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Abstract. In this paper, we introduce the modification of a generalized (¥, L)—weak con-
traction and we prove some coincidence point results for self-mappings G,T and S, and
some fixed point results for some maps by using a (¢)—comparison function and a compari-

son function in the sense of a b-metric space.

1. INTRODUCTION

Bakhtin [6] and Czerwik [11] introduced the notion of b—metric spaces as
a generalization of the notion of metric spaces. The idea of b—metric spaces
has weaker than the triangular inequality axiom.
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Also, many authors gave some fixed point theorems in the notion of metric
spaces, for example see [1, 2, 4, 5, 7, 8, 9, 15, 22, 24, 25, 30, 31, 33, 34, 35,
36, 37, 38, 39, 40]. Also, for some work on b—metric, we refer the reader to
3, 10, 12, 16, 17, 18, 19, 20, 21, 23, 26, 27, 28, 32].

Now, we present the definition of the b-metric space.

Definition 1.1. ([6, 11]) Let X be a nonempty set and s > 1 be a real
number. A function d : X x X — [0, 00) is called a b—metric if it satisfies the
following properties for each z,y,z € X.

(bl) d(z,y) =0iff x = y.

(b2) d(z,y) = d(y, x).

(b3) d(x,2) < sld(z,y) + d(y, 2)].
In this case, the pair (X, d) is said to be a b-metric space.

The definitions of a Cauchy and a convergent sequence, as well as, the
complete b—metric space are given as follows:

Definition 1.2. ([13]) Let (X,d) be a b—metric space. A sequence {z,} on
X is said to be
(1) Cauchy if d(zp,yn) — 0 as n,m — oo,
(2) convergent if there exists 2 € X such that d(x,,x) — 0 as n — oo and
we write nh_}rglo Tp = T.

Definition 1.3. ([13]) The b—metric (X,d) is said to be complete if every
Cauchy sequence in X is convergent.

Kamran [14] defined a new generalized metric space, called an extended
b—metric space as follows.

Definition 1.4. Let X be a nonempty set and 6 : X x X — [1,00). A function
dg : X x X — [0,00) is called an extended b—metric if for all x,y,z € X the
following conditions are satisfied

(dg1) dy(a,y) =0 iff @ =

(do2) do(x,y) = do(y, v);

(do3) do(,2) < (x, 2) [do(2,y) + do(y, 2)].
The pair (X, dp) is called an extended b—metric space.

In the following definition, Shatanawi [29] define a (¢)—comparison function
with base s.

Definition 1.5. ([29]) Let s be a constant s > 1. A map ¥ : [0, +0c0) —
[0,400) is called a (¢)—comparison function with base s if U satisfies the
following;:
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(i) ¥ is monotone increasing,

o0
(i) > s™W"(st) converges for all ¢ > 0.
n=0

If ¢ is a (c)-comparison function, then for all ¢ > 0 we have ¥(t) < ¢t and

$(0) = 0.

Before starting to get our main results, we formulate the following new
definitions. Then we give formulate and prove some our new results:

Definition 1.6. A single-valued mapping f : X — X is called a Ciri¢ strong
almost contraction if there exists § € [0,1), L > 0 and for s > 1 such that

)
A(fo fy) < S max (s, ), s, £2), 5y, ), 5 17 ) + o, £2)] |
+ Ld(y, fz)
for all x,y € X.

Definition 1.7. Let (X, d) be a b—metric space. A mapping T is called a
modification of (0, L)-weak contraction if § € [0,1) and L > 0 be such that

d(Tx,Ty) < gd(x,y) + Ld(y, Tx). (1.1)

By using the symmetry condition of the b—metric space, then condition
(1.1) is equivalent to
4]
S
Moreover, by (1.1) and (1.2), the modification of the (9, L)-weak contraction

condition of the mapping 71" can be replaced by the following condition:

d(Tz,Ty) < gd(x, y) + Lmin{d(y, Tz),d(z, Ty)}.

Definition 1.8. Let (X,d) be a b—metric space. A map T is called modifi-
cation of (¥, L)—weak contraction if ¥ is a comparison function and L > 0 is
such that

1

d(Tz,Ty) < ~V(sd(z,y)) + Ld(y, T). (1.3)
s
Using the symmetry condition of the b—metric space, then (1.3) is equivalent

to
(T, Ty) < %\I’(sd(az, V) + Ld(z, Ty). (1.4)
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Thus by (1.3) and (1.4), the modification of (¥, L)—weak contraction condition
of the mapping T" with respect to G can be replaced by the following condition:

—_

d(Tz,Ty) < —¥(sd(z,y)) + Lmin{d(y, Tx),d(z, Ty)}.

S

Remark 1.9. Assume that x,, — z as n — +00 in a b—metric space (X, d)
such that d(z, z) = 0. Then hI_fI_l d(xn,y) = d(z,y) for every y € X.
n—-+0o

Theorem 1.10. Let (X,d) be a complete b—metric space and T : X — X be
a modification of (V, L)—weak contraction. Then T has a unique fixed point.

Proof. Start xg € X, we construct a sequence (x,) in X such that z,, = Tz, _;
for all n € N. Since 7' is a modification of (¥, L)—weak contraction, we have

1 1
d(Txp—1,Txy) < =V (sd(zp—1,zn) + Ld(zp, Txn_1) = =V (sd(zp_1, Tn).
s s

So
1

d(xn, Tpt1) = d(Txp—1,Txy,) < E\I/(sd(mn_l,xn)).

Induction on n implies that
1 n
d(Tpn, Tnt1) < g\II (sd(zg,z1))

for all n € N. Triangle inequality implies that for m > n, we have

m—1
d(x'm xm) < Z Skd(.%'k, $k+1)
k=n

o0

Z sPd(zp, Tpy)
k=n
o0

S L0t (sd(z, 1))

k=n

IN

IN

oo
Since ¥ is a (c)—comparison function, > s*W¥(sd(zg, 1)) is convergent and
k=n
so {xy} is a Cauchy sequence in X. Since X is complete, {z,,} converges with
respect to 74 to a point z € X; that is, lim d(x,,2) = d(z,z) = 0. Since
n—0o0

T, = Tx,_1, we conclude that Tx,, — z.
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Now, we claim that d(z,Tz) = 0. Now,

d(z,Tz) < sld(z,Tzy)+ d(Tzy, Tz)]
= sld(z,zn41) + d(Tzp, T2)]

IN

s|d(z, xnt1) + élb(sd(xn, z)) + Ld(z, xp+1)

< sld(z,2p41) + d(xn, 2) + Ld(z, Tp41)] -
Letting n — oo, we obtain
d(z,Tz) =0

and hence z = T'z. To prove the uniqueness of the fixed point, we assume there
are two distinct fixed points of 7', say z and w. So d(z,w) > 0. So

0 < d(z,w)=d(Tz,Tw)
< ém(sd(z, w)) + Lyd(z, T2)

- %xy(sd(z,w))
< d(z,w),

which is a contradiction. Therefore T has a unique fixed point. O

In this paper, we introduce the notion of a modification of generalized
(s, L)—weak contraction and a modification of a generalized (1, L)—weak con-
traction mapping in b—metric spaces.

First of all, we prove fixed point result for two mapping S and T" and some
fixed point results for a mapping T'. our results generalize Theorem 1.10.

2. THE MAIN RESULT

We start our work by formulating the following definitions:

Definition 2.1. Let (X,d) be a b—metric space and G,T,S : X — X be
three mappings such that TX C GX and SX C GX. We call the pair (T, 5)
a modification of generalized (s, L)—weak contraction if there exists L > 0
such that

d(Tz,Sy) < 1m&x {sd(Gx, Gy), sd(Gz,Tx), sd(Gy, Ty), (2.1)
s

% (d(Gz, Sy) + d(Tz, Gx)) } + Lmin{d(Gz, Sy), d(Tz, Gy)}

for all x,y € X.
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Definition 2.2. Let (X,d) be a b—metric space and 7,5 : X — X be two
mappings. We call the pair (7, S) a modification of generalized (¥, L)—weak
contraction if there exists L > 0 such that

1
d(Tz,Sy) < ;\If(max {sd(G:L‘,Gy),sd(Gx,Tx),sd(Gy,Ty), (2.2)

1
5 (d(Ga, Sy) + d(Tw, Ga) }) + Lmin{d(Gz, Sy), d(Tz, Gy)}
for all x,y € X.

Theorem 2.3. Let (X,d) be a complete b—metric space and G,T,S : X — X
be mappings such that the pair (T,S) is a modification of generalized (V, L)—
weak contraction. If U is a (¢)—comparison function and GX is a complete
subspace of X, then G,T and S have a coincidence point.

Proof. Choose Gzg € X. Put Gx1 = T'xg. Again, put Gro = Sxy. Continuing
this process, we construct a sequence (Gx,,) in X such that Gzray, 1 = Txe, and
Gxont2 = Sxany1. Suppose that d(Gxy,, Gryi1) = 0 for some n € N. Without
loss of generality, we assume n = 2k for some k € N. Thus d(Gzax, Grogi1) =
0. Now, by (2.2), we have

d(Grogs1, Gragy2)
= d(Two, STok+1)

1
< E\I'(max{sd(G:pgk, Gxopy1), sd(Grag, T'rar),
1
sd(GTop41, STok+1), 3 [d(Gxak, Sxory1) + d(Tog, Grag41)]}
+ L Hlin{d(Tl’Qk, G:L’Qk+1), d(G:L’Qk, Sx2k+1)}

1
= g\IJ(max{sd(G:l:%, Grag+1),

1
3 [d(Go, Gropy2) + d(Gropy1, Grops1)]}

+ Lmin{d(Gxop41, Gropy1), d(Grop, Gropia) }

IN

%\I/(max{sd(Gxgk, G$2k+1),
S
3 [d(Gzog, Grogy1) + d(Gropy1, Graps2)]}

1
< ;\Il(max{sd(Gxgk, Gropy1, sd(Groky1, Grogi2)}-

1
— g\II(sd(Gaﬁgk+1, G$2k+2))'

Since ¥(t) < ¢ for all t > 0, we conclude that d(Gxog11, Gragi2) = 0. By (b1)
and (b2) of the definition of b—metric spaces, we have Gxo1 = Grogya. So
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Gzop, = Gropy1 = Gropyo. Therefore Gaop = Txor, = Sxox and hence zy, is a
coincidence point of G, T" and S. Thus, we may assume that d(Gz,, Gxp41) # 0
for all n € N. Given n € N. If n is even, then n = 2¢ for some t € N. By (2.2),
we have

d(Gzat, Grary1) = d(Grars1, Grar)
= d(Txas, STor—1)

1
< ;\I/(max{sd(Ga:gt, Groi—1), sd(Gray, Txay),

sd(Gxap—1,Sw28-1),
1

> [d(Gxar, Sxor—1) + d(Txor, Grar—1)]})

+ Lmin{d(Gxar, Swor—1), d(Txos, Gror—1)}
1
= ;\If(max{sd(Gxgt, Gxap—1),8d(Gray, Grapit),

1
3 [d(Gray, Gzay) + d(Gropy1, Grar-1)]})
+ L min{d(Gxgt, G.’L’Qt), d(Gl‘QtJrl, G.’Egt,l)}.

Using (b4) of the definition of b—metric spaces, we reach to

1
d(Gwat, Grary) < g\Il(max{sd(Gxgt, Gwa-1), sd(Grap, Gragi1),

S

[d(Gzot—1, Grar) + d(Grar, Grari1)]})

—
[\]

< —U(max{sd(Gra, Grar—1), sd(Grar, Grary1)}. (2.3)

VA

If max{sd(Gzra, Gxar—1), sd(Grar, Gropr1)} = sd(Gray, Grart1), then (2.3)
yields a contradiction. Thus,

max{sd(Gra, Gror—1), sd(Grar, Grory1)} = sd(Gray, Grap—1)

and hence )
d(GQS‘Qt, G$2t+1) S E\IJ(Sd(Gl‘Qt, G.’L‘Qtfl)). (2.4)

If n is odd, then n = 2t 4+ 1 for some t € NU {0}. By similar arguments as
above, we can show that

1
d(Gl’2t+1, G$2t+2) S E\P<Sd(Gx2t7 G.’L’Qt+1>). (25)
By (2.4) and (2.5), we have

1
d(Gxyn, Grpt) < ;‘lf(sd(Ga:n,l,G:vn)). (2.6)
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By repeating (2.6) in n-times, we get d(Gzpn, Gzni1) < 21U (sd(Gxo, Gr1)).
For n,m € N with m > n, we have

[y

d(Gxyp, Grp) < Sid(GiL‘i, Gxiy1)

3

.

3
L3

<3 st (sd(Gao, Gir)

i=n

< i s'' (sd(Gxo, Gy)).

1=n

o0 . .
Since VU is (¢)—comparison, we have ) s'®"(d(Gxzg,Gz1)) is convergent and

hence ngrfm igns ®'(d(Gxo,Gr1)) = 0. So, n,n}Ll—I>n+oo d(Gxy, Gry,) = 0. Thus

{Gz,} is a Cauchy sequence in GX. Since GX is complete, there exists
z € GX such that Gx,, —» Gz with d(Gz,Gz) = 0. So,
lim d(Gzp,Gry) = li_}In d(Gxy,Gz) =d(Gz,Gz) = 0. (2.7)

n,m—-+o0o

Now, we prove that Sz = Tz. Since d(Gxan+1,Gz) — d(Gz,Gz) = 0 and
d(Gropta,Gz) — d(Gz,Gz) = 0, by Remark 1.9, we get

Egr_l d(Gxaopt1,S5z) = d(Gz,Sz) (2.8)
and
Erf d(Gxopyo,Sz) = d(Gz,Tz). (2.9)

By using (2.2), we have
d(Gxopt1,Sz) = d(Txon, Sz)

1
< ;\IJ(maX{sd(G:UQn, Gz),sd(Gxon, Txap), sd(Gz,Sz),

1
5 [d(Txon, Gz) + d(Gxan, S2)]})
+ L min {d(Tx2p, Gz),d(Gzap, S2)}
1
< glb(max{sd(Ga:gn, Gz),sd(Gxan, Grany1), sd(Gz, Sz),

% [d(Gaant1,Gz) + d(Gaan, S2)]})

+ Lmin {d(Gxont1,Gz),d(Grap, Sz)} .

On letting n — 400 in the above inequality and using (2.7) and (2.8), we get
that d(Gz, Sz) < 14(sd(Gz,Sz)). Since ¥(t) < t for all t > 0, we conclude
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that d(Gz,Sz) = 0. By using (b1) and (b2) of the definition of b—metric
spaces, we get that Sz = Gz. By similar arguments as above, we may show
that Tz = Gz. so z is a coincidence point of G,T and S 0

Theorem 2.4. Let (X,d) be a complete b—metric space and T, S : X — X be
two mappings such that

d(Tz,Sy) < é@ <max{sd(az,y),sd($,Tz), sd(y, Sy), % [d(Tzx,y)+d(x, Sy)]})

+ Lmin{d(x,Tz),d(x,Sy),d(Tz,y)} (2.10)
for all x,y € X. If U is a (¢)—comparison function, then the common fized

point of T and S is unique.

Proof. By taking G = ¢ the identity map on X, then Theorem 2.3 implies that
1, T have a coincidence point; that is, there is z € X such that z =iz =Tz =
Sz. So z is a common fixed point of T" and S. To prove the uniqueness of the
common fixed point of T" and S, we let u,v be two common fixed points of
T and S. Then Tu = Su=u and Tv = Sv = v.

Now, we will show that v = v. By (2.10), we have

d(u,v) = d(Tu, Sv)

< lw <max {sd(u, v), sd(u, Tu), sd(v, Sv), %
s

[d(Tu, v) + d(v, Tu)) })
+ Lmin {d(u, Tu), d(Tu, v), d(v, Tu)}
< éw (max {sd(u,v), sd(u,Tu),sd(v,v),%

+ Lmin {d(u, u), d(u, v), d(v, u)}
_ %w(sd(u, 0)).

Since ¥(t) < t for all t > 0, we conclude that d(u,v) = 0. By (b1) and (b2) of
the definition of b—metric spaces, we get that u = v. O

(T, v) + d(v, u)] })

Corollary 2.5. Let (X,d) be a complete b—metric space and T : X — X be

a mapping such that

d(Tz,Ty) < %llf <max{sd(a;,y),sd(x,Tx),sd(y,Ty), [d(Tz,y)+d(x, Sy)]})

1
2

+ Lmin{d(z,Tx),d(x,Ty),d(Tz,y)}
forallx,y € X. If ¥ is a (¢)—comparison function, then T' has a unique fixed
point.
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Corollary 2.6. Let (X,d) be a b—metric space and T, S : X — X be two
mappings such that

d(Tz,Ty) < 1\I’(111a><;{sal(5':v, Sy), sd(Sx,Tx),sd(Sy, Ty),
s

5 (T2, Sy) + d(Sz, Ty)]})
+ Lmin {d(Sz,Ty),d(Sy, Tx)}
for all x,y € X. Also, suppose that
(1) TX CSX, and
(2) SX is a complete subspace of the b—metric space X .

If ¥ is a (¢)—comparison function, then T and S have a unique coincidence
point.

Corollary 2.7. Let (X,d) be a complete b—metric space and T : X — X be
a mapping. Suppose there exist two non-negative numbers k and [ such that

d(Tz,Ty) < kmax {d(x, y),d(z,Tx),d(y, Ty), % [d(Tx,y) + d(z, Ty)]}

+Lmin{d(z,Tx),d(z,Ty),d(Tz,y)}
forallz,y € X. If k € [0,1), then T has a unique fized point.

Corollary 2.8. Let (X,d) be a b—metric space and T,S : X — X be two
mapping. Suppose there exist two non-negative numbers k and | such that

d(Tz,Ty)

< kmax {d(S:):, Sy),d(Sz,Tx),d(Sy, Ty), = [d(Tx,Sy) + d(Sz, Ty)]}

1
2
+ Lmin {d(Sz,Ty),d(Sy, Tx)}
for all x,y € X. Also, suppose that
(1) TX C SX, and
(2) SX is a complete subspace of the b—metric space X .
If k €]0,1), then T and S have a coincidence point.

Corollary 2.9. Let (X,d) be a b—metric space and T, S : X — X be two
mappings. Suppose that there exist a (¢)—comparison function ¥ and L > 0
such that

—_

d(Tz,Ty) < —¥(max{sd(Sz, Sy), sd(Sz,Tz), sd(Sy, Ty),

5 (T, Sy) + d(S2, Ty)])
+ Lmin{d(Tz, Sz),d(Sz,Ty),d(Sy, Tx)}
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for all xz,y € X. Also, suppose that

(1) TX C SX, and
(2) SX is a complete subspace of the b—metric space X .

Then the point of coincidence of T and S is unique; that is, if Tu = Su and
Tv = Sv, then Tu = Tv = Sv = Su.

The (¢)—comparison function in Theorems 2.3 and 2.4 can be replaced by
a comparison function if we formulated the contractive condition to a suitable
form. For this instance, we have the following result

Theorem 2.10. Let (X,d) be a complete b—metric space and G, T : X — X
be mappings such that TX C GX and
1
d(Tz,Ty) < -V (max {sd(Gz, Gy), sd(Gz,Tx),sd(Gy, Ty)})
S
+ Lmin{d(Gz,Tz),d(Gz,Ty),d(Gy, Tz)} (2.11)

forallx,y € X. If VU is a comparison function and GX is a complete subspace
of X, then G and T have a coincidence point.

Proof. Choose Gzy € X. Put Gx1 = Txy. Again, put Gzy = Tz1. Continuing
the same process, we can construct a sequence {Gz,} in X such that Gz, =
Txy,. If d(Gxg, Gxgy1) = 0 for some k € N, then by the definition of b—metric
spaces, we have Gz, = Gy = Txy, that is, Gz, is a coincidence point of G
and T. Thus, we assume that d(Gzy, Gr,11) # 0 for all n € N. By (2.11), we
have

d(Gzp, GTpg)
=d(Tzp-1,Txy)
< E\I/(max {sd(Gxp—1,Gxy), sd(Grp_1,Txn_1),sd(Gry, Txy)})
Y Lo {d(Girn . Tiey). d(Girn s Tirn). d(Gitn, T 1))
_ %\P(max (5d(Gan_1,Grn), 5d(Cn, GTnin) )
+ Lmin {d(Gon_1, Tonsr), d(Gan, Gra)}
_ %xp(max (5d(Gan1,Grn), 5d(Cn, Grnin)}).

If
max {sd(Grp—1,Gxy), sd(Gry, Grpi1)} = sd(Gay, Grpi),
then
1
d(Gxyp, Grpg) < E\I'(sd(Gxn,Gan)) < d(Gxyp, Grpt1),
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a contradiction. Thus,
max {sd(Grp—1,Gxy), sd(Gxy, Grpi1)} = sd(Grp—_1,Gxy)

and hence
d(Garn, Gny1) < %lll(sd(Ga:n_l, Gan)) foralln N, (2.12)
Repeating (2.12) in n-times, we get that
(G, Gansr) < %lll”(sd(Gxo, Ga)).

Now, we will prove that {Gz,} is a Cauchy sequence in GX. For this, given

e > 0, since (2T1L)(6 —®(€)) > 0 and HEI-II}OO ®" (sd(Gwp, Gz1)) = 0, there exists

k € N such that d(Gzy, Grpt1) < ﬁ(e — ®(e)) for all n > k. Now, given

m,n € N with m > n. Claim: d(Gzy,Gzy,) < € for all m > n > k. We prove
our claim by induction on m. Since k 4+ 1 > k, we have

1

< -
d(leﬁka-i-l) = 3(2 + L)

(e —®(e)) < e.

The last inequality proves our claim for m = k + 1. Assume that our claim
holds for m = k.

Now, we prove our claim for m = k 4+ 1, we have

d(Gxy, Griy1) < s[d(Gxy, Grpi1) + d(Grpg1, GTgt)]
= s[d(Gxyn, Grpy1) + d(Txy, Txy)] . (2.13)

By (2.11), we have
d(Txp, Txy) < %\Il(max{sd(Gxn,ka),Sd(Gxn,Txn),sd(Gmk,Txk)})
+ Lmin {d(Gxy, Txy),d(Gxy, Txy), d(Grg, Txy,) }
= E\I/(max {sd(Gzxy, Gzy), sd(Gxy, Grpi), sd(Grg, Grri1)})
+ Lmin {d(Gxy, Grpit), d(Gry, Grgyr), d(Gry, Grpge1)}
< %\I/(max {sd(Gzp, Gzy), sd(Gxp, Grpy1), sd(Gry, Grgi1)})
+ Ld(Gxy, GTpy1).
If
max {sd(Gzy, Gzy), sd(Gxy, Gxny1), sd(Gry, Grgy1)} = sd(Gay, Gry),



Coincidence and fixed point results for generalized weak contraction mapping 189

then (2.13) implies that

d(Gxy, Grgy1) < s [d(G:cn, Grpi1) + E\I/(sd(Gxn, Gzy)) + Ld(Gzp, Grpy1)
E I IR CIE
< €.
If
max {sd(Gzy, Gxy), sd(Gxy, Grpi1), sd(Grg, Grgy1)} = sd(Grp, GTpit),

then (2.13) implies that

d(Gxy, Griyq)

< s |d(Gxn, Grpyr) + E\I/(sd(Gacn, Grpt1)) + Ld(Gzy, Grpgq)

< (24 L)sd(Gxyp, Grpi)
- ®
e
< €.
If
max {sd(Gzxyp, Gxy), sd(Gry, Grpi1), sd(Grg, Grgyq)} = sd(Gxg, Grriq),
then (2.13) implies that
d(Gxy, Griy1)
< s |d(Gxyn, Grpi1) + é‘P(sd(Gajk, Grri1)) + Ld(Gzp, Grpgr)
< (s + L)d(Gxyp, Grpy) + sd(Gry, Griyq)
o )

<7
s(2+1L)
< €.

(6 - (I)(E)) + m

Thus {Gz,} is a Cauchy sequence in X. Since GX is complete, {Gz,} con-
verges, with respect to 7,, to a point Gz for some z € X such that

lim d(Gzp,Gxy) = lim d(Gz,,Gz) = d(Gz,Gz) = 0. (2.14)

n,m—-+o0o n—-+0o
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Now, assume that d(Gz,Tz) > 0. By using (b4) of the definition of b-metric
spaces and (2.11), we have

d(Gz,Txz)
< s[d(Gz,Grpt1) + d(Grpy1, Tz)]
= s[d(Gz,Gxpy1) + d(Txy, T2)]

< sld(Gz, Grpyr) + 1\I'(max {sd(Gxy, Gz), sd(Gxp, Txy), sd(Gz,Tz)})
s
+ Lmin {d(Gxy, Txy),d(Gxy, Tz),d(Gxy, T2)}]

= s[d(z, Grpt1) + E\I/(max {sd(Gxy, 2), sd(Gxy, Grpy1),sd(z,T2)})
+ Lmin {d(Gzy, Grpt1),d(Gry, T2),d(Grpt1, S2)}. (2.15)
Since
n,nngnJroo d(Gxy, Grpgr) = ngrfoo d(Gxp,Gz) =0
and d(Gz,Tz) > 0, we can choose ng € N such that
max {sd(Gzy, Gz), sd(Gxyp, GTpi1), sd(Gz,Tz)} = sd(Gz,Tz)
for all n > ng. Thus (2.15) becomes

d(G2,T2) < s|d(Gz, Grnsr) + %\Il(sd(Gz,Tz))
+ Lmin {d(Gzy, Grpt1),d(Grp, T2),d(Grps1, T2)},

for all n > ng. On letting n — 400 in the above inequality and using (2.14),
we get that

1
d(Gz,Tz) < ;\If(sd(Gz,Tz)) <d(Gz,Tz),

a contradiction. Thus d(z,Tz) = 0. By using (b1) and (b2) of the definition
of a b-metric space, we get that Gz = T'z, that is, z is a coincidence point of
G and T. O

Corollary 2.11. Let (X,d) be a b—metric space andT : X — X be a mapping.
Suppose there exist a comparison function ¥ and L > 0 such that
1
d(T'x: Ty) < -v (maX {Sd(iﬁ, y)7 Sd(.’L’, TJJ), Sd(ya Ty)})
s
+Lmin{d(z,Tz),d(z,Ty),d(y,Tz)}
for all x,y € X. Then T has unique fized point.

Proof. By taking ¢« = GG, the identity function on X. Then from Theorem 2.10,
we conclude that ¢ and T" have a coincidence point z € X. So z = iz = T'x.
So x is a fixed point of T. One can easily show that from the contractive
condition, the fixed point of T is unique. O
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3. EXAMPLE

Example 3.1. Let X = [0, +00). Consider the complete b-metric space d :
X xX — [0,400), d(x,y) = (x—y)? with constant s = 2. Define the mappings
GT,S:X > XbyGr=u2Tr= %:L‘andS:n: %x, and define ¥ : [0, +00) —
[0, +00) by ¥(t) = 1. Then

(1) W is a continuous (c¢)-comparison function.

(2) T,S and ¥ satisfy the following inequality:

1
d(Tx,Sy) < ;\IJ(maX{sd(Gx, Gy), sd(Gz,Tx), sd(Gy, Sy),

5 (T2, Gy) + d(Ge, Sy)]})
+ Lmin{d(Gz,Tz),d(Gzx, Sy),d(Tz,Gy)} .

In fact, it is clear that ¥ is a nondecreasing continuous function. Now, let
t € [0. + 00). Then,

T (st) = UN(2) = - (28).

4n
Thus
o0 o0 271
D s"W(st) =) o(2t)
n=0 n=0
=1
=2ty on
n=0
< 40o0.

So V¥ is a (c)-comparison function.
To show (2), let z,y € X. Then

1 1 11\ 1 1\?
d(Tz,Sy)=d( -z, ~y) = (22— ~y) == (z—=y) .
(Tz, Sy) <3w, 6y> <3w 61/) 5 (:c 2y>
Now, we have 3 cases:
Case I. z = %y Here, we have
1
d(Tz,Sy) =0 < E\Il(max{sd(G:B, Gy), sd(Gz,Tx), sd(Gy, Sy),

5 [d(Te, Gy) + d(Ger, Sy)])
+ Lmin{d(Gz,Tx),d(Gzx, Sy),d(Tz,Gy)} .

Case II: = > %y. Here, we have
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< —¥U(max{sd(Gz,Gy), sd(Gz,Tx), sd(Gy, Sy),

VA

5 (T2, Gy) + d(G, Sy)))
+ Lmin{d(Gz,Tz),d(Gx, Sy),d(Tz,Gy)} .

Case III: x < %y. Here, we have

d(Txz, Sy) =

IN

S|

S|

=
/\/E\/‘\
N
<
I
|~
N
(V)
~

T I N e N e N N =

U (max{sd(Gz, Gy), sd(Gz,Tx), sd(Gy, Sy),
5 (T2, Gy) + d(G, Sy))
+ Lmin {d(Gz,Tx),d(Gz, Sy),d(Tz,Gy)} .

Hence we know that G,T,S and W satisfy all hypotheses of Theorem 2.4. So
T and S have a unique common fixed point.
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