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Abstract. In this paper, we present a fixed point theorem for a family of generalized

condensing multimaps which have ranges of the Zima-Hadžić type in Hausdorff KKM uniform

spaces. It extends Himmelberg et al. type fixed point theorem. As applications, we obtain

some new collective fixed point theorems for various type generalized condensing multimaps

in abstract convex uniform spaces.

1. Introduction and Preliminaries

In [4], Himmelberg et al. introduced condensing multimaps defined on sub-
sets of locally convex spaces and they obtained a fixed point theorem for a
condensing multimap with convex values, closed graph, and bounded range.
The concept of condensing multimaps was extended to generalized condens-
ing multimaps by Petryshyn and Fitzpatrick [17]. Huang et al. [6] modified
the definition of generalized condensing multimaps and got Himmelberg et al.
type fixed point theorem on LG-spaces. Influenced by [1], Amini-Harandi et
al. [2] presented a fixed point theorem for generalized condensing multimaps
on abstract convex uniform spaces. The concept of abstract convex uniform
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spaces was introduced by Park [12] as a generalization of locally convex spaces,
LG-spaces and other abstract locally convex structures.

The aim of this paper is to present new collective fixed point theorems for
generalized condensing multimaps on abstract convex uniform spaces. We be-
gin by extending the concepts of generalized condensing multimaps on locally
convex topological vector spaces in [17] to product of abstract convex uniform
spaces. In Section 3, we present a fixed point theorem for a family of gener-
alized condensing multimaps which have ranges of the Zima-Hadžić type in
Hausdorff KKM uniform spaces. The result extends Himmelberg et al. type
fixed point theorem.

As applications, we obtain some new collective fixed point results for gen-
eralized condensing multimaps in KC class (or KKM class) whose ranges are
Φ-sets in the setting of abstract convex uniform spaces in Section 4. KC class
is equivalent to s-KKM class with surjective function s. So we reformulated
the results in KC class to those in s-KKM class. We show that generalized
condensing multimaps in the ’better’ admissible class defined on abstract con-
vex uniform spaces have fixed point properties whenever their ranges are Klee
approximable in Section 5.

A multimap (or simply, a map) F : X ( Y is a function from a set X
into the power set of Y ; that is, a function with the values F (x) ⊂ Y for
x ∈ X and the fibers F−(y) := {x ∈ X| y ∈ F (x)} for y ∈ Y . For A ⊂ X, let
F (A) :=

⋃
{F (x) |x ∈ A}. Throughout this paper, we assume that multimaps

have nonempty values otherwise explicitly stated or obvious from the context.
The closure operation and the interior operation of F are denoted by ” ”
and Int, respectively.

Let 〈X〉 denote the set of all nonempty finite subsets of a set X.

The followings are due to Park [10, 12].
An abstract convex space (X,D; Γ) consists of a topological space X, a

nonempty set D, and a map Γ : 〈D〉( X with nonempty values ΓA := Γ(A)
for A ∈ 〈D〉. For any nonempty D′ ⊂ D, the Γ-convex hull of D′ is denoted
and defined by coΓD

′ :=
⋃
{ΓA |A ∈ 〈D′〉} ⊂ X.

When D ⊂ X in (X,D; Γ), the space is denoted by (X ⊃ D; Γ) and in case
X = D, let (X; Γ) := (X,X; Γ). When (X ⊃ D; Γ), a subset X ′ of X is said
to be Γ-convex if coΓ(X ′ ∩D) ⊂ X ′. This means that (X ′, D′; Γ′) itself is an
abstract convex space where D′ := X ′ ∩D and Γ′ : 〈D′〉( X ′ a map defined
by Γ′A := ΓA ⊂ X ′ for A ∈ 〈D′〉.

An abstract convex uniform space (X,D; Γ;U) is an abstract convex space
with a basis U of a uniform structure of X. A ⊂ X and U ∈ U , the set U [A]
is defined to be {y ∈ X : (x, y) ∈ U for some x ∈ A}. An abstract convex
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uniform space (X ⊃ D; Γ;U) is called an LΓ-space if D is dense in X and U [C]
is Γ-convex for each U ∈ U whenever C ⊂ X is Γ-convex.

For an abstract convex uniform space (X ⊃ D; Γ;U), a subset S of X is
said to be of the Zima type or of the Zima-Hadžić type if D ∩ S is dense in S
and for each U ∈ U there exists a V ∈ U such that for each N ∈ 〈D ∩ S〉 and
any Γ-convex subset A of S, we have

A ∩ V [z] 6= ∅, ∀z ∈ N =⇒ A ∩ U [x] 6= ∅, ∀x ∈ ΓN .

The following lemma is in Park [12];

Lemma 1.1. Any LΓ-space is of the Zima type.

Even if (X ⊃ D; Γ;U) is of the Zima type, it is not guaranteed that every
subset S of X is of the Zima type, because D∩S is not dense in S in general.
But when D = X, every subset of X is of the Zima type. Preserving the
property of the Zima type on subsets makes theory efficient, so from now on,
we assume that D = X.

A generalized convex space or a G-convex space (X; Γ) consists of a topo-
logical space X such that for each A ∈ 〈X〉 with the cardinality |A| = n + 1,
there exist a subset ΓA of X and a continuous map φA : ∆n → ΓA such
that J ∈ 〈A〉 implies φA(∆J) ⊂ ΓJ . Here, ∆n is the standard n-simplex
with vertices {e0}ni=0, and ∆J is the face of ∆n corresponding to J ∈ 〈A〉;
that is, if A = {a0, a1, . . . , an} and J = {ai0 , ai1 , . . . , aik} ⊂ A, then ∆J =
co{ei0 , ei1 , . . . , eik}.

A subset S of X is called a Γ-convex subset of (X; Γ) if for any N ∈ 〈S〉,
we have ΓN ⊂ S. For details on G-convex spaces, see [14, 15, 16]. A G-
convex uniform space (X; Γ;U) is a G-convex space with a basis U of a uniform
structure of X. A G-convex uniform space (X; Γ;U) is said to be an LG-space
if the uniformity U has a base B such that for each U ∈ B, U [C] is Γ-convex
for each U ∈ U whenever C ⊂ X is Γ-convex. The examples of G-convex
uniform space are given in [9].

Let (X; Γ) be an abstract convex space and Z be a set. For a multimap
F : X ( Z, if a multimap G : X ( Z satisfies F (ΓA) ⊂ G(A) for all A ∈ 〈X〉,
then G is called a KKM map with respect to F . A KKM map G : X ( Z is
a KKM map with respect to the identity map 1X .

A multimap F : X ( Z is called a K-map if, for a KKM map G : X ( Z
with respect to F, the family {G(x)}x∈X has the finite intersection property.
The set K(X,Z) is defined to be {F : X ( Z |F is a K -map}. Similarly, a
KC-map is defined for closed-valued maps G and a KO-map for open-valued
maps G.
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For an abstract convex space (X; Γ), the KKM principle is the statement
1X ∈ KC(X,X)∩KO(X,X). An abstract convex space is called a KKM space
if it satisfies the KKM principle. A KKM uniform space (X; Γ;U) is a KKM
space with a basis U of a uniform structure of X. Known examples of KKM
spaces are given in [11, 13] and the references therein. Note that a generalized
convex space is also a KKM space.

2. Generalized condensing maps

Let (X; Γ) be an abstract convex space, A ⊂ X and put
Γ-coA =

⋂
{C |C is a Γ-convex subset of X containing A}

and
Γ-coA =

⋂
{C |C is a closed Γ-convex subset of X containing A}.

Note that Γ-coA and Γ-coA are the smallest Γ-convex set and the smallest
closed Γ-convex set containing A, respectively. Clearly, coΓA ⊂ Γ-coA.

Lemma 2.1. Let (X; Γ;U) be an abstract convex uniform space of the Zima
type.

(1) If C is a Γ-convex subset of X, then its closure C is Γ-convex.
(2) If A ⊂ X, then Γ-coA = Γ-coA.

Proof. (1) For each U ∈ U , let V ∈ U be the one satisfying the definition of
the Zima type. For any N ∈ 〈C〉, C ∩ V [z] 6= ∅ for all z ∈ N, that means
C ∩ U [x] 6= ∅ for all x ∈ ΓN . Hence ΓN ⊂

⋂
U∈U U [C] = C.

(2) Since Γ-coA is closed, we have Γ-coA ⊂ Γ-coA = Γ-coA. By (1), Γ-coA
is a closed Γ-convex set containing A, so Γ-coA ⊂ Γ-coA. �

A subset S of a uniform spaceX is said to be precompact if, for any entourage
V, there is an N ∈ 〈X〉 such that S ⊂ V [N ].

For a subset A of a uniform space X with a basis U , a measure of precom-
pactness of A is defined by

Ψ(A) = {V ∈ U |A ⊂ V [K] for some precompact subset K of X}.

Lemma 2.2. ([18, Proposition 1.1]) Let X be a uniform space with a basis U
and A,B ⊂ X. Then

(1) A is precompact iff Ψ(A) = U ;
(2) if A ⊂ B, then Ψ(B) ⊂ Ψ(A);
(3) Ψ(A) = Ψ(A); and
(4) Ψ(A ∪B) = Ψ(A) ∩Ψ(B).

Now, we extend the concepts of generalized condensing maps on locally
convex topological vector spaces in [17] to the product of abstract convex
uniform spaces.
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Let {(Xi; Γi)}i∈I be a family of abstract convex spaces, and i ∈ I be fixed.
Let

X =
∏
i∈I

Xi, Xi =
∏

j∈I\{i}

Xj ,

and xi = πi(x) denote the projection of x in Xi. For any N ∈ 〈X〉, let
set ΓN =

∏
i∈I Γi(πi(N)) for each i ∈ I. Note that (X; Γ) forms an abstract

convex space. For details, see [10].

For each N ∈ 〈X〉, Γ-coN is called a polytope in X. An abstract con-
vex uniform space (X; Γ;U) is called an abstract convex uniform space with
precompact polytopes if each polytope in X is precompact.

Let {(Xi; Γi;Ui)}i∈I be a family of abstract convex uniform spaces with
precompact polytopes. For each i ∈ I, let Ψi be a measure of precompactness
in Xi. A map Ti : X ( Xi is called Ψi-condensing provided that Ψi(πi(A)) (
Ψi(Ti(A)) for any subset A satisfying πi(A) is not a precompact subset of
Xi in [8]. Ti is called generalized condensing if A ⊂ X, Ti(A) ⊂ πi(A) and
πi(A)\Γi-coTi(A) is precompact, then πi(A) is precompact.

When I = {1}, Ψi-condensing map reduces to the usual Ψ-condensing map
T : X ( X; that is, Ψ(A) ( Ψ(T (A)) for any nonprecompact subset A
of X. And generalized condensing map T : X ( X becomes a generalized
condensing map in [17] which is similar that of in [2] and [6]; that is, if A ⊂ X,
T (A) ⊂ A and A\Γ-coT (A) is precompact, then A is precompact.

Note that every compact map is condensing. An LG-space is said to be an
locally G-convex space in [6] if U [{x}] is Γ-convex for each x ∈ X and U ∈ U
and if Γ-coA is precompact whenever A is precompact. So a locally G-convex
space is an LΓ-space with precompact polytopes.

Proposition 2.3. If (X; Γ;U) is an LΓ-space with precompact polytopes, then
every condensing map T : X ( X is generalized condensing.

Proof. First we show that if A is precompact subset of X, then Γ-coA is
precompact. For any U ∈ U , we choose V ∈ U such that V ◦ V ⊂ U . Since
A is precompact, there exists an N ∈ 〈X〉 such that A ⊂ V (N). Because
(X; Γ;U) is an LΓ-space, V (Γ-coN) is a Γ-convex set containing V (N). So
Γ-coA ⊂ Γ-coV (N) ⊂ V (Γ-coN). Since Γ-coN is precompact, there exists
an M ∈ 〈X〉 such that Γ-coN ⊂ V (M). Therefore Γ-coA ⊂ V (Γ-coN) ⊂
V (V (M)) ⊂ U(M).

Now we show that Ψ(A) = Ψ(Γ-coA) for any A ⊂ X. By Lemma 2.2,

Ψ(A) ⊃ Ψ(Γ-coA). If V ∈ Ψ(A), then A ⊂ V (K) for some precompact set

K. Then Γ-coA ⊂ Γ-coV (K) ⊂ V (Γ-coK), because V (Γ-coK) is a closed

Γ-convex set containing V (K). Since Γ-coK is precompact, V ∈ Ψ(Γ-coA).
By Lemma 2.1 and Lemma 2.2, Ψ(A) = Ψ(Γ-coA) = Ψ(Γ-coA) = Ψ(Γ-coA).
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Suppose that there exists an A ⊂ X such that T (A) ⊂ A and A\Γ-coT (A) is
precompact, but A is not precompact. Since A ⊂ Γ-coT (A)∪ (A\Γ-coT (A)),

Ψ(A) ⊃ Ψ(Γ-coT (A)) ∩Ψ(A\Γ-coT (A)) = Ψ(Γ-coT (A)) ∩ U = Ψ(T (A)).

Therefore T is not a condensing map. �

By Proposition 2.3, condensing maps are generalized condensing maps on
locally convex spaces, LG-spaces with precompact polytopes and locally G-
convex spaces.

3. Collective fixed points on KKM uniform spaces

From now on we assume that every abstract convex space is an abstract
convex space with precompact polytopes.

The following proposition is a crucial tool for the proof of the main theorems.

Proposition 3.1. Let {(Xi; Γi;Ui)}i∈I be a family of abstract convex uniform
spaces of the Zima type, X =

∏
i∈I Xi and Ti : X ( Xi be a map for each

i ∈ I.

(a) If Q =
∏

i∈I Qi is a nonempty subset of X, then there is a closed Γ-
convex subset K =

∏
i∈I Ki of X such that Γi-co (Ti(K) ∪ Qi) = Ki

for each i ∈ I.
(b) If Xi is a Hausdorff space and Ti is a generalized condensing closed

multimap for each i ∈ I, then there exists a nonempty compact Γ-
convex subset K of X, with K =

∏
i∈I Ki such that Ti(K) ⊂ Ki for

each i ∈ I.

Proof. (a) LetA be the family of all subsets A ofX which satisfies the following
conditions: A =

∏
i∈I Ai, where Ai is a closed Γi-convex subset of Xi such that

Γi-co (Ti(A) ∪Qi) ⊂ Ai for each i ∈ I. Since X ∈ A, A 6= ∅. Note that every
A ∈ A is closed and Γ-convex.

Define a partial order by inverse inclusion, that is, for A,B ∈ A, A ≤
B ⇐⇒ B ⊂ A. Let C be any chain in A. Put M = ∩A∈CA and Mi = ∩A∈CAi

for each i ∈ I, then M =
∏

i∈I Mi. For all A ∈ C and i ∈ I, each Ai is
closed and Γi-convex, so is Mi. Moreover, Ti(M) ∪ Qi ⊂ Ti(A) ∪ Qi, hence
Γi-co (Ti(M) ∪ Qi) ⊂ Γi-co (Ti(A) ∪ Qi) ⊂ Ai, and so Γi-co (Ti(M) ∪ Qi) ⊂
∩A∈CAi = Mi. Thus M ∈ A and M is an upper bound of C. By Zorn’s lemma,
A has a maximal element, say K =

∏
i∈I Ki.

We claim that Γi-co (Ti(K) ∪ Qi) = Ki for all i ∈ I. In fact, put Li =
Γi-co (Ti(K)∪Qi) and L =

∏
i∈I Li, then Li ⊂ Ki and Li is closed Γi-convex.

Since Γi-co (Ti(L) ∪ Qi) ⊂ Γi-co (Ti(K) ∪ Qi) = Li, we have L ∈ A. By the
maximality of K, we conclude that K = L, that is, Γi-co (Ti(K) ∪ Qi) = Ki

for all i ∈ I.
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(b) Choose x0 ∈ X. Define a map T : X ( X by T (x) =
∏

i∈I Ti(x). Put

Ω = ∪j≥0T
j(x0) where T 0(x0) = x0 and T j+1(x0) = T ◦T j(x0). Then Ti(Ω) ⊂

πi(Ω) and πi(Ω)\Ti(Ω) ⊂ {πi(x0)}, so πi(Ω)\Γi-coTi(Ω) is precompact. As
Ti is generalized condensing, πi(Ω) is precompact, so Ti(Ω) is precompact.

Therefore T (Ω) =
∏

i∈I Ti(Ω) is compact.

For i ∈ I, define Gi : T (Ω) ( Ti(Ω) by Gi(x) = Ti(x) ∩ Ti(Ω) for each

x ∈ T (Ω). Since Ti is closed and Ti(Ω) is compact, Gi(x) 6= ∅ for all x ∈ T (Ω),

so Gi is well defined. Let F be a family of all subsets A of T (Ω) which satisfies

the following conditions: A =
∏

i∈I Ai, where Ai is a closed subset of Ti(Ω)
such that Gi(A) ⊂ Ai for each i ∈ I.

Since T (Ω) ∈ F , F 6= ∅. Define a partial order ≤ on F by A ≤ B ⇐⇒
B ⊂ A, for any A,B ∈ F . Let C be any chain in F . Put M = ∩A∈CA and
Mi = ∩A∈CAi for i ∈ I. Then M =

∏
i∈I Mi and Mi is a nonempty closed

subset of Ti(Ω) for all i ∈ I.
For all x ∈M and A ∈ C, Gi(x) ⊂ Ai, so Gi(x) ⊂Mi, that is, Gi(M) ⊂Mi

for each i ∈ I. Thus M is an upper bound of C, and so, by Zorn’s Lemma,
F has a maximal element, say Q =

∏
i∈I Qi, then Gi(Q) ⊂ Qi. Since Ti is

closed, so is Gi, which in conjunction with the compactness of Ti(Ω), shows
that Gi is upper semicontinuous. Therefore Gi(Q) is compact and closed.

Put Yi = Gi(Q) for each i ∈ I and Y =
∏

i∈I Yi. For i ∈ I, Gi(Y ) =
Gi(

∏
i∈I Gi(Q)) ⊂ Gi(

∏
i∈I Qi) = Yi, so the maximality of Q gives us that

Q = Y . Thus Qi = Gi(Q) = Ti(Q) ∩ Ti(Ω) ⊂ Ti(Q).
Let Ki = Γi-co (Ti(K) ∪ Qi) for each i ∈ I and K =

∏
i∈I Ki in (a), then

Qi ⊂ Ti(Q) and Q ⊂ K imply that Qi ⊂ Ti(K). Hence

Ki = Γi-co (Ti(K) ∪Qi) = Γi-co (Ti(K)).

Since Ti(K) ⊂ Ki and Ti is generalized condensing, Ki is compact and so K
is compact. �

Notes. 1. The proof of Proposition 3.1 is motivated by Lemma 3.4 and Lemma
3.5 in [6]. Lemma 3.4 and Lemma 3.5 are on a locally G-convex space (X; Γ)
with I = {1}.

2. If {(Xi ⊃ Di; Γi;Ui)}i∈I be a family of LΓ-spaces and Ti is a condensing
multimap for each i ∈ I, the same conclusion in (b) is obtained without
assuming closedness of Ti [8].

From now on, all topological spaces are assumed to be Hausdorff. The
following fixed point theorem is in [12];

Proposition 3.2. Let (X; Γ;U) be a KKM uniform space and T : X ( X be
a compact upper semicontinuous map with closed Γ-convex values. If T (X) is
of the Zima type, then T has a fixed point.
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Let {(Xi; Γi;Ui)}i∈I be a family of abstract convex uniform spaces, X =∏
i∈I Xi and U be the base of a uniform structure of X generated by {Ui}i∈I .

Clearly (X; Γ;U) is an abstract convex uniform space.

Lemma 3.3. Let {(Xi; Γi;Ui)}i∈I be a family of abstract convex uniform
spaces and X =

∏
i∈I Xi. If (X; Γ;U) is of the Zima type, then (Xi; Γi;Ui) is

of the Zima type for each i ∈ I.

Proof. For i ∈ I, and Ui ∈ Ui, let

U = {(x, y) ∈ X ×X | (πi(x), πi(y)) ∈ Ui}
and V ∈ U be the one satisfying the definition of the Zima type. Let Ni ∈ 〈Xi〉
and Ai be a Γi-convex subset of Xi such that Ai ∩ pi(V )[zi] 6= ∅ for all zi ∈ Ni

where pi(V ) denotes the projection of V in Xi × Xi. Choose y ∈ V and
N ∈ 〈X〉 such that πi(N) = Ni and πj(N) = πj(y) if j 6= i. Put A = Ai×Xi,
then A is a Γ-convex subset of X and A∩V [z] 6= ∅ for all z ∈ N, which implies
A ∩ U [z] 6= ∅ for all x ∈ ΓN =

∏
j∈I Γj(πj(N)). Therefore Ai ∩ Ui[z] 6= ∅ for

all xi ∈ Γi(Ni). �

The following generalization of a Himmelberg et al. [4] fixed point theorem,
is a main result of this paper;

Theorem 3.4. Let {(Xi; Γi;Ui)}i∈I be a family of abstract convex uniform
spaces, X =

∏
i∈I Xi, (X; Γ;U) be a KKM space of the Zima type and Ti :

X ( Xi be a generalized condensing closed multimap with Γi-convex values
for each i ∈ I. Then there exists an x ∈ X such that x ∈

∏
i∈I Ti(x).

Proof. By Lemma 3.3, each (Xi; Γi;Ui) is of the Zima type. By Proposition
3.1, there exists a compact Γ-convex subset K =

∏
i∈I Ki of X such that

Ti(K) ⊂ Ki for each i ∈ I. Define T : X ( X by T (x) =
∏

i∈I Ti(x) for all
x ∈ X, then T (K) ⊂ K. Since T |K is compact and closed, T |K is an upper
semicontinuous map with closed Γ-convex values and T (K) is of the Zima
type. By Proposition 3.2, T |K has a fixed point. �

Corollary 3.5. Let (X; Γ;U) be a KKM uniform space of the Zima type. If
T : X ( X is a generalized condensing closed multimap with Γ-convex values,
then T has a fixed point.

It is shown that if {(Xi; Γi;Ui)}i∈I is a family of LΓ-spaces, then X =∏
i∈I Xi is an LΓ-space, so the following corollary holds;

Corollary 3.6. Let {(Xi; Γi;Ui)}i∈I be a family of LΓ-spaces, X =
∏

i∈I Xi,
(X; Γ) be a KKM space and Ti : X ( Xi be a generalized condensing closed
multimap with Γi-convex values for each i ∈ I. Then there exists an x ∈ X
such that x ∈

∏
i∈I Ti(x).



Collective fixed points for generalized condensing maps 101

Corollary 3.7. Let (X; Γ;U) be an LG-space and T : X ( X be a generalized
condensing closed multimap with Γ-convex values. Then T has a fixed point.

Corollary 3.7 relaxes the conditions of Theorem 3.7 in [6].

4. Fixed point theorems for KC maps

For a given abstract convex space (X; Γ) and a topological space Y, a map
H : Y ( X is called a Φ-map if there exists a map G : Y ( X such that

(i) for each y ∈ Y, coΓG(y) ⊂ H(y);
(ii) Y =

⋃
{ IntG−(x) |x ∈ X}.

In an abstract convex uniform space (X; Γ;U), a subset S of X is called a
Φ-set if, for any entourage U ∈ U , there exists a Φ-map H : S ( X such that
the graph of H is contained in U .

The following propositions are in [10], [12];

Proposition 4.1. Let (X; Γ) be an abstract convex space, C be a Γ-convex
subset of X and Z be a set. If T ∈ K(X,Z), then T |C ∈ K(C,Z).

Proposition 4.2. Let (X; Γ;U) be an abstract convex uniform space, and

T ∈ KC(X,X) be a compact closed map. If T (X) is a Φ-set, then T has a
fixed point.

If every singleton of (X; Γ;U) is Γ-convex, then any subset of the Zima type
in X is a Φ-set [10]. Therefore the following theorem holds;

Theorem 4.3. Let {(Xi; Γi;Ui)}i∈I be a family of abstract convex uniform
spaces such that every singleton is Γi-convex, and X =

∏
i∈I Xi be of the

Zima type. If Ti : X ( Xi is a generalized condensing closed multimap for
each i ∈ I and

∏
i∈I Ti ∈ KC(X,X), then there exists an x ∈ X such that

x ∈
∏

i∈I Ti(x).

Proof. By Proposition 3.1, there exists a compact Γ-convex subset K of X,
with K =

∏
i∈I Ki such that Ti(K) ⊂ Ki for each i ∈ I. Put T =

∏
i∈I Ti, then

T |K is compact closed. Since every singleton is Γi-convex for each i ∈ I, so

is (X; Γ;U). Therefore T (K) is a Φ-set. By Proposition 4.1 and Proposition
4.2, T |K ∈ KC(K,K) and T |K has a fixed point. �

Since any LΓ-space is of the Zima type, the following theorem holds;

Theorem 4.4. Let {(Xi; Γi;Ui)}i∈I be a family of LΓ-spaces, X =
∏

i∈I Xi

and Ti : X ( Xi be a generalized condensing closed multimap for each i ∈ I.
If

∏
i∈I Ti ∈ KC(X,X) and

∏
i∈I Ti(X) is a Φ-set, then there exists an x ∈ X

such that x ∈
∏

i∈I Ti(x).
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From Theorem 4.4, we obtain the following corollary in [2];

Corollary 4.5. Let (X; Γ;U) be an LΓ-space, and T : X ( X be a generalized

condensing closed multimap. If T ∈ KC(X,X) and T (X) is a Φ-set, then T
has a fixed point.

Let X be a nonempty set, (Y ; Γ) be an abstract convex space and Z be
a topological space. If S : X ( Y, T : Y ( Z and F : X ( Z are three
multimaps satisfying

T (coΓS(A)) ⊂ F (A) for all A ∈ 〈X〉,

then F is called an S-KKM map with respect to T . If for any S-KKM map F
with respect to T, the family {F (x)}x∈X has the finite intersection property,
then T is said to have the S-KKM property. The class S-KKM(X,Y, Z) is
defined to be the set {T : Y ( Z |T has the S-KKM property}. If S is
the identity map 1X , then S-KKM(X,X,Z) = KC(X,Z). It was shown that
KC(Y,Z) ⊂ S-KKM(X,Y, Z) in [3].

The following proposition shows the relation between S-KKM maps and
KC-maps more specifically;

Proposition 4.6. Let X be a nonempty set, (Y ; Γ) be an abstract convex
space and Z be a topological space. For any surjective function s : X → Y,
T ∈ KC(Y,Z) if and only if T ∈ s-KKM(X,Y, Z).

The proof of Proposition 4.6 is a modification of Proposition 2.4 [7] for a
convex space. By Proposition 4.6, Theorem 4.3 is reformulated as follows;

Theorem 4.7. Let Z be a nonempty set, {(Xi; Γi;Ui)}i∈I be a family of
abstract convex uniform spaces such that every singleton is Γi-convex, and
X =

∏
i∈I Xi be of the Zima type. If Ti : X ( Xi is a generalized condensing

closed multimap for each i ∈ I and
∏

i∈I Ti ∈ s-KKM(Z,X,X), then there
exists an x ∈ X such that x ∈

∏
i∈I Ti(x).

Theorem 4.7 generalizes and deletes some extra conditions in Theorem 2.7
in [5].

5. Fixed point theorems for the class B of multimaps

Now, we follow the definitions in [12]. Let (E; Γ) be an abstract convex
space, X be a nonempty subset of E, and Y be a topological space. The better
admissible class B of maps from X into Y is defined as follows:
F ∈ B(X,Y ) ⇐⇒ F : X ( Y is a map such that, for any ΓN ⊂ X, where

N ∈ 〈X〉 with the cardinality |N | = n + 1, and for any continuous function
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p : F (ΓN )→ ∆n, there exists a continuous function φN : ∆n → ΓN such that
the composition p ◦ F |ΓN

◦ φN : ∆n → ∆n has a fixed point.

Let (E; Γ;U) be an abstract convex uniform space. A subset K of E is said
to be Klee approximable if, for each entourage U ∈ U , there exists a continuous
function h : K → E satisfying

(1) (x, h(x)) ∈ U for all x ∈ K;
(2) h(K) ⊂ ΓN for some N ∈ 〈K〉;
(3) there exist continuous functions p : K → ∆n and φN : ∆n → ΓN with
|N | = n+ 1 such that h = φN ◦ p.

For a G-convex uniform space (X; Γ;U), every nonempty compact Φ-subset
K of X is Klee approximable.

The following proposition is a fixed point theorem for the class B of mul-
timaps in [12];

Proposition 5.1. Let (X; Γ;U) be an abstract convex uniform space and T ∈
B(X,X) be a closed map such that T (X) is compact Klee approximable. Then
T has a fixed point.

Theorem 5.2. Let {(Xi; Γi;Ui)}i∈I be a family of abstract convex uniform
spaces of the Zima type, X =

∏
i∈I Xi, and Ti : X ( Xi be a generalized

condensing closed multimap for each i ∈ I. Suppose that T :=
∏

i∈I Ti ∈
B(X,X) and T (C) is Klee approximable for each compact Γ-convex subset C
of X. Then T has a fixed point.

Proof. By Proposition 3.1, there exists a compact Γ-convex subset K of X such
that T (K) ⊂ K. Then T |K is closed and T (K) is compact Klee approximable.
T ∈ B(X,X) implies T |K ∈ B(K,K). By Proposition 5.1, T |K has a fixed
point. �
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