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Abstract. In this paper, we discuss and achieve the Hyers-Ulam stability of the quadratic

functional equation in the framework of linear 2-normed spaces, therefore we generalize the

corresponding theorems.

1. Introduction

The first stability problem was raised by S.M. Ulam [11] during his talk at
the university if Wisconsin in 1940. Given a group G1, a metric group (G2, d)
and a positive number ε, does there exist a δ > 0 such that if f : G1 → G2

satisfies
d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G1, then a homomorphism h : G1 → G2 exists with

d(f(x), h(x)) < ε

for all x,∈ G1? For general functional equations, the concept of stability for
functional equations arises when the equation is replaced by an inequality
which act as a perturbation of the equation. If the answer is affirmative, the
functional equation for homomorphism will be called stable.

The first affirmative result concerning the stability of functional equations
was presented by D.H. Hyers [4]. He dealt with ε−additive mappings f : E1 →
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E2 between Banach spaces, i.e. f satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ < ε,∀x, y ∈ E1.

Th.M. Rassias [6] considered a generalized version of the previous result which
permitted the Cauchy difference to become unbounded. That is, he assumed
that

‖f(x + y)− f(x)− f(y)‖ < ε(‖x‖p + ‖y‖p),∀x, y ∈ E1, 0 ≤ p < 1

This result was later extended to all p 6= 1 and generalized by Z. Gajda [3]
and Th.M. Rassias [7].

For a real constant c, the quadratic function f(x) = cx2 satisfies the equa-
tion

f(x + y) + f(x− y) = 2f(x) + 2f(y). (1.1)

Hence, equation (1.1) is called the quadratic functional equation, and the solu-
tion of the quadratic functional equation (1.1) is called a quadratic function.

F. Skof [10] proved the Hyers-Ulam stability of the quadratic functional
equation for functions f : E1 → E2, where E1 is a normed space and E2

a Banach space. P.W.Cholewa [1] demonstrated that Skof’s theorem is also
valid if E1 is replaces by an Abelian group G.

Theorem 1.1 ([1]). Let G be a Abelian group, E be a Banach space and a
function f : G → E satisfies the inequality

‖f(x + y) + f(x− y)− 2[f(x) + f(y)]‖ ≤ δ,

for some δ ≥ 0 and for all x, y ∈ G. Then there exists a unique quadratic
function Q : G → E such that

‖f(x)−Q(x)‖ ≤ 1
2
δ,

for all x ∈ X.

S. Czerwik [2] proved the modified Hyers-Ulam stability of the quadratic
functional equation for the case p > 2 and p < 2 separately, that is, assume
that f satisfies

‖f(x + y) + f(x− y)− 2[f(x) + f(y)]‖ ≤ δ + θ(‖x‖p + ‖y‖p), p < 2

and

‖f(x + y) + f(x− y)− 2[f(x) + f(y)]‖ ≤ θ(‖x‖p + ‖y‖p), p > 2.

If p = 2, the quadratic functional equation 1.1 is not stable. (see [9]).
A. White [12] introduced the concepts of Cauchy sequence and convergent

sequence in linear 2-normed spaces and the notion of 2-Banach spaces.
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In this paper, we investigate and give a generalization of Hyers-Ulam sta-
bility for quadratic functional equation in the framework of linear 2-normed
spaces.

2. Main results

Theorem 2.1. Let E be a linear 2-normed space and F a 2-Banach space.
The dimension of E and F is greater than one, and let f : E → F be a
surjective mapping. Assume that there exists δ ≥ 0 and α, β ∈ R, α + β 6= 2,
such that

‖f(x + y) + f(x− y)− 2[f(x) + f(y)], f(z)‖ ≤ δ‖x, z‖α‖y, z‖β (∗)
for all x, y, z ∈ E. Then there exists a unique function g : E → F such that

g(x + y) + g(x− y) = 2g(x) + 2g(y)

and

‖f(x)− g(x), f(z)‖ ≤ ε‖x, z‖α+β,

where

ε =

{
4−1 δ

1−2α+β−2 α + β < 2,

2−(α+β) δ
1−22−α−β α + β > 2.

Proof. (I) For the case α + β < 2. Apply the induction assumption

‖f(x)− 4−nf(2nx), f(z)‖ ≤ 4−1δ‖x, z‖α+β
n−1∑

i=0

2i(α+β−2). (2.1)

Put x = y in (∗) and dividing by 4, we can get that the induction assumption
is true for n = 1. Assume now that the induction assumption is true for the
case n, we want to show that the assumption is true for the case (n + 1).

‖f(x)− 4−n−1f(2n+1x), f(z)‖
≤ ‖f(x)− 4−nf(2nx), f(z)‖+ ‖4−nf(2nx)− 4−n−1f(2n+1x), f(z)‖

≤ 4−1δ‖x, z‖α+β
n−1∑

m=0

2m(α+β−1) + 4−n4−1δ‖2nx, z‖p

= 4−1δ‖x, z‖α+β
n∑

i=0

2i(α+β−2).

Thus the assumption is true for any positive integer n. It follows that

‖f(x)− 4−nf(2nx), f(z)‖ < 4−1δ‖x, z‖α+β 1
1− 2α+β−2

.
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Put gn(x) = f(2nx)
4n , for n > m > 0, we have

gm(x)− gn(x) =
f(2mx)

4m
− f(2nx)

4n

=
f(2mx)− 4−(n−m)f(2n−m · 2mx)

4m
.

we can apply (2.1) to get

‖gm(x)− gn(x), f(z)‖ = ‖f(2mx)− 4−(n−m)f(2n−m · 2mx)
4m

, f(z)‖

≤ 4−1δ‖x, z‖α+β
n−m∑

i=m

2i(α+β−2).

It follows that for each x ∈ E, {gn(x)}n is a Cauchy sequence in F . Since F
is a 2-Banach space, there is a limit

g(x) = lim
n→∞ gn(x),

which satisfies

‖f(x)− g(x), f(z)‖ ≤ ε‖x, z‖α+β,

for all x, z ∈ E, where ε = 4−1δ 1
1−2α+β−2 .

From (∗) we get

‖f(2nx+2ny)+f(2nx−2ny)−2[f(2nx)+f(2ny)], f(z)‖ ≤ δ(‖2nx, z‖α‖2ny, z‖β)

and

‖gn(x + y) + gn(x− y)− 2[gn(x) + gn(y)], f(z)‖
= ‖4−nf(2nx + 2ny) + 4−nf(2nx− 2ny)− 2[4−nf(2nx) + 4−nf(2ny)], f(z)‖
≤ δ2n(α+β−2)‖x, z‖α‖y, z‖β.

Letting n →∞, we obtain g(x + y) + g(x− y) = 2g(x) + 2g(y).
Next we show the uniqueness of g. Assume that there exists another map-

ping h : E → F , a constant ε1 ≥ 0 such that

‖f(x)− h(x), f(z)‖ ≤ ε1‖x, z‖α+β.

Since g(x), h(x) are quadratic functions, we have

g(nx) = n2g(x), h(nx) = n2h(x).

Hence

‖g(nx)− h(nx), f(z)‖ ≤ ‖f(nx)− g(nx), f(z)‖+ ‖f(nx)− h(nx), f(z)‖
≤ ε‖nx, z‖α+β + ε1‖nx, z‖α+β

= (ε + ε1)nα+β‖x, z‖α+β.



On the stability of functional equations in 2-normed spaces 639

Therefore

‖g(x)− h(x), f(z)‖ =
1
n2
‖g(nx)− h(nx), f(z)‖

≤ (ε + ε1)nα+β−2‖x, z‖α+β.

Thus
lim

n→∞ ‖g(x)− h(x), f(z)‖ = 0,

for all x, z ∈ E. Since f is surjective, g(x) ≡ h(x) for all x ∈ E.
(II) For the case α + β > 2. We can prove the induction assumption

‖f(x)− 4nf(2−nx), f(z)‖ ≤ δ2−(α+β)
n−1∑

i=0

2i(2−α−β)‖x, z‖α+β,

for all x, z ∈ E and any positive integer n. Put gn(x) = 4nf(2−nx), by the
same argument as above we can show that sequence {gn(x)}n is a Cauchy
sequence in 2-Banach space F , and the limit function

g(x) = lim
n→∞ gn(x)

is the unique linear mapping satisfying

‖f(x)− g(x), f(z)‖ ≤ ε‖x, z‖α+β,

g(x + y) + g(x− y) = 2g(x) + 2g(y),

for all x, y, z ∈ E, where ε = 2−(α+β)δ 1
1−22−α−β . ¤

From the above Theorem, we get several direct corollaries in the following:

Corollary 2.2. Let E be a linear 2-normed space and F a 2-Banach space.
The dimension of E and F is greater than one, and let f : E → F be a
mapping. If there exists δ ≥ 0 and α 6= 1 such that

‖f(x + y) + f(x− y)− 2[f(x) + f(y)], f(z)‖ ≤ δ‖x, z‖α‖y, z‖α,

for all x, y, z ∈ E, then there is a unique nonlinear mapping g : E → F such
that

g(x + y) + g(x− y) = 2[g(x) + g(y)]

and
‖f(x)− g(x), f(z))‖ ≤ ε‖x, z‖2α,

for all x, y, z ∈ E, where

ε =

{
δ

4−4α α < 1,

4α δ
4α−4 α > 1.
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Corollary 2.3. Let E be a linear 2-normed space and F a 2-Banach space.
The dimension of E and F is greater than one, and let f : E → F be a
mapping. If there exists δ ≥ 0 such that

‖f(x + y) + f(x− y)− 2[f(x) + f(y)], f(z)‖ ≤ δ

for all x, y, z ∈ E, then there is a unique nonlinear mapping g : E → F such
that

g(x + y) + g(x− y) = 2[g(x) + g(y)]

and

‖f(x)− g(x), f(z))‖ ≤ ε,

for all x, y, z ∈ E where ε = δ
3

Following Th.M. Rassias and P. Semrl [8], a function H : [0,∞)2 → [0,∞)
is called homogeneous of degree p if it satisfies H(tu, tv) = tpH(u, v) for all
t, u, v ∈ [0,∞).

Theorem 2.4. Let E be a linear 2-normed space and F a 2-Banach space.
The dimension of E and F is greater than one, and H is a monotonically
increasing symmetric homogeneous function of degree p ≥ 0, p 6= 2. Let a
function f : E → F satisfy the inequality

‖f(x + y) + f(x− y)− 2[f(x) + f(y)], f(z)‖ ≤ H(‖x, z‖, ‖y, z‖), (∗∗)

for some δ ≥ 0 and for all x, y, z ∈ E. Then there is a unique quadratic
function g : E → F such that

‖f(x)− g(x), f(z))‖ ≤ 1
4− 2p

H(1, 1)‖x, z‖p,

for all x, y, z ∈ E.

Proof. Case I. p < 2.
We first claim that for any n ∈ N and all x, y, z ∈ E

‖f(x)− 4−nf(2nx), f(z)‖ ≤ 4−1H(1, 1)‖x, z‖p
n−1∑

i=0

2i(p−2). (2.2)

It is clear that the assumption is true for n = 1. Assume now that the
assumption is true for the case n, we want to show that the assumption is true
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for the case (n + 1).

‖f(x)− 4−n−1f(2n+1x), f(z)‖
≤ ‖f(x)− 4−nf(2nx), f(z)‖+ ‖4−nf(2nx)− 4−n−1f(2n+1x), f(z)‖

≤ 4−1H(1, 1)‖x, z‖p
n−1∑

i=0

2i(p−2) + 4−1H(1, 1)‖x, z‖p2n(p−2)

= 4−1H(1, 1)‖x, z‖p
n∑

i=0

2i(p−2).

Thus the assumption is true for any positive integer n. It follows that

‖f(x)− 4−nf(2nx), f(z)‖ <
1

4− 2p
H(1, 1)‖x, z‖p.

Put gn(x) = f(2nx)
4n , for n > m > 0 we have

gm(x)− gn(x) =
f(2mx)

4m
− f(2nx)

4n

=
f(2mx)− 4m−nf(2n−m · 2mx)

4m
.

we can apply (2.2) to get

‖gm(x)− gn(x), f(z)‖ = ‖f(2mx)− 4m−nf(2n−m · 2mx)
4m

, f(z)‖

≤ 4−1H(1, 1)‖x, z‖p
n−m−1∑

i=m

2i(p−2).

It follows that for each x ∈ E, {gn(x)}n is a Cauchy sequence in F . Since F
is a 2-Banach space, there is a limit

g(x) = lim
n→∞ gn(x)

which satisfies

‖f(x)− g(x), f(z)‖ ≤ 1
4− 2p

H(1, 1)‖x, z‖p−2

for all x, z ∈ E. From (∗∗), we get

‖f(2nx+2ny)+f(2nx−2ny)−2[f(2nx)+f(2ny)], f(z)‖ ≤ H(‖2nx, z‖, ‖2ny, z‖)
and

‖gn(x + y) + gn(x− y)− 2[gn(x) + gn(y)], f(z)‖
=

1
4n
‖‖f(2nx + 2ny) + f(2nx− 2ny)− 2[f(2nx) + f(2ny)], f(z)

≤ 2n(α−2)H(‖x, z‖, ‖y, z‖).
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Letting n →∞, we obtain g(x + y) + g(x− y) = 2g(x) + 2g(y).
Next we show the uniqueness of g. Assume that there exists another qua-

dratic function h : E → F satisfy the assumption, then there exists a monoton-
ically increasing symmetric homogeneous function H ′ of degree p ≥ 0, p 6= 2
such that

‖f(x)− h(x), f(z))‖ ≤ 1
4− 2p

H ′(1, 1)‖x, z‖p,

for all x, y, z ∈ E. Since g(x), h(x) are quadratic function, we have

g(nx) = n2g(x), h(nx) = n2h(x).

Hence

‖g(x)− h(x), f(z)‖ =
1
n2
‖g(nx)− h(nx), f(z)‖

≤ 1
n2

(‖f(nx)− g(nx), f(z)‖+ ‖f(nx)− h(nx), f(z)‖)

≤ np−2 1
4− 2p

‖x, z‖p[H(1, 1) + H ′(1, 1)].

Thus
lim

n→∞ ‖g(x)− h(x), f(z)‖ = 0, ∀x, z ∈ E.

Since f is surjective, g(x) ≡ h(x) for all x ∈ E.
Case II. p > 2.

Similarly we can prove the induction assumption

‖f(x)− 4nf(2−nx), f(z)‖ ≤ H(1, 1)‖x, z‖p(2−p +
n−1∑

i=1

2i(2−p)),

for all x, z ∈ E and any positive integer n. Put gn(x) = 4nf(2−nx) then we
claim that

‖f(x)− gn(x), f(z)‖ ≤ H(1, 1)‖x, z‖p
n−1∑

i=0

2i(2−p)−p.

From the same argument as above we can show that sequence {gn(x)}n is a
Cauchy sequence in 2-Banach space F , and the limit function

g(x) = lim
n→∞ gn(x)

is the unique quadratic function g satisfying

‖f(x)− g(x), f(z)‖ ≤ H(1, 1)‖x, z‖p 1
2p − 4

,

for all x, y, z ∈ E. ¤
Inspired by the idea of G. Isac and Th.M. Rassias [5], we give another

generalization of Theorem 2.1.
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Theorem 2.5. Let E be a linear 2-normed space and F a 2-Banach space. The
dimension of E and F is greater than one, and function ψ : [0,∞) → [0,∞)
satisfy the following conditions:

(1) limt→∞
ψ(t)
t2

= 0;
(2) ψ(ts) ≤ ψ(t)ψ(s),∀s, t ∈ [0,∞);
(3) ψ(t) < 2t, ∀t ∈ [0,∞).

If a surjective mapping f : E → F satisfies the inequality

‖f(x + y) + f(x− y)− 2[f(x) + f(y)], f(z)‖ ≤ θ(ψ(‖x, z‖) + ψ(‖y, z‖)),

for some θ ≥ 0 and for all x, y, z ∈ E, then there exists a unique quadratic
function g : E → F such that

‖f(x)− g(x), f(z)‖ ≤ θψ(‖x‖) 2
4− ψ(2)

, ∀x ∈ E. (2.3)

Proof. We will prove first that

‖f(x)− 1
4n

f(2nx), f(z)‖ ≤ θ

2
ψ(‖x‖)

n−1∑

i=0

(
ψ(2)

4
)i, (2.4)

for any n ∈ N and all x, z ∈ E. The proof of (2.4) follows by induction on n.
Put x = y in (2.3) and dividing by 4 yielding the validity of (2.4) for n = 1.
Assume now that (2.4) holds for n, we want to prove it for the case n + 1.
Using the triangle inequality, we get

‖f(x)− 1
4n+1

f(2n+1x), f(z)‖

= ‖f(x)− 1
4n

f(2nx), f(z)‖+
1
4n
‖f(2nx)− 1

4
f(2n+1x), f(z)‖

≤ θ

2
ψ(‖x‖)

n−1∑

i=0

(
ψ(2)

4
)i +

θ

2
ψ(‖x‖)(ψ(2)

4
)n

=
θ

2
ψ(‖x‖)

n∑

i=0

(
ψ(2)

4
)i.

Which ends the proof of (2.4). It follows that

‖f(x)− 1
4n

f(2nx), f(z)‖ ≤ θψ(‖x‖) 1
2− ψ(2)

, ∀n ∈ N.
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For m > n > 0 we obtain

‖ 1
4m

f(2mx)− 1
4n

f(2nx), f(z)‖

=
1
4n
‖ 1
4m−n

f(2m−n2nx)− f(2nx), f(z)‖

≤ θ
1
4n

ψ(‖2nx‖)
m−n−1∑

i=0

(
ψ(2)

4
)i

≤ θ(
ψ(2)

4
)nψ(‖x‖)

m−n−1∑

i=0

(
ψ(2)

4
)i

= θψ(‖x‖)
m−1∑

i=n

(
ψ(2)

4
)i

< θψ(‖x‖) 4
4− ψ(2)

(
ψ(2)

4
)n.

By (3), we get that the sequence {4−nf(2nx)} is a Cauchy sequence and con-
vergent, since F is complete. Set g(x) = limn→∞ 4−nf(2nx), ∀x ∈ E. We will
prove that G(x) is a quadratic function. It then follows from the assumption
that

‖f(2nx + 2ny) + f(2nx− 2ny) + 2(f(2nx) + f(2ny)), f(z)‖
≤ θ(ψ(‖2nx, z‖) + ψ(‖2ny, z‖))
≤ θ(ψ(2))n(ψ(‖x, z‖) + ψ(‖y, z‖)).

Which implies that

1
4n
‖f(2nx + 2ny) + f(2nx− 2ny) + 2(f(2nx) + f(2ny)), f(z)‖

≤ θ(
ψ(2)

4
)n(ψ(‖x, z‖) + ψ(‖y, z‖)).

Letting n → ∞, since f is a surjective mapping, we conclude that g(x) is a
quadratic function. We claim that g(x) is the unique such quadratic function.
Suppose there exists another h : E → F satisfying

‖f(x)− g(x), f(z)‖ ≤ θ′ψ′(‖x‖) 2
4− ψ′(2)

, ∀x ∈ E,
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where θ′ ≥ 0 is a constant and ψ′ : [0,∞) → [0,∞) satisfies the conditions in
the assumption. Then

‖g(x)− h(x), f(z)‖ =
1
n2

(‖g(nx)− h(nx), f(z)‖)

≤ 1
n2

(‖g(nx)− f(nx), f(z)‖+ ‖h(nx)− f(nx), f(z)‖)

≤ ψ(n)
n2

θψ(‖x‖) 2
4− ψ(2)

+
ψ′(n)
n2

θ′ψ′(‖x‖) 2
4− ψ′(2)

.

In view of (1) and the last inequality, we conclude that g(x) = h(x). ¤
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