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Abstract. Our purpose in this paper is to introduce the concept of complex valued convex

metric spaces and introduce an analogue of the Picard-Ishikawa hybrid iterative scheme, re-

cently proposed by Okeke [24] in this new setting. We approximate (common) fixed points of

certain contractive conditions through these two new concepts and obtain several corollaries.

We prove that the Picard-Ishikawa hybrid iterative scheme [24] converges faster than all of

Mann, Ishikawa and Noor [23] iterative schemes in complex valued convex metric spaces.

Also, we give some numerical examples to validate our results.

1. Introduction

Many real life problems in science and engineering are generally functional
equations. These equations can be written as fixed point equations. Conse-
quently, scientists can investigate the existence of fixed points of such func-
tional equations. Once the existence of fixed point of a mapping is proved,
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then one of the immediate challenge is how to find the value of the fixed point.
One of the most efficient method developed by mathematicians to solve this
problem is the fixed point iterative method. Several authors have developed
many iteration processes to approximate the fixed point of some mappings
(see, e.g. [1], [2], [24], [26]). The speed of convergence is a very important
consideration in preferring an iteration process over another iteration process.

Fixed point theory has become an important tool which have been applied
in the study of theoretical subjects, which are directly applicable in different
applied fields of science. Other areas of applications includes optimization
problems, control theory, economics and a host of others.

In 2011, Azam et al. [5] introduced the notion of complex valued metric
spaces. They established the existence of fixed point for a pair of mappings
satisfying rational inequality. Their results is intended to define rational ex-
pressions which are meaningless in cone metric spaces. Although complex
valued metric spaces form a special class of cone metric spaces (see, e.g. [4],
[28]), yet the definition of cone metric spaces rely on the underlying Banach
space which is not a division ring. Consequently, rational expressions are not
meaningful in cone metric spaces, this means that results involving mappings
satisfying rational expressions cannot be generalized to cone metric spaces. In-
terested readers may see the following references for further studies of papers
in this direction of research ([10]-[14], [30], [33]).

The relationship between the geometry of Banach spaces and fixed point
theory is very strong and have attracted the attention of well-known mathe-
maticians over the years (see, e.g. [6], [27]). Geometric properties play crucial
roles in metric fixed point theory, in which convexity hypothesis and other
geometric properties of Banach spaces are utilized (see, e.g. [16], [29]) and the
references therein.

In 1970, Takahashi [36] introduced the concept of convexity in metric spaces.
Motivated by the results of Takahashi [36], several authors have proved some
interesting results in literature ([3], [6], [8], [15], [20]-[22], [27], [29], [34], [37])
and the references therein.

Motivated by the results above, we introduce the concept of complex val-
ued convex metric spaces and introduce an analogue of the Picard-Ishikawa
hybrid iterative scheme in this new framework. We approximate (common)
fixed points of certain contractive conditions through these two new concepts
and obtain several corollaries. We compare the rate of convergence of some
iterative sequences generated by a generalized nonlinear mapping satisfying
rational inequality. We provide some numerical examples to validate our ana-
lytical results. Our results generalize, extend and unify several known results,
including the results of [24], [25], [35] among others.
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2. Preliminaries

Let C be the set of complex numbers, for the rest of this paper, we will
adopt the partial order ” - ” defined on C in [5].

Definition 2.1. ([5]). Let X be a nonempty set. Suppose that the mapping
d : X ×X → C satisfies:

(1) 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a complex valued metric on X, and (X, d) is called a complex
valued metric space.

Definition 2.2. ([36]) Let (X, d) be a metric space. A mapping W : X ×
X × [0, 1] → X is said to be a convex structure on X if for each (x, y, λ) ∈
X ×X × [0, 1] and u ∈ X,

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y). (2.1)

A metric space X together with the convex structure W is called a convex
metric space, denoted by (X, d,W ).

From the definition of convex structure W on X, it is obvious that

d(u,W (x, y, λ)) ≥ (1− λ)d(u, y)− λd(u, x), (2.2)

for each x, y, u ∈ X and λ ∈ [0, 1].

A nonempty subset C of the convex metric space X is said to be convex if
W (x, y, λ) ∈ C whenever (x, y, λ) ∈ C ×C × [0, 1]. Takahashi [36] proved that
open spheres B(x, r) = {y ∈ X : d(y, x) < r} and closed spheres B[x, r] =
{y ∈ X : d(y, x) ≤ r} are convex. It is known that every normed space is
a convex metric space. However, the converse is not true. There are many
examples of convex metric spaces which are not embedded in any normed
space (see, e.g. [6], [36]).

Remark 2.3. ([6]) Every normed space is a convex metric space, where a
convex structure W (x, y, z;α, β, γ) = αx + βy + γz, for each x, y, z ∈ X and
α, β, γ ∈ I = [0, 1] with α+ β + γ = 1. Indeed

d(u,W (x, y, z;α, β, γ)) = ‖u− (αx+ βy + γz)‖
≤ α‖u− x‖+ β‖u− y‖+ γ‖u− z‖
= αd(u, x) + βd(u, y) + γd(u, z),

for each u ∈ X. But there exists some convex metric spaces which can not be
embedded into normed space.
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Example 2.4. ([6]) Let X = {(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, x3 > 0}. For
x = (x1, x2, x3), y = (y1, y2, y3) ∈ X and α, β, γ ∈ I with α + β + γ = 1, we
define a mapping W : X3 × I3 → X by

W (x, y, z;α, β, γ) = (αx1 + βy1 + γz1, αx2 + βy2 + γz2, αx3 + βy3 + γz3)

and define a metric d : X ×X → [0,∞) by

d(x, y) = |x1y1 + x2y2 + x3y3|.
Then we can show that (X, d,W ) is a convex metric space, but it is not a
normed space.

Example 2.5. ([6]) Let Y = {(x1, x2) ∈ R2 : x1 > 0, x2 > 0}. For each
x = (x1, x2), y = (y1, y2) ∈ Y and λ ∈ I. We define a mapping W : Y 2×I → Y
by

W (x, y, λ) =

(
λx1 + (1− λ)y1,

λx1x2 + (1− λ)y1y2
λx1 + (1− λ)y1

)
and define a metric d : Y × Y → [0,∞) by

d(x, y) = |x1 − y1|+ |x1x2 − y1y2|.
Then we can show that (Y, d,W ) is a convex metric space, but it is not a
normed space.

Motivated by the results above, we next introduce the concept of complex
valued convex metric spaces as follows:

Definition 2.6. Let (X, d) be a complex valued metric space. A mapping
W : X × X × [0, 1] → X is said to be a convex structure on X if for each
(x, y, λ) ∈ X ×X × [0, 1] and u ∈ X,

d(u,W (x, y, λ)) - λd(u, x) + (1− λ)d(u, y). (2.3)

A complex valued metric space X together with the convex structure W is
called a complex valued convex metric space, denoted by (X, d,W ).

From the definition of convex structure W on X, it is obvious that

d(u,W (x, y, λ)) % (1− λ)d(u, y)− λd(u, x), (2.4)

for each x, y, u ∈ X and λ ∈ [0, 1].

Next, we give the following examples of complex valued convex metric
spaces.

Example 2.7. Suppose X = C is the set of all complex numbers. For each
z1, z2 ∈ C, where z1 = x1 + iy1, z2 = x2 + iy2 and α ∈ [0, 1], we define
W : C× C× [0, 1]→ C by

W (z1, z2, α) = α(x1 + x2) + i(1− α)(y1 + y2).
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Define a metric d : C× C→ [0,∞) by

d(z1, z2) = |x1 − x2|+ i|y1 − y2|.
Then we can show that (C, d,W ) is a complex valued convex metric space.

Example 2.8. Suppose X = C is the set of all complex numbers. For each
z1, z2 ∈ C, where z1 = x1 + iy1, z2 = x2 + iy2 and α ∈ [0, 1], we define
W : C× C× [0, 1]→ C by

W (z1, z2, α) = α(x1 + x2) + i(1− α)(y1 + y2).

Define a metric d : C× C→ [0,∞) by

d(z1, z2) = eik|z1 − z2|,
where k ∈ [0, π2 ]. Then we can show that (C, d,W ) is a complex valued convex
metric space.

Let (X, d,W ) be a complex valued convex metric space and T : X → X is a
mapping on X. A point p ∈ X is said to be a fixed point of T if Tp = p. In this
paper, we denote the set of all fixed points of T by F (T ) := {p ∈ X : Tp = p}.

In 1975, Dass and Gupta [9] extended the Banach contraction mapping
principle by using mappings satisfying contractive condition of the rational
type in the framework of complete metric spaces. Similarly, Jaggi [17], Jaggi
and Dass [18] studied the existence of fixed points for mappings satisfying
contractive conditions of the rational type. Motivated by these results, we
study the following contractions in the framework of complex valued convex
metric spaces. Let (X, d,w) be a complex valued convex metric space and
T : X → X be a continuous mapping satisfying the following contractive
condition:

d(Tx, Ty) - k1.
d(y,Ty)(1+d(x,Tx))

1+d(x,y) + k2.
d(x,Tx)d(y,Ty)

d(x,y)

+k3.
d(x,Tx)d(y,Ty)

d(x,y)+d(x,Ty)+d(y,Tx) + hd(x, y),
(2.5)

where k1, k2, k3, h ∈ [0, 1) such that k1 + k2 + k3 +h < 1 and for each x, y ∈ X
such that x 6= y.

Similarly, we shall study the following nonlinear mappings which could be
seen as an analogue of the mappings introduced by Olatinwo [31] in the frame-
work of complex valued convex metric spaces. Let T : X → X be a mapping
satisfying

d(Tx, Ty) -
ϕ(d(x, Tx)) + ad(x, y)

1 +Md(x, Tx)
, (2.6)

for each x, y ∈ X, a ∈ [0, 1), M ≥ 0 and ϕ : R+ → R+ is a monotone increasing
function such that ϕ(0) = 0.
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We next present an analogues of the Mann iterative scheme, Ishikawa it-
erative scheme and the Noor iterative scheme [23] in complex valued convex

metric spaces. Given x1 ∈ C, we compute the sequence {x(1)n } as follows:

The Mann iterative sequence {xn} is given by{
x
(1)
1 = x ∈ C,
x
(1)
n+1 = W (Tx

(1)
n , x

(1)
n , αn), n ≥ 1,

(2.7)

where {αn} is a sequence in [0, 1].

The Ishikawa iterative sequence {x(2)n } is given by
x
(2)
1 = x ∈ C,
y
(2)
n = W (Tx

(2)
n , x

(2)
n , βn),

x
(2)
n+1 = W (Ty

(2)
n , x

(2)
n , αn), n ≥ 1,

(2.8)

where {αn} and {βn} are sequences in [0, 1].

The Noor iterative sequence {x(3)n } is given by
x
(3)
1 = x ∈ C,
z
(3)
n = W (Tx

(3)
n , x

(3)
n , γn),

y
(3)
n = W (Tz

(3)
n , x

(3)
n , βn),

x
(3)
n+1 = W (Ty

(3)
n , x

(3)
n , αn), n ≥ 1,

(2.9)

where {αn}, {βn} and {γn} are sequences in [0, 1].

In 2013, Khan [19] introduced the Picard-Mann hybrid iterative process
which is known to be faster than all of Picard, Mann and Ishikawa iterations.

We now give an analogue of the Picard-Mann hybrid iterative process {x(4)n }
in the framework of complex valued convex metric spaces as follows:

x
(4)
1 = x ∈ C,
y
(4)
n = W (Tx

(4)
n , x

(4)
n , αn),

x
(4)
n+1 = Ty

(4)
n , n ≥ 1,

(2.10)

where {αn} is a sequence in [0, 1].

In a similar fashion, Okeke [24] recently introduced the Picard-Ishikawa
hybrid iterative process {xn}∞n=0 as follows: for any fixed x1 in D, construct
the sequence {xn} by

x1 = x ∈ C,
un = (1− βn)xn + βnTxn,
vn = (1− αn)xn + αnTun,
xn+1 = Tvn, n ≥ 1,

(2.11)
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where {αn}, {βn} are real sequences in (0, 1). The author proved that this
new hybrid iterative process converges faster than all of Picard, Krasnoselskii,
Mann, Ishikawa, Noor [23], Picard-Mann [19] and Picard-Krasnoselskii [26]
iterative processes.

Next, we introduce an analogue of the Picard-Ishikawa hybrid iterative
scheme (2.11) in the framework of complex valued convex metric spaces.

x1 = x ∈ C,
un = W (Txn, xn, βn),
vn = W (Tun, xn, αn),
xn+1 = Tvn, n ≥ 1,

(2.12)

where {αn}, {βn} are real sequences in (0, 1).

Next, we modify iterative scheme (2.12) to obtain the following iterative
scheme for three mappings:

x1 = x ∈ C,
un = W (T3xn, xn, βn),
vn = W (T2un, xn, αn),
xn+1 = T1vn, n ≥ 1,

(2.13)

where {αn}, {βn} are real sequences in (0, 1).

Remark 2.9. Note that the iterative scheme (2.13) contains several iterative
schemes for different choices of mappings or ambient space. (2.13) reduces to

(1) (2.12) if T1 = T2 = T3 = T.
(2) (2.11) if the ambient space is real.
(3) (2.10) if T1 = T2 = T and T3 = I, the identity mapping.

Definition 2.10. ([7]) Let {an}∞n=0, {bn}∞n=0 be two sequences of positive
numbers that converge to a, respectively b. Assume there exists

l = lim
n→∞

|an − a|
|bn − b|

. (2.14)

(1) If l = 0, then it is said that the sequence {an}∞n=0 converges to a faster
than the sequence {bn}∞n=0 to b.

(2) If 0 < l < ∞, then we say that the sequences {an}∞n=0 and {bn}∞n=0

have the same rate of convergence.

Suppose that for two fixed point iterative processes {xn} and {yn} con-
verging to the same fixed point z of T, the error estimates d(xn, z) ≤ an and
d(yn, z) ≤ bn for all n ≥ 1, are available, where {an} and {bn} are two se-
quences of positive real numbers converging to zero. Then, in view of above
definition the following concept appears to be very natural (see, [15], [32]).
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Definition 2.11. ([32]) If {an} converges faster than {bn}, then we say that
the fixed point iterative sequence {xn} converges faster than the fixed point
iterative sequence {yn} to z.

It has been observed that the comparison of the rate of convergence in the
above definition depends on the choice of sequences {an} and {bn} which are
error bounds of {xn} and {yn}, respectively. This method of comparison of the
rate of convergence of two fixed point iterative sequences seems to be unclear
(see, [15], [32]).

In 2013, Phuengrattana and Suantai [32] modified this concept as follows:
Suppose {xn} and {yn} are two iterative sequences converging to the same
fixed point z of T, then we say that {xn} converges faster than {yn} to z if

lim
n→∞

d(xn, z)

d(yn, z)
= 0. (2.15)

Lemma 2.12. ([5]) Let (X, d) be a complex valued metric space and let {xn}
be a sequence in X. Then {xn} converges to x if and only if |d(xn, x)| −→ 0
as n→∞.

Lemma 2.13. ([5]) Let (X, d) be a complex valued metric space and let {xn}
be a sequence in X. Then {xn} is a Cauchy sequence if and only if
|d(xn, xn+m)| −→ 0 as n→∞.

3. Convergence analysis of some fixed point iterations in
complex valued convex metric spaces

In this section, we prove some convergence theorems for some generalized
nonlinear mappings satisfying contractive conditions (2.5) and (2.6) in the
framework of complex valued convex metric spaces. First, we prove the fol-
lowing theorem for three mappings satisfying contractive condition (2.6). This
will approximate common fixed points needless to say important in convex
minimization problems.

Theorem 3.1. Let C be a nonempty closed and convex subset of a complex
valued convex metric space (X, d,W ). Suppose Ti : X → X, (i = 1, 2, 3) are
three nonlinear mapping satisfying contractive condition (2.6) such that

F (T1) ∩ F (T2) ∩ F (T3) 6= ∅.
Let {xn} be a fixed point iterative sequence generated by (2.13) with sequences
{αn} and {βn} in (0, 1) such that

∑∞
n=1 αn = ∞. Then {xn} converges to a

unique common fixed point p of Ti, (i = 1, 2, 3).

Proof. Using (2.3), (2.6) and (2.13), we obtain the following estimate for p ∈
∩3i=1F (Ti).
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d(un, p) = d(W (T3xn, xn, βn), p)
- βnd(T3xn, p) + (1− βn)d(xn, p)

- βn.
d(p,T3p)+ad(xn,p)

1+Md(p,T3p)
+ (1− βn)d(xn, p)

= βn(ϕ(0) + ad(xn, p)) + (1− βn)d(xn, p)
= aβnd(xn, p) + (1− βn)d(xn, p)
= (1− βn(1− a))d(xn, p). (3.1)

This gives the following estimate for p ∈ ∩3i=1F (Ti).

d(vn, p) = d(W (T2un, xn, αn), p)
- αnd(T2un, p) + (1− αn)d(xn, p)

- αn.
ϕ(d(p,T2p))+ad(un,p)

1+Md(p,T2p)
+ (1− αn)d(xn, p)

= αn.(ϕ(0) + ad(un, p)) + (1− αn)d(xn, p)
= aαnd(un, p) + (1− αn)d(xn, p)
- aαn(1− βn(1− a))d(xn, p) + (1− αn)d(xn, p)
= (1− αn(1− a(1− βn(1− a))))d(xn, p). (3.2)

Thus we have

d(xn+1, p) = d(T1vn, p)

- ϕ(d(p,T1p))+ad(vn,p)
1+Md(p,T1p)

= ϕ(0) + ad(vn, p)
- a(1− αn(1− a(1− βn(1− a))))d(xn, p)
- (1− αn(1− a(1− βn(1− a))))d(xn, p)
...
-

∏n
k=1[1− αk(1− a(1− βk(1− a)))]d(x1, p), (3.3)

where [1− αk(1− a(1− βk(1− a)))] ∈ (0, 1) since αk, βk ∈ (0, 1) for all k ∈ N
and a ∈ [0, 1).

It is well known in classical analysis that 1−x ≤ e−x for all x ∈ [0, 1]. Using
this facts together with inequality (3.3), we have

d(xn+1, p) -
d(x1, p)

e(1−a(1−βk(1−a)))
∑n

k=1 αk
. (3.4)

This implies that

|d(xn+1, p)| ≤
|d(x1, p)|

|e(1−a(1−βk(1−a)))
∑n

k=1 αk |
−→ 0 as n→∞. (3.5)

Therefore, by Lemma 2.12 we have

lim
n→∞

d(xn, p) = 0, (3.6)

as desired.
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Next, we show that p is a unique common fixed point of Ti, (i = 1, 2, 3).
Suppose there exists another fixed point p∗ ∈ ∩3i=1F (Ti). Then by (2.6) we
have

d(Tip, Tip
∗) - ϕ(d(p,Tip))+ad(p,p

∗)
1+Md(p,Tip)

= ϕ(0) + ad(p, p∗)
= ad(p, p∗). (3.7)

This implies that |d(Tip, Tip
∗)| ≤ a|d(p, p∗)|. This is a contradiction, and hence

p = p∗. This completes the proof. �

In view of the Remark 2.1, although the following is a corollary to our
Theorem 3.1, yet it is new in the literature.

Corollary 3.2. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear
mapping satisfying contractive condition (2.6) such that F (T ) 6= ∅. Let {xn} be
a fixed point iterative sequence generated by (2.12) where sequences {αn} and
{βn} are in (0, 1) such that

∑∞
n=1 αn = ∞. Then {xn} converges to a unique

fixed point p of T.

Next, we obtain the following several corollaries as consequences of the
above theorem in wake of the Remark 2.1.

Corollary 3.3. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear

mapping satisfying contractive condition (2.6) such that F (T ) 6= ∅. Let {x(1)n }
be a fixed point iterative sequence generated by (2.7), where {αn} is a sequence

in [0, 1] such that
∑∞

n=1 αn =∞. Then {x(1)n } converges to a unique fixed point
p of T.

Corollary 3.4. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear

mapping satisfying contractive condition (2.6) such that F (T ) 6= ∅. Let {x(2)n }
be a fixed point iterative sequence generated by (2.8), where sequences {αn}
and {βn} are in [0, 1] such that

∑∞
n=1 αn = ∞. Then {x(2)n } converges to a

unique fixed point p of T.

Corollary 3.5. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear

mapping satisfying contractive condition (2.6) such that F (T ) 6= ∅. Let {x(3)n }
be a fixed point iterative sequence generated by (2.9), where sequences {αn},
{βn} and {γn} are in [0, 1] such that

∑∞
n=1 αn =∞. Then {x(3)n } converges to

a unique fixed point p of T.
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Corollary 3.6. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear

mapping satisfying contractive condition (2.6) such that F (T ) 6= ∅. Let {x(4)n }
be a fixed point iterative sequence generated by (2.10), where sequence {αn}
is in [0, 1] such that

∑∞
n=1 αn = ∞. Then {x(4)n } converges to a unique fixed

point p of T.

Next, we prove the following theorem for nonlinear mappings satisfying
contractive condition (2.5).

Theorem 3.7. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear
mapping satisfying contractive condition (2.5) such that F (T ) 6= ∅. Let {xn}
be a fixed point iterative sequence generated by (2.12), where sequences {αn}
and {βn} are in (0, 1) such that

∑∞
n=1 αn = ∞. Then {xn} converges to a

unique fixed point p of T.

Proof. Using (2.3), (2.5) and (2.12), then we obtain the following estimate for
p ∈ F (T ).

d(un, p) = d(W (Txn, xn, βn), p)
- βnd(Txn, p) + (1− βn)d(xn, p)

- βn{k1.d(xn,Txn)(1+d(p,Tp))1+d(xn,p)
+ k2.

d(p,Tp)d(xn,Txn)
d(xn,p)

+k3.
d(p,Tp)d(xn,Txn)

d(xn,p)+d(p,Txn)+d(xn,Tp)
+ hd(xn, p)}+ (1− βn)d(xn, p)

= βnhd(xn, p) + (1− βn)d(xn, p)
= (1− βn(1− h))d(xn, p).

(3.8)
Using (2.3), (2.5), (2.12) and (3.8), then we obtain the following estimate for
p ∈ F (T ).

d(vn, p) = d(W (Tun, xn, αn), p)
- αnd(Tun, p) + (1− αn)d(xn, p)

- αn{k1.d(un,Tun)(1+d(p,Tp))1+d(un,p)
+ k2.

d(p,Tp)d(un,Tun)
d(un,p)

+k3.
d(p,Tp)d(un,Tun)

d(un,p)+d(p,Tun)+d(un,Tp)
+ hd(un, p)}+ (1− αn)d(xn, p)

= αnhd(un, p) + (1− αn)d(xn, p)
- αnh(1− βn(1− h))d(xn, p) + (1− αn)d(xn, p)
= (1− αn(1− h(1− βn(1− h))))d(xn, p).

(3.9)
Using (2.3), (2.5), (2.12) and (3.9), then we obtain the following estimate for
p ∈ F (T ).
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d(xn+1, p) = d(Tvn, p)

- k1.
d(vn,T vn)(1+d(p,Tp))

1+d(vn,p)
+ k2.

d(p,Tp)d(vn,T vn)
d(vn,p)

+k3.
d(p,Tp)d(vn,T vn)

d(vn,p)+d(p,Tvn)+d(vn,Tp)
+ hd(vn, p)

= hd(vn, p)
- h(1− αn(1− h(1− βn(1− h))))d(xn, p)
- (1− αn(1− h(1− βn(1− h))))d(xn, p)
...
-

∏n
k=1[1− αk(1− h(1− βk(1− h)))]d(x1, p), (3.10)

where [1− αk(1− h(1− βk(1− h)))] ∈ (0, 1) since αk, βk ∈ (0, 1) for all k ∈ N
and h ∈ [0, 1). It is well known in classical analysis that 1 − x ≤ e−x for all
x ∈ [0, 1]. Using this facts together with inequality (3.10), we have

d(xn+1, p) -
d(x1, p)

e(1−h(1−βk(1−h)))
∑n

k=1 αk
. (3.11)

This implies that

|d(xn+1, p)| ≤
|d(x1, p)|

|e(1−h(1−βk(1−h)))
∑n

k=1 αk |
−→ 0 as n→∞. (3.12)

Therefore, by Lemma 2.12 we have

lim
n→∞

d(xn, p) = 0, (3.13)

as desired.
Next, we show that p is a unique fixed point of T. Suppose there exists

another fixed point p∗ of T. Then by (2.5) we have

d(Tp, Tp∗) - k1.
d(p∗,Tp∗)(1+d(p,Tp))

1+d(p,p∗) + k2.
d(p,Tp)d(p∗,Tp∗)

d(p,p∗)

+k3.
d(p,Tp)d(p∗,Tp∗)

d(p,p∗)+d(p,Tp∗)+d(p∗,Tp) + hd(p, p∗)

= hd(p, p∗). (3.14)

This implies that |d(Tp, Tp∗)| ≤ h|d(p, p∗)|. This is a contradiction. Hence,
p = p∗ and the proof is complete. �

Next, we give the following theorem for three mappings satisfying contrac-
tive condition (2.5).

Theorem 3.8. Let C be a nonempty closed and convex subset of a complex
valued convex metric space (X, d,W ). Suppose Ti : X → X, (i = 1, 2, 3) are
three nonlinear mapping satisfying contractive condition (2.5) such that

F (T1) ∩ F (T2) ∩ F (T3) 6= ∅.
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Let {xn} be a fixed point iterative sequence generated by (2.13) where sequences
{αn} and {βn} are in (0, 1) such that

∑∞
n=1 αn =∞. Then {xn} converges to

a unique common fixed point p of Ti, (i = 1, 2, 3).

Proof. The proof of Theorem 3.8 follows similar lines as in the proof of Theo-
rem 3.1. �

Next, we obtain the following corollaries as consequences of Theorem 3.7.

Corollary 3.9. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear

mapping satisfying contractive condition (2.5) such that F (T ) 6= ∅. Let {x(1)n }
be a fixed point iterative sequence generated by (2.7), where {αn} is a sequence

in [0, 1] such that
∑∞

n=1 αn =∞. Then {x(1)n } converges to a unique fixed point
p of T.

Corollary 3.10. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear

mapping satisfying contractive condition (2.5) such that F (T ) 6= ∅. Let {x(2)n }
be a fixed point iterative sequence generated by (2.8), where sequences {αn}
and {βn} are in [0, 1] such that

∑∞
n=1 αn = ∞. Then {x(2)n } converges to a

unique fixed point p of T.

Corollary 3.11. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear

mapping satisfying contractive condition (2.5) such that F (T ) 6= ∅. Let {x(3)n }
be a fixed point iterative sequence generated by (2.9), where sequences {αn},
{βn} and {γn} are in [0, 1] such that

∑∞
n=1 αn =∞. Then {x(3)n } converges to

a unique fixed point p of T.

Corollary 3.12. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear

mapping satisfying contractive condition (2.5) such that F (T ) 6= ∅. Let {x(4)n }
be a fixed point iterative sequence generated by (2.10), where {αn} is a sequence

in [0, 1] such that
∑∞

n=1 αn =∞. Then {x(4)n } converges to a unique fixed point
p of T.

Our next theorem considers the rate of convergence of various iterative
schemes mentioned in this paper.

Theorem 3.13. Suppose that C is a nonempty closed and convex subset of a
complex valued convex metric space (X, d,W ). Let T : X → X be a nonlinear
mapping satisfying contractive condition (2.6) such that F (T ) 6= ∅. Let {αn},
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{βn} and {γn} be sequences in [0, 1] such that
∑∞

n=1 αn = ∞ satisfying the
following conditions:

(A1) 0 < ξ < αn < 1,
(A2) 0 < αn <

1
1+a ,

∑∞
n=1 αn =∞ and limn→∞ αn = 0.

Then the Picard-Ishikawa hybrid iterative scheme {xn} in (2.12) converges

faster to a unique fixed point p of T than all of Mann iteration scheme {x(1)n }
in (2.7), Ishikawa iteration scheme {x(2)n } in (2.8) and Noor iteration scheme

{x(3)n } in (2.9), provided that all the iteration schemes have the same initial
guess x1.

Proof. By Theorem 3.1, Corollary 3.3 - Corollary 3.5, we have that {x(1)n },
{x(2)n } and {x(3)n } converges to a unique fixed point p of T.

Next, we have the following estimate by using inequality (2.4) in (2.9)

d(x
(3)
n+1, p) % (1− αn)d(x

(3)
n , p)− αnd(Ty

(3)
n , p)

% (1− αn)d(x
(3)
n , p)− αn

[
ϕ(d(p,Tp))+ad(y

(3)
n ,p)

1+Md(p,Tp)

]
= (1− αn)d(x

(3)
n , p)− αn[ϕ(0) + ad(y

(3)
n , p)]

= (1− αn)d(x
(3)
n , p)− αnad(W (Tz

(3)
n , x

(3)
n , βn), p)

% (1− αn(1− a(1− βn(1− a))))d(x
(3)
n , p)

−αnβna2(1− βn(1− a))d(x
(3)
n , p)

% (1− αn(1 + a))d(xn, p)
...
%

∏n
k=1(1− αn(1 + a))d(x1, p). (3.15)

Following the same lines of proof, we obtain the following inequalities for the

Mann iteration {x(1)n } and the Ishikawa iteration {x(2)n },

d(x
(i)
n+1, p) %

n∏
k=1

(1− αk(1 + a))d(x(i)n , p), (i = 1, 2). (3.16)

Combinning (3.15) with (3.16), we obtain

d(x
(i)
n+1, p) %

n∏
k=1

(1− αk(1 + a))d(x(i)n , p), (i = 1, 2, 3). (3.17)

Using condition (A1) in (3.3), we have

d(xn+1, p) - (1− ξ(1− a))d(x1, p). (3.18)

From (3.17) and (3.18), we have

d(xn+1, p)

d(x
(i)
n+1, p)

-
(1− ξ(1− a))n∏n
k=1(1− αk(1 + a))

. (3.19)
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Let

λn =
(1− ξ(1− a))n∏n
k=1(1− αk(1 + a))

. (3.20)

Therefore, by assumption (A2) we have

limn→∞
λn+1

λn
= limn→∞

(1−ξ(1−a))n+1∏n+1
k=1 (1−αk(1+a))d(x1,p)

.
∏n

k=1(1−αk(1+a))d(x1,p)
(1−ξ(1−a))n

= limn→∞
(1−ξ(1−a))

(1−αn+1(1+a))

= (1− ξ(1− a)) < 1. (3.21)

By ratio test we have that
∑∞

n=1 λn < ∞. This means that limn→∞ λn = 0.
Hence, the Picard-Ishikawa hybrid iterative scheme {xn} in (2.12) converges

faster to a unique fixed point p of T than all of Mann iteration scheme {x(1)n }
in (2.7), Ishikawa iteration scheme {x(2)n } in (2.8) and Noor iteration scheme

{x(3)n } in (2.9). The proof of Theorem 3.13 is completed. �

4. Numerical examples

In this section, we provide a number of numerical examples to validate our
analytical results. We compare the speed of convergence of various iterative

schemes discussed in this paper, viz: the Mann iterative scheme {x(1)n } in

(2.7), the Ishikawa iterative scheme {x(2)n } in (2.8), the Noor iterative scheme

{x(3)n } in (2.9), the Picard-Mann hybrid iterative scheme {x(4)n } in (2.10) and
the Picard-Ishikawa hybrid iterative scheme {xn} in (2.12).

In the figures below, we denote the Mann iterative scheme {x(1)n } by M,

the Ishikawa iterative scheme {x(2)n } by I, the Noor iterative scheme {x(3)n } by

N, the Picard-Mann hybrid iterative scheme {x(4)n } by PM and the Picard-
Ishikawa hybrid iterative scheme {xn} by PI. All the codes were written in
Matlab (R2010a) and run on PC with Intel(R) Core(TM) i3-4030U CPU @
1.90 GHz.

Example 4.1. Let T : X → X be a mapping such that Tx = x
4 , with a = 1

2

and X = [0,∞). Suppose the starting point x1 = x
(1)
1 = x

(2)
1 = x

(3)
1 = x

(4)
1 =

10 and the number of iterations for each iterative scheme is n = 100. With
respect to Theorem 3.13, we present the following numerical examples:

Case I: Picard-Ishikawa hybrid iterative scheme {xn} in (2.12) versus Mann

iterative scheme {x(1)n } in (2.7). Choose αn = 1
10n+1 and βn = 1

5n+1 . Figure 1

below compares the rate of convergence of {xn} and {x(1)n }.
Case II: Picard-Ishikawa hybrid iterative scheme {xn} in (2.12) versus

Ishikawa iterative scheme {x(2)n } in (2.8). Choose αn = 1
10n+1 and βn = 1

5n+1 .

Figure 2 below compares the rate of convergence of {xn} and {x(2)n }.
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Case III: Picard-Ishikawa hybrid iterative scheme {xn} in (2.12) versus

Noor iterative scheme {x(3)n } in (2.9). Choose αn = 1
10n+1 , βn = 1

5n+1 and

γn = 1
7n+2 . Figure 3 below compares the rate of convergence of {xn} and

{x(3)n }.
Case IV: Picard-Ishikawa hybrid iterative scheme {xn} in (2.12) versus

Picard-Mann hybrid iterative scheme {x(4)n } in (2.10). Choose αn = 1
10n+1

and βn = 1
5n+1 . Figure 4 below compares the rate of convergence of {xn} and

{x(4)n }.
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Figure 1. Error versus iteration number (n)
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Figure 2. Error versus iteration number (n)
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Figure 3. Error versus iteration number (n)
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Figure 4. Error versus iteration number (n)

Remark 4.2. From Figure 1, Figure 2 and Figure 3, we see that the Picard-
Ishikawa hybrid iterative scheme {xn} converges faster than all of Mann itera-

tive scheme {x(1)n }, the Ishikawa iterative scheme {x(2)n } and the Noor iterative

scheme {x(3)n } to the fixed point p = 0 of T. In Figure 4, we see that the Picard-
Ishikawa hybrid iterative scheme {xn} and the Picard-Mann hybrid iterative

scheme {x(4)n } have the same rate of convergence.
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