected area by using a proportional harvest function
and {

wt = rw(1− w

K
) +D∆w − qE(X)w,

w(T, 0) = w(T, L) = 0,

where 0 < X < L is the size of habitat patch.

In 2007, Roques and Chekroun [10] considered the quasi-constant-yield har-
vest rate δh(X)ρε(w), that is, they studied the steady-state solutions (w is
independent of t, that is, ∂w

∂t ≡ 0) of the following equation

wt = D∆w + w(µ(X)− υ(X)w)− δh(X)ρε(w), (X, t) ∈ Ω×R+,

subject to Neumann boundary conditions and a more general setting Ω ⊂ Rn.

In 2017, by studying the existence of positive solutions of semi-positone
Hammerstein integral equations, Lan and Lin [7] proved that in one-dimensional
habitat

wt = rw(1− w

K
) + d∆w − h(X,w, t),

with the Dirichlet boundary conditions

w(T, 0) = w(T, L) = 0,

has steady-state positive solutions for a harvest function h(X,w, t) = σ.

Up to now, to the best of our knowledge, existing study is limited basically
to the steady-state solutions, there is very little study on non-steady-state
solutions (that is, ∂w

∂t 6= 0).
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The work of this paper is to study non-steady-state local approximate so-
lutions of the initial value problem in higher dimensions{

wt = d∆w + rw(1− w

K
)− h(X,w, t), (X, t) ∈ Rn × (0,∞),

w(X, 0) = w0(X) ≥ 0, w0 6= 0, X ∈ Rn,
(1.2)

where h(X,w, t) = σw is a proportional harvest function, 0 < σ < r.

2. Preliminaries

The following result is the approximation theorem for multivariate contin-
uous functions ([2], Proposition 1.2, page 6).

Theorem 2.1. Let Ω ⊂ Rn be bounded, f ∈ C(Ω). Then, for any ε > 0, there
exists g ∈ C∞(Rn) such that |f(x)− g(x)| < ε on Ω, where g is defined as

g(x) = fα(x) =

∫
Rn

f(y)ψα(y − x)dy, x ∈ Rn, α > 0,

f is the continuous expansion of f from Ω to Rn,

ψ1(x) :=

 c · exp(− 1

1− |x|2
), |x| < 1,

0, |x| ≥ 1,

c > 0 such that
∫
Rn ψ1(x)dx = 1, ψα(x) = α−nψ1(

x

α
).

Remark 2.2. We can choose g in Theorem 2.1 to have a compact support
set (that is, there is a compact set N of Rn such that f is only non-zero
on N). In fact, letting R > max

{
|x| : x ∈ Ω

}
, BR(0) = {x ∈ Rn : |x| ≤ R},

∂BR(0) = {x ∈ Rn : |x| = R}, h is the continuous expansion of f from Ω to
BR(0),

f(x) :=


d(x, ∂BR(0))

d(x,Ω) + d(x, ∂BR(0))
h(x), x ∈ BR(0),

0, x ∈ Rn\BR(0),

where d(x,D) is the distance from x to the set D. It is easy to verify that f is
continuous and when ‖x‖ > R+ α, g(x) = 0. Hence g has a compact support
set.

Remark 2.3. In Theorem 2.1, if f(x) ≥ 0(x ∈ Ω), we can take g satisfying
g(x) ≥ 0(x ∈ Rn). In fact, according to the expansion theorem of continuous
functions, we can take a non-negative continuous expansion h of f in Remark
2.2 from Ω to BR(0) and from this obtain g(x) ≥ 0(x ∈ Rn).
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Next, we introduce the fundamental solution of heat equations [3]

ut −∆u = 0 (2.1)

and use it to construct the solutions to the initial value problems (2.1) and
the nonhomogeneous

ut −∆u = f, (2.2)

where t ≥ 0, x ∈ Rn, u : Rn× [0,∞)→ R, f : Rn× [0,∞)→ R and ∆u is the
Laplace operator of u defined by

∆u =
2u

x21
+

2u

x22
+ · · ·+

2u

x2n
=

n∑
i=1

2u

x2i
.

The function

Φ(x, t) :=


1

(4πt)n/2
e−
|x|2
4t , x ∈ Rn, t > 0,

0, x ∈ Rn, t < 0,

satisfies (2.1) for (x, t) ∈ Rn × (0,∞) and is called to be the fundamental
solution of (2.1).

Lemma 2.4. ([3]) For each time t > 0,
∫
Rn Φ(x, t)dx = 1.

Assume that g ∈ C(Rn)
⋂
L∞(Rn), we define

u(x, t) =

∫
Rn

Φ(x− y, t)g(y)dy

=
1

(4πt)n/2

∫
Rn

e−
|x−y|2

4t g(y)dy, (x ∈ Rn, t > 0). (2.3)

Theorem 2.5. ([3]) Let u be defined in (2.3). Then

(1) u ∈ C∞(Rn × (0,∞)),
(2) ut −∆u = 0(x ∈ Rn, t > 0),
(3) lim

(x,t)→(x0,0)
u(x, t) = g(x0)(x ∈ Rn, t > 0) for each point x0 ∈ Rn.

Let (see [3])

C2
1 (Rn × [0,∞)) = {f : Rn × [0,∞)→ R|f,Dxf,D

2
xf, ft ∈ C(Rn × [0,∞))}.

Assume that f ∈ C2
1 (Rn × [0,∞)) and f has a compact support set (that

is, there is a compact set N of Rn × [0,∞) such that f is only non-zero on
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N), we define

u(x, t) =

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s)dyds

=

∫ t

0

1

(4π(t− s))n/2

∫
Rn

e
− |x−y|2

4(t−s) f(y, s)dyds, (2.4)

where x ∈ Rn, t > 0.

Theorem 2.6. ([3]) Let u be defined in (2.4). Then

(1) u ∈ C2
1 (Rn × (0,∞)),

(2) ut −∆u = f(x, t)(x ∈ Rn, t > 0),
(3) lim

(x,t)→(x0,0)
u(x, t) = 0(x ∈ Rn, t > 0) for each point x0 ∈ Rn.

Combining Theorem 2.5 and Theorem 2.6, we have

Theorem 2.7. Let f ∈ C2
1 (Rn × [0,∞)) and it has a compact support set,

g ∈ C(Rn)
⋂
L∞(Rn). If u ∈ C2

1 (Rn × [0,∞)) satisfies the equation

u(x, t) =

∫
Rn

Φ(x− y, t)g(y)dy +

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s)dyds, (2.5)

then u satisfies{
ut −∆u = f, (x, t) ∈ Rn × (0,∞),

lim
(x,t)→(x0,0)

u(x, t) = g(x0), (x ∈ Rn, t > 0) for each point x0 ∈ Rn.

Proof. Let

ν(x, t) =

∫
Rn

Φ(x− y, t)g(y)dy

and

ω(x, t) =

∫ t

0

∫
Rn

Φ(x, y, t− s)f(y, s)dyds.

Then
u = ν + ω.

By Theorem 2.5, we have{
νt −∆ν = 0, (x, t) ∈ Rn × (0,∞),

lim
(x,t)→(x0,0)

ν(x, t) = 0, (x ∈ Rn, t > 0) for each point x0 ∈ Rn. (2.6)

By Theorem 2.6, we have{
ωt −∆ω = f, (x, t) ∈ Rn × (0,∞),

lim
(x,t)→(x0,0)

ω(x, t) = g(x0), (x ∈ Rn, t > 0) for each point x0 ∈ Rn.

Since ut = νt + ωt, ∆u = ∆ν + ∆ω, we have the desired result. �
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3. A fixed point of compression map

Let x = X√
d

and u(x, t) = w(X, t). Then d∆wX = ∆ux. The initial-value

problem (1.2) is transformed into the diffusion equation of the form{
ut = ∆u+ ru(1− u

K
)− h(

√
dx, u, t), (X, t) ∈ Rn × (0,∞),

u(x, 0) = w0(X, 0) = w0(
√
dx, 0) = g(x) ≥ 0, g 6= 0, X ∈ Rn,

(3.1)

where (x, t) ∈ Rn × (0,∞), which allows us to study (1.2) by studying (3.1).
Based on the relevant properties and conclusions of heat equations, integral
forms of non-steady-state solutions of (3.1) is constructed, and the existence of
integral equations is proved by applying the well-known Banach compression
theorem.

Let T > 0 be constant, CT (Rn × [0, T ]) be a set of all real-valued bounded
continuous functions on Rn × [0, T ]. For u ∈ CT (Rn × [0, T ]), we define the
norm

||u|| = sup{|u(x, t)| : (x, t) ∈ (Rn × [0, T ])}.
A standard augment shows that CT (Rn × [0, T ]) is a Banach space and the
details are omitted.

To obtain local approximate solutions of (1.2), we define a map A and prove
that A has a fixed point.

Let f̃ ∈ C(Rn × R1 × [0, T ]) and it has a compact support set and g ∈
C(Rn)

⋂
L∞(Rn). For u ∈ CT (Rn × [0, T ]), we define a map A by

Au(x, t) :=

{
B(x, t) + C(x, u(x), t) x ∈ Rn, t ∈ (0, T ],
g(x) x ∈ Rn, t = 0,

(3.2)

where

B(x, t) :=

{ ∫
Rn Φ(x− y, t)g(y)dy x ∈ Rn, t ∈ (0, T ],
g(x) x ∈ Rn, t = 0,

C(x, u(x), t) :=

{ ∫ t
0

∫
Rn Φ(x− y, t− s)f̃(y, u(y), s)dyds x ∈ Rn, t ∈ (0, T ],

0 x ∈ Rn, t = 0.

Then by Theorem 2.5 and Theorem 2.6, we haveB(x, t), C(x, u(x), t) ∈ CT (Rn×
[0, T ]) and A maps CT (Rn × [0, T ]) into CT (Rn × [0, T ]).

Theorem 3.1. Let A be defined by (3.2). Assume that f̃ with respect to the
second variable satisfies the Lipschitz condition

|f̃(y, u, t)− f̃(y, v, t)| ≤ L|u− v|,
where L is a Lipschitz constant. If LT < 1, then A has a unique fixed point u
in CT (Rn× [0, T ]). Further, if f̃ ≥ 0 on Rn×R1× [0, T ], then u(x, t) > 0 for
(x, t) ∈ Rn × (0, T ].
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Proof. For u, v ∈ CT (Rn × [0, T ]), we get

|Au−Av| ≤
∫ t

0

∫
Rn

Φ(x− y, t− s)|f̃(y, u(y, s), s)− f̃(y, v(y, s), s)|dyds

≤
∫ t

0

∫
Rn

Φ(x− y, t− s) · L|u(y, s)− v(y, s)|dyds

≤ L‖u− v‖
∫ t

0

∫
Rn

Φ(x− y, t− s)dyds.

According to Lemma 2.4, we have∫
Rn

Φ(x− y, t− s)dy =

∫
Rn

Φ(y, t− s)dy = 1, t > s

and so

‖Au−Av‖ ≤ L‖u− v‖
∫ t

0

∫
Rn

Φ(x− y, t− s)dyds ≤ LT‖u− v‖.

Since LT < 1, by the well-known Banach compression theorem, there exists a
unique u ∈ CT (Rn×[0, T ]) such that Au = u, and for any u0 ∈ CT (Rn×[0, T ]),
Anu0 → u, where

un = Anu0, ||un − u|| ≤ αn−1||u1 − u0||, α = LT < 1.

Let f̃ ≥ 0 on Rn × R1 × [0, T ]. If there exists (x0, t0) ∈ (Rn × (0, T ]) such
that u(x0, t0) = 0, by (3.2), we have

∫
Rn Φ(x0 − y, t0)g(y)dy = 0 and then

g(y) ≡ 0, which contradicts g 6= 0. �

4. Local approximate solutions of (1.2)

Local approximate solutions of (1.2) mean that there exist some T > 0, for

any M > 0 and ε > 0, there is w(ε) ∈ C2
1 (BM (0) × (0, T ]) with w(ε) > 0 on

BM (0)× (0, T ] satisfying sup{|w(ε)
t − d∆w(ε) − h̃| : (X, t) ∈ BM (0)× (0, T ]} → 0,

lim
(x,t)→(x0,0)

w(ε)(X, t) = g(x0)(x ∈ Rn, t > 0) for each point x0 ∈ BM (0)

(4.1)

as ε→ 0, where BM (0) = {X : x ∈ Rn, |X| ≤M} and h̃(w) = rw(1− w
K

)−σw.

Let a = r − σ, b =
r

K
and

f0(z) :=


0, z < 0,

h̃(z), 0 ≤ z ≤ a

b
,

0, z >
a

b
.
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Notice that f
′
0(z) = 0 (z ∈ (−∞, 0)∪ (

a

b
,∞)), f

′
0(z) = a− 2bz (0 ≤ z ≤ a

b
). It

is easy to know that f0 is non-negative on R1 and satisfies Lipschitz condition
with the constant L = a.

Theorem 4.1. Assume g ∈ C+(Rn)
⋂
L∞(Rn)\{0} and T > 0 satisfies

‖g‖L∞ +
Ta2

4b
=
a

b
. If Ta < 1, then (1.2) has local approximate solutions.

Proof. Setting f̃(y, z, t) = f0(z). By Ta < 1 and Theorem 3.1, there is a
unique u ∈ CT (Rn × [0, T ]), u(x, t) > 0, x ∈ Rn, 0 < t ≤ T satisfying

u(x, t) =

∫
Rn

Φ(x− y, t)g(y)dy+

∫ t

0

∫
Rn

Φ(x− y, t− s)f0(u(y, s))dyds. (4.2)

Notice that 0 ≤ f0(z) ≤
a2

4b
, we obtain

|u(x, t)| ≤ ‖g‖L∞
∫
Rn

Φ(x− y, t)dy +
a2

4b

∫ T

0

∫
Rn

Φ(x− y, t− s)dyds

= ‖g‖L∞ +
Ta2

4b
=
a

b

and f0(u(x, t)) = h̃(u(x, t)) ∈ C(Rn × [0, T ]). Hence

u(x, t) =

∫
Rn

Φ(x− y, t)g(y)dy +

∫ t

0

∫
Rn

Φ(x− y, t− s)h̃(u(y, s))dyds.

For any M > 0 and ε > 0, by Theorem 2.1 and the Remarks, there is h(ε) with
a compact support set satisfying

h(ε) ∈ C(∞)(Rn × [0, T ]), h(ε) ≥ 0, (x, t) ∈ Rn × [0, T ]

and so |h̃(u(x, t))− h(ε)(x, t)| < ε on B M√
d

(0)× [0, T ]. Let

u(ε)(x, t) =

∫
Rn

Φ(x− y, t)g(y)dy+

∫ t

0

∫
Rn

Φ(x− y, t− s)h(ε)(y, s)dyds. (4.3)

Since g(x) ≥ 0 and g(x) 6= 0, then u(ε)(x, t) > 0 on B M√
d

(0) × (0, T ]. By

Theorem 2.7, we have
(1) u(ε) ∈ C(∞)(B M√

d

(0)× (0, T ]),

(2) u
(ε)
t −∆u(ε) = h(ε), (x, t) ∈ B M√

d

(0)× (0, T ],

(3) lim
(x,t)→(x0,0)

u(ε)(x, t) = g(x0)(x ∈ B M√
d

(0), 0 < t < T ).

By

|u(x, t)− u(ε)(x, t)| ≤
∫ t

0

∫
Rn

Φ(x− y, t− s)|h̃(u(y, s))− h(ε)(y, s)|dyds
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for (x, t) ∈ B M√
d

(0)× [0, T ] and Lemma 2.4, we obtain

|u(x, t)− u(ε)(x, t)| ≤ ε
∫ t

0

∫
Rn

Φ(x− y, t− s)dyds ≤ εT

and

|h̃(u(x, t))− h(u(ε)(x, t))| ≤ a|u(x, t)− u(ε)(x, t)| ≤ aεT

for (x, t) ∈ B M√
d

(0)× (0, T ]. Let

Σ1 = u
(ε)
t (x, t)−∆u(ε)(x, t)− h(ε)(x, t),

Σ2 = h(ε)(x, t)− h̃(u(x, t)),

Σ3 = h̃(u(x, t))− h(u(ε)(x, t)).

Then for (x, t) ∈ B M√
d

(0)× (0, T ],

|u(ε)t (x, t)−∆u(ε)(x, t)− h̃(u(ε)(x, t))| = |Σ1 + Σ2 + Σ3| = |Σ2 + Σ3|
≤ |Σ2|+ |Σ3| ≤ (aT + 1)ε→ 0

and lim
(x,t)→(x0,0)

u(ε)(x, t) = g(x0) as ε → 0 for each point x0 ∈ B M√
d

(0) and

t > 0.
Let X =

√
dx and w(ε)(X, t) = u(ε)(

√
dx, t) ∈ C2

1 (BM (0)× [0, T ]). By (4.1),
(1.2) has local approximate solutions. This completes the proof. �

5. Discussion

In this paper, local approximate solutions of the initial value problem (1.2)
are obtained for h = rw(1 − w) − σw. Since the function Φ(x, t) appears
in the integral equation (3.2), it brings great difficulties to the calculation of
approximate solutions. How to calculate approximate solutions is our future
work.

Theorem 2.7 plays a key role in the study of approximate solutions of (1.2).
If f in Theorem 2.7 does not satisfy Lipschitz condition, then the study will
be difficult and we need to use the theory of partial differential equations [1, 5]
and other methods such as topological or variational methods [1, 2, 8].
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