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Abstract. In this paper , the author has studied the Alexandrov problem of area preserving

mappings in linear n-normed spaces and has provided some remarks for the generalization of

earlier results of H.Y. Chu, C.G. Park and W.G. Park. In addition the author has introduced

the concept of linear (n,p)-normed spaces and for such spaces she has solved the Alexandrov

problem .

1. Introduction

Let (X, dX) and (Y, dY ) be metric spaces. A mapping f : X → Y is called
an isometry if f satisfies dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X. For some
fixed number r > 0 suppose that f preserves distance r i.e., for all x, y ∈ X
with dX(x, y) = r, we have dY (f(x), f(y)) = r. Then r is called a conservative
distance for the mapping f .

In 1970, A.D. Alexandrov [1] raised the well-known problem :“Whether or
not a mapping with distance one preserving property is an isometry ?” Some
results about this problem can be seen in [3], [4], [5], [6] [8], [9], [10], [11]
and [12]. When X and Y are normed spaces, we may assume without loss of
generality that the number r = 1 (see [7]).

In [2] H.Y. Chu, C.G. Park and W.G. Park introduced some new concepts
provided a proof of the Th.M. Rassias and P. Semrl’s theorem for linear n-
normed spaces.
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Definition 1.1. [2] Let X be a real linear space with dimX > n and a function
‖·, ..., ·‖ : Xn −→ R satisfies :

(1) ‖x1, ..., xn‖ = 0 if and only if x1, ..., xn are linearly dependent,
(2) ‖x1, ..., xn‖ = ‖xj1 , ..., xjn‖ for every permutation j1, ..., jn of (1, ..., n),
(3) ‖αx1, ..., xn‖ = |α|‖x1, ..., xn‖,
(4) ‖x + y, x2, ..., xn‖ ≤ ‖x, x2, ..., xn‖ + ‖y, x2, ..., xn‖ for α ∈ R and

x, y, x2, ..., xn ∈ X.

Then the function ‖·, ..., ·‖ is called the n-norm on X and (X,‖·, ..., ·‖) is called
the linear n-normed space.

Definition 1.2. [2] Let X and Y be real linear n-normed spaces and f : X →
Y a mapping, and x0, x1, ..., xn ∈ X. We call that f satisfies the n-distance
one preserving property (nDOPP ) if ‖x1 − x0, ..., xn − x0‖ = 1 implies

‖f(x)− f(x0), ..., f(xn)− f(x0)‖ = 1.

f is said to be a n-isometry if

‖f(x)− f(x0), ..., f(xn)− f(x0)‖ = ‖x1 − x0, ..., xn − x0‖.
f is said to be a n-Lipschitz mapping if there is a k ≥ 0 such that

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ ≤ k‖x1 − x0, ..., xn − x0‖.
The smallest such k is called the n-Lipschitz constant.

Theorem 1.3. [2] Let f be a n-Lipschitz mapping with the n-Lipschitz con-
stant k ≤ 1. Assume that if x0, x1, ..., xm are m-collinear, then f(x0), f(x1),...,
f(xn) are m-collinear, m = 2, ..., n, and that f satisfies (nDOPP ). Then f
is a n-isometry .

The aim of this paper is to provide some remarks on the Alexandrov problem
in linear n-normed spaces for the generalization of earlier results in [2]. In
addition the author introduces the concept of linear (n,p)-normed spaces and
for such spaces solves the corresponding Alexandrov problem .

2. Notes on the Alexandrov problem in linear n-normed spaces

Definition 2.1. We call a mapping f : X → Y is locally n-Lipschitz mapping
if there is a k ≥ 0 such that

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ ≤ k‖x1 − x0, ..., xn − x0‖,
whenever ‖x1 − x0, ..., xn − x0‖ ≤ 1.

We only consider in this paper the n-Lipschitz constant k ≤ 1.

Lemma 2.2. If a mapping f : X → Y is locally n-Lipschitz, then f is a
n-Lipschitz mapping.
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Proof. We may assume that ‖x1−x0, ..., xn−x0‖ > 1, then there is an n0 ∈ N
such that n0 − 1 < ‖y − x, z − x‖ ≤ n0. Let wi = x0 + i

n0
(x1 − x0) where

i = 0, 1, ..., n0. Then

‖wi − wi−1, x2 − wi−1, ..., xn − wi−1‖ = ‖wi − wi−1, x2 − x0, ..., xn − x0‖
=

‖x1 − x0, ..., xn − x0‖
n0

≤ 1

and

‖f(wi)− f(wi−1), f(x2)− f(x0), ..., f(xn)− f(x0)‖
= ‖f(wi)− f(wi−1), f(x2)− f(wi−1), ..., f(xn)− f(wi−1)‖
≤ ‖wi − wi−1, x2 − wi−1, ..., xn − wi−1‖
=

‖x1 − x0, ..., xn − x0‖
n0

.

Hence

‖f(x1)− f(x0), f(x2)− f(x0), ..., f(xn)− f(x0)‖

= ‖
n0∑

i=1

(f(wi)− f(wi−1)), f(x2)− f(x0), ..., f(xn)− f(x0)‖

≤
n0∑

i=1

‖f(wi)− f(wi−1), f(x2)− f(x0), ..., f(xn)− f(x0)‖

≤
n0∑

i=1

‖x1 − x0, ..., xn − x0‖
n0

= ‖x1 − x0, ..., xn − x0‖.
¤

Remark 1. Assume that f is locally n-Lipschitz and x0, x1, ..., xn are n-
collinear. Then f(x0), f(x1), ..., f(xn) are n-collinear. Indeed, x0, x1, ..., xn

are n-collinear if and only if ‖x1 − x0, ..., xn − x0‖ = 0. Since

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ ≤ ‖x1 − x0, ..., xn − x0‖,
we have

‖f(x1)− f(x0), ...t, f(xn)− f(x0)‖ = 0,

it follows that ‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ are n-collinear.
So the Theorem 1.3 in [2] can be simplified as follows:
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Theorem 2.3. Let f be a n-Lipschitz mapping which satisfies (nDOPP ).
And assume that if x0, x1 and x2 are collinear then f(x0), f(x1) and f(x2) are
collinear. Then f is a n-isometry.

In [2], a condition (*) was defined as follows : for every x0, x1, ..., xn ∈ X
with ‖x1 − x0, x2 − x0, ..., xn − x0‖ 6= 0 there exists a w ∈ X such that

‖x0 − w, x1 − w, ..., xn−1 − w‖ = 1

and
‖x1 − w, x2 − w, ..., xn − w‖ = 1.

The condition (*) is a necessity in the proof of the results in [2]. In fact,
through the following lemma we can see that the condition can be led out
from the proof.

Lemma 2.4. Assume that if x, y and z are collinear then f(x), f(y) and f(z)
are collinear and that f satisfies (nDOPP ). Then f preserving the area 1

k for
each k ∈ N.

Proof. Let ‖x1 − x0, ..., xn − x0‖ = 1
k and

ui = x1 + i(x1 − x0), vi = x + i(x2 − x0)(i = 0, 1, ...k).

Then, it is easy to see that x0, ui and ui−1 are collinear, so f(x0), f(ui) and
f(ui−1) are collinear by assumption. Then for i = 1, ..., k, we have

‖ui − ui−1, vk − ui−1, x3 − ui−1, ..., xn − ui−1‖
= ‖ui − ui−1, vk − x0, x3 − x0, ..., xn − x0‖
= 1

and

‖f(ui)− f(ui−1), f(vk)− f(ui−1), ..., f(xn)− f(ui−1)‖
= ‖f(ui)− f(ui−1), f(vk)− f(x0), ..., f(xn)− f(x0)‖
= 1.

It follows that f(ui)− f(ui−1) = f(ui+1)− f(ui). Note that

f(x0) = f(x0) + 0 · (f(x1)− f(x0))

and
f(x1) = f(x0) + 1 · (f(x1)− f(x0)).

Therefore
f(ui) = f(x) + i · (f(x1)− f(x0))(i = 0, 1, ..., k).

Similarly, we have

f(vi) = f(x0) + i · (f(x2)− f(x0))(i = 0, 1, ..., k).
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Since ‖uk − x, vk − x‖ = k, we get

k = ‖f(uk)− f(x0), f(vk)− f(x0), ..., f(xn)− f(x0)‖
= ‖k(f(x1)− f(x)), k(f(x2)− f(x0)), ..., f(xn)− f(x0)‖
= k2‖f(x1)− f(x0), f(x2)− f(x0), ..., f(xn)− f(x0)‖

Thus ‖f(x1)− f(x0), f(x2)− f(x0), ..., f(xn)− f(x0)‖ = 1
k . ¤

By the same argument as in the proof of Theorem 2.12 in [2], we get the
following lemma.

Lemma 2.5. Assume that if x0, x1, ..., xn are m-collinear then f(x0), f(x1),...,
f(xn) are m-collinear (m=2,...,n ), and that if y1 − y2 = α(y3 − y2) for some
α ∈ (0, 1] then f(y1)− f(y2) = β(f(y3)− f(y2)). If f satisfies (nDOPP ) then
f is a n-Lipschitz mapping.

A direct application of Theorem 2.3 and Lemma 2.5 yields the following
result.

Theorem 2.6. Let f be a mapping satisfies (nDOPP ). And assume that if
x0, x1, ..., xn are m-collinear then f(x0), f(x1),...,f(xn) are m-collinear, and
that if y1− y2 = α(y3− y2) for some α ∈ (0, 1] then f(y1)− f(y2) = β(f(y3)−
f(y2)). Then f is a n-isometry.

Lemma 2.7. If there exist ρ > 0, N > 1 with ρ ∈ R, N ∈ N and a mapping
f : X → Y satisfies the following conditions:

(1) if ‖x1 − x0, x2 − x0, ..., xn − x0‖ = ρ, then

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ ≤ ρ,

(2) if ‖x1 − x0, x2 − x0, ..., xn − x0‖ = Nρ, then

|f(x1)− f(x0), ..., f(xn)− f(x0)‖ ≥ Nρ,

then f satisfies the n-distance ρ preserving property.

Proof. Let ‖x1 − x0, x2 − x0, ..., xn − x0‖ = ρ, and wi = x0 + i(x1 − x0) where
i = 0, 1, ..., N. Then we obtain

‖wN − x, x2 − x0, ..., xn − x0‖ = Nρ,

‖wi − wi−1, x2 − wi−1, ..., xn − wi−1‖
= ‖wi − wi−1, x2 − x0, ..., xn − x0‖
= ρ,
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and

‖f(wi)− f(wi−1), f(x2)− f(x0), ..., f(xn)− f(x0)‖
= ‖f(wi)− f(wi−1), f(x2)− f(wi−1), ..., f(xn)− f(wi−1)‖
≤ ρ.

Hence

Nρ ≤ ‖f(wN )− f(x0), f(x2)− f(x0), ..., f(xn)− f(x0)‖

≤
N∑

i=1

‖f(wni)− f(wni−1), f(x2)− f(x0), ..., f(xn)− f(x0)‖

≤ Nρ.

It follows that

‖f(x1)− f(x0), f(x2)− f(x0), ..., f(xn)− f(x0)‖
= ‖f(wi)− f(wi−1), f(x2)− f(x0), ..., f(xn)− f(x0)‖
= ρ.

¤

Theorem 2.8. Let X,Y be linear n−normed spaces. Let f : X → Y be a
mapping. And assume that if x, y and z are collinear, then f(x), f(y) and
f(z) are collinear, and there exist ρ ∈ R with ρ > 0, and N ∈ N with N > 1
f satisfies the following conditions:

(1) if ‖x1 − x0, x2 − x0, ..., xn − x0‖ = ρ, then

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ ≤ ρ,

(2) if ‖x1 − x0, x2 − x0, ..., xn − x0‖ = Nρ, then

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ ≥ Nρ.

Then f is a n-isometry.

Proof. It is easy to see that f is locally n-lipschitz and satisfies n-distance ρ
preserving property. Therefore f is a n-isometry by Theorem 2.3 ¤

3. The Alexandrov problem in linear (n, p)-normed spaces

Definition 3.1. Let X be a real linear space with dimX ≥ n and a function
‖·, ..., ·‖ : Xn −→ R satisfies:

(1) ‖x1, ..., xn‖ = 0 if and only if x1, ..., xn are linearly dependent ,
(2) ‖x1, ..., xn‖ = ‖xj1 , ..., xjn‖ for every permutation j1, ..., jn of (1, ..., n),
(3) ‖αx1, ..., xn‖ = |α|p‖x1, ..., xn‖(0 < p ≤ 1),
(4) ‖x + y, x2, ..., xn‖ ≤ ‖x, x2, ..., xn‖+ ‖y, x2, ..., xn‖,
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for α ∈ R and x, y, x2, ..., xn ∈ X. Then, the function ‖·, ..., ·‖ is called the
(n, p)-norm on X, and (X,‖·, ..., ·‖) is called the linear (n, p)-normed space.

Definition 3.2. (X,‖·, ..., ·‖) is said to be a p-strictly convex linear (n, p)-
normed space if for any x, y, x2, ...xn ∈ X, xi 6= αx + βy, α, β ∈ R, i = 2, ..., n,
‖x+ y, x2, ..., xn‖

1
p = ‖x, x2, ..., xn‖

1
p + ‖y, x2, ...xn‖

1
p implies x = λy for some

λ > 0.

Lemma 3.3. If (X,‖·, ..., ·‖) is a p-strictly convex linear (n, p)-normed space,
then (X,‖·, ..., ·‖ 1

p ) is a linear n-normed space.

Proof. It is easy to see that ‖·, ..., ·‖ 1
p satisfies the condition (1),(2) and (3)

in the definition of n-norm. We only need to prove that ‖·, ..., ·‖ 1
p satis-

fies the condition (4). First, we will show that for fixed x2, ..., xn ∈ X the
set OX = {x ∈ X : ‖x, x2, ..., xn‖ < 1} is convex, it is enough to show
that for any x 6= y ∈ X, ‖x, x2, ..., xn‖ = 1, ‖y, x2, ..., xn‖ = 1, we have
‖λx + (1− λ)y, x2, ..., xn‖ < 1, where 0 < λ < 1.

(I) ‖λx + (1− λ)y, x2, ..., xn‖ 6= 1.
Otherwise, we get

1 = ‖λx + (1− λ)y, x2, ..., xn‖
1
p

= ‖λx, x2, ..., xn‖
1
p + ‖(1− λ)y, x2, ..., xn‖

1
p .

It follows that x = y from the definition, which is a contradiction.
(II) It is also impossible that ‖λx + (1− λ)y, x2, ..., xn‖ > 1. Otherwise, let

w =
λx + (1− λ)y

‖λx + (1− λ)y, x2, ..., xn‖
1
p

,

x1 =
x

‖λx + (1− λ)y, x2, ..., xn‖
1
p

, y1 =
y

‖λx + (1− λ)y, x2, ..., xn‖
1
p

.

Then w = λx1+(1−λ)y1, ‖w, x2, ..., xn‖ = 1. Let φ(t) = ‖tx1+(1−t)y1‖, t ∈ R.
Then, φ(t) is continuous on R and φ(0), φ(1) < 1. Letting t → +∞ or t → −∞,
then from the theorem of middle value we can find x

′
, y

′
and 0 < µ < 1 such

that ‖x′ , x2, ..., xn‖ = 1, ‖y′ , x2, ..., xn‖ = 1 and w = µx
′
+ (1 − µ)y

′
which

contradicts with (I).
Since OX is an open convex set, there exists a subadditive and positive

homogenous function p(x) : X → R such that OX = {x ∈ X : p(x) < 1} and

{x ∈ X : ‖x, x2, ..., xn‖ ≤ 1} = {x ∈ X : p(x) ≤ 1}.
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Therefore

{x ∈ X : ‖x, x2, ..., xn‖ = 1} = {x ∈ X : p(x) = 1}.
For any x ∈ X, we have

‖ x

‖x, x2, ..., xn‖
1
p

, x2, ..., xn‖ = 1.

Hence we ahve p(x) = ‖x, x2, ..., xn‖
1
p . It follows that ‖·, ·‖ 1

p is a n-norm. ¤

Theorem 3.4. (X,‖·, ..., ·‖) is a p-strictly convex linear (n, p)-normed space
if and only if (X,‖·, ..., ·‖ 1

p ) is a strictly convex linear n-normed space.

Proof. It is clear by the Lemma and Definition above. ¤

Lemma 3.5. Let X, Y be linear (n, p)-normed spaces. And assume that if x, y
and z are collinear, then f(x), f(y) and f(z) are collinear and that f satisfies
(AOPP ). Then f preserves the area 2np, for each n ∈ N.

Proof. The proof is carried out by induction on n.
For ‖x1−x0, ..., xn−x0‖ = 1 we have ‖f(x1)−f(x0), ..., f(xn)−f(x0)‖ = 1

from the assumption.
Assume that for ‖x1 − x0, ..., xn − x0‖ = 2(n−1)p, the conclusion

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ = 2(n−1)p

is established. We will show that

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ = 2np

holds for ‖x1 − x0, ..., xn − x0‖ = 2np.
Let w = x0+x1

2 . Then it is easy to see x0, x1 and w are collinear, which
implies f(x0), f(x1) and f(w) are collinear, that is f(w)− f(x0) = α(f(x1)−
f(w)). We also have

‖w − x0, ..., xn − x0‖ = 2(n−1)p,

‖x1 − w, x2 − w, ..., xn − w‖ = ‖x1 − w, x2 − x0, ..., xn − x0‖ = 2(n−1)p

and
‖f(w)− f(x0), f(x2)− f(x0), ..., f(xn)− f(x0)‖ = 2(n−1)p,

‖f(x1)− f(w), f(x2)− f(x0), ..., f(xn)− f(x0)‖
= ‖f(x1)− f(w), f(x2)− f(w)..., f(xn)− f(w)‖
= 2(n−1)p.
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Hence α = 1, f(w)− f(x0) = f(x1)− f(w). And also, we have

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ = ‖2(f(w)− f(x0)), ..., f(xn)− f(x0)‖
= 2p‖f(w)− f(x0), ..., f(xn)− f(x0)‖
= 2np.

¤

Theorem 3.6. Let X be a linear (n, p)-normed space and Y be a linear p-
strictly convex (n, p)-normed space and f : X → Y be locally n-Lipschitz
and satisfies (nDOPP ). And assume that if x, y and z are collinear, then
f(x), f(y) and f(z) are collinear. Then f is a n-isometry.

Proof. (I) If ‖x1 − x0, ..., xn − x0‖ ≤ 1, then we claim that

‖f(x1)− f(x0), ..., f(xn)− f(x)‖ = ‖x1 − x0, ..., xn − x0‖.
Suppose that ‖f(x1)− f(x0), ..., f(xn)− f(x)‖ < ‖x1−x0, ..., xn−x0‖ and let
w = x0 + x1−x0

‖x1−x0,...,xn−x0‖
1
p
. Then we have ‖w − x0, ..., xn − x0‖ = 1 and

‖x1 − w, x2 − w, ..., xn − w‖ 1
p = ‖x1 − w, x2 − x0, ..., xn − x0‖

1
p

= 1− ‖x1 − x0, ..., xn − x0‖
1
p

< 1.

By the assumption, we get

‖f(w)− f(x0), ..., f(xn)− f(x0)‖ = 1

and

‖f(x1)− f(w), f(x2)− f(x0), ..., f(xn)− f(x0)‖
1
p

= ‖f(x1)− f(w), f(x2)− f(w), ..., f(xn)− f(w)‖ 1
p

≤ 1− ‖x1 − x0, ..., xn − x0‖
1
p .

It follows that

1 = ‖f(w)− f(x0), ..., f(xn)− f(x0)‖
1
p

= ‖f(w)− f(x0), ..., f(xn)− f(x0)‖
1
p

≤ ‖f(w)− f(x1), ..., f(xn)− f(x)‖ 1
p

+‖f(x1)− f(x0), ..., f(xn)− f(x− 0)‖ 1
p

< ‖y − x, z − x‖ 1
p + (1− ‖y − x, z − x‖ 1

p )
= 1.

Which is a contradiction.
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(II) Assume that for ‖x1 − x0, ..., xn − x0‖ ≤ 2(n−1)p, the conclusion

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ = ‖x1 − x0, ..., xn − x0‖
is established.

Assume that ‖x1 − x0, ..., xn − x0‖ ≤ 2np. Let w = x0+x1
2 . Then x0, x1 and

w are collinear, which implies f(x0), f(x1) and f(w) are collinear, that is

f(x1)− f(w) = α(f(w)− f(x0)).

We also have

‖w − x0, ..., xn − x0‖ = 2−p‖x1 − x0, ..., xn − x0‖ ≤ 2(n−1)p

and

‖x1 − w, x2 − w, ..., xn − w‖ = ‖x1 − w, x2 − x0, ..., xn − x0‖
= 2−p‖x1 − x0, ..., xn − x0‖
≤ 2(n−1)p.

From the inductive hypothesis,

‖f(w)− f(x0), ..., f(xn)− f(x0)‖ = ‖w − x0, ..., xn − x0‖,

‖f(x1)− f(w), f(x2)− f(x0), ..., f(xn)− f(x0)‖
= ‖f(x1)− f(w), f(x2)− f(w), ..., f(xn)− f(w)‖
= ‖x1 − w, ..., xn − w‖.

Hence α = 1, f(x1)− f(w) = f(w)− f(x0). Therefore

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ = ‖2(f(w)− f(x0)), ..., f(xn)− f(x0)‖
= 2p‖f(w)− f(x0), ..., f(xn)− f(x0)‖
= 2p‖w − x0, ..., xn − x0‖
= ‖x1 − x0, ..., xn − x0‖.

¤

Lemma 3.7. Let X, Y be linear (n, p)-normed spaces. And assume that if x, y
and z are collinear, then f(x), f(y) and f(z) are collinear and that f satisfies
(nDOPP ). Then f preserves the area kpand 1

kp for each k ∈ N.

Proof. If ‖x1 − x0, ..., xn − x0‖ = kp, put

wi = x0 +
i

k
(x1 − x0), i = 0, 1, ..., k,
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then we have f(wi+1)− f(wi) = f(wi)− f(wi−1), i = 0, 1, ..., k, from the same
argument as above. Hence

‖f(x1)− f(x0), f(x2)− f(x0), ..., f(xn)− f(x0)‖

= ‖
k∑

i=1

(f(wi)− f(wi−1)), f(x2)− f(x0), ..., f(xn)− f(x0)‖

= ‖k(f(w1)− f(w0)), f(x2)− f(x0), ..., f(xn)− f(x0)‖
= kp.

If ‖x1 − x0, ..., xn − x0‖ = 1
np , put

ui = x0 + i(x1 − x0), vi = x + i(x2 − x0) i = 0, 1, ..., k,

then we have
f(ui+1)− f(ui) = f(ui)− f(ui−1)

and
f(vi+1)− f(vi) = f(vi)− f(vi−1)

from the same argument as above. Hence

kp = ‖f(uk)− f(x0), f(vk)− f(x0), ..., f(xn)− f(x0)‖

= ‖
k∑

i=1

(f(ui)− f(ui−1)),
k∑

i=1

(f(vi)− f(vi−1)), ..., f(xn)− f(x0)‖

= ‖k(f(x1)− f(x0)), k(f(x2)− f(x0)), ..., f(xn)− f(x0)‖
= k2p‖f(x1)− f(x0), f(x2)− f(x0)...., f(xn)− f(x0)‖.

Therefore ‖f(x1)− f(x0), f(x2)− f(x0)..., f(xn)− f(x0)‖ = 1
kp . ¤

Lemma 3.8. Let X, Y be linear (n, p)-normed spaces. And assume that if
x0, x1, ..., xn are m-collinear, then f(x0), f(x1), ..., f(xn) are m-collinear
(m=2,...,n), and that if y1− y2 = α(y3− y2) for some α ∈ (0, 1], then f(y1)−
f(y2) = β(f(y3) − f(y2)). If f satisfies (nDOPP ) then f is a n-Lipschitz
mapping.

Proof. If ‖x1 − x0, x2 − x0, ..., xn − x0‖ = 0, then x0, x1, ..., xn are n-collinear,
so ‖f(x1)− f(x0), f(x2)− f(x0), ..., f(xn)− f(x0)‖ = 0 from the assumption.

Next, we will show that if

‖x1 − x0, x2 − x0, ..., xn − x0‖ ≤ (
s

r
)p, ∀r, s ∈ N,

then
‖f(x1)− f(x0), f(x2)− f(x0), ..., f(xn)− f(x0)‖ ≤ (

s

r
)p.
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Let pi = x0 + i
r

1

(‖x1−x0,...,xn−x0‖)
1
p
(x1 − x0), where i = 1, ..., s. Then

‖pi − pi−1, x2 − pi−1, ..., xn − pi−1‖ = ‖pi − pi−1, x2 − x0, ..., xn − x0‖ =
1
rp

.

Hence

‖f(pi)− f(pi−1), f(x2)− f(x0), ..., f(xn)− f(x0)‖
= ‖f(pi)− f(pi−1), f(x2)− f(pi−1), ..., f(xn)− f(pi−1)‖
=

1
rp

.

Since x1 = ps−1 + α(ps − ps−1) for some α ∈ (0, 1], we obtain that f(x1) =
f(ps−1) + β(f(ps)− f(ps−1)) for some β ∈ (0, 1] from the hypothesis. Hence

‖f(x1)− f(x0), f(x2)− f(x0), ..., f(xn)− f(x0)‖

= ‖(f(x1)− f(ps−1)) +
s−1∑

i=1

f(pi)− f(pi−1), ..., f(xn)− f(x0)‖

= ‖(s− 1 + β)(f(p1)− f(p0)), f(x2)− f(x0), ..., f(xn)− f(x0)‖
= (

m− 1 + β

r
)p

≤ (
m

r
)p.

¤

A direct application of Theorem 3.8 and the above two Lemmas yields the
following results.

Theorem 3.9. Let X be a linear (n, p)-normed space and Y be a linear p-
strictly convex (n, p)-normed space. And assume that if x0, x1, ..., xn are m-
collinear, then f(x0), f(x1), ..., f(xn) are m-collinear (m=2,...,n ), and that if
y1−y2 = α(y3−y2) for some α ∈ (0, 1], then f(y1)−f(y2) = β(f(y3)−f(y2)).
If f satisfies (nDOPP) then f : X → Y is a n-isometry.

By the same argument as that in the above section, we may get the following
result:

Theorem 3.10. Let X, Y be linear (n, p)−normed spaces. Let f : X → Y be
a mapping. And assume that if x, y and z are collinear, then f(x), f(y) and
f(z) are collinear, and there exist ρ ∈ R with ρ > 0, and N ∈ N with N > 1,
f satisfies the following conditions:

(1) if ‖x1 − x0, x2 − x0, ..., xn − x0‖ = ρ, then

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ ≤ ρ,
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(2) if ‖x1 − x0, x2 − x0, ..., xn − x0‖ = ρ2Np, then

‖f(x1)− f(x0), ..., f(xn)− f(x0)‖ ≥ ρ2Np.

Then f is a n-isometry.
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