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Abstract. A class of nonlinear inclusion problems for ordered RME set-valued mappings

are introduced and studied in ordered Hilbert spaces. By using the resolvent operator as-

sociated with RME set-valued mappings, an existence theorem of solutions for this kinds

of nonlinear inclusion problems for ordered extended set-valued mappings is established, an

approximation algorithm is suggested, and the relation between the first valued x0 and a

solution in the nonlinear inclusion problems is discussed. In this field, the results in the

instrument are obtained.

1. Introduction

Let X be a real ordered Hilbert space with a norm ‖ · ‖, an inner product
〈·, ·〉, zero θ, and a partial ordered relation ≤ defined by the normal cone P of
X [5]. Let M : X → 2X be an ordered RME set-valued mapping. We consider
the following problem:

Find x ∈ X such that
0 ∈ M(x). (1.1)

The problem (1.1) is called a class of nonlinear inclusion problems for ordered
RME set-valued mappings in ordered Hilbert spaces.

Remark 1.1. For a suitable choice of M and the space X, some known classes
of variational inclusions and variational inequalities in ([5], [6]) can be obtained
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as special cases of the nonlinear inclusion problems (1.1):

(i) If M is a single-valued mapping and M(x) = A(g(x)), then the prob-
lem (2.1) in [5] can be obtained as special case of the problem (1.1).

(ii) If M is a single-valued mapping and M(x) = A(x)⊕ F (x, g(x)), then
the problem (1.1) in [6] is as same as the problem (1.1).

In recent years, the fixed point theory and application for the nonlinear op-
erators have been intensively studied in ordered Banach spaces ([2], [3], [4]).
And very recently, the author have introduced and studied the approximation
algorithm and the approximation solution for a class of generalized nonlinear
ordered variational inequalities and ordered equations(or, a new class of gen-
eralized nonlinear ordered variational inequalities and ordered equations) in
ordered Banach spaces ([5], [6]).

Inspired and motivated by recent research works in this field, a class of
nonlinear inclusion problems for ordered (λ, β)-monotone extended set-valued
mappings are introduced and studied in order Hilbert spaces. By using the
resolvent operator [1] associated with ordered RME set-valued mapping, an
existence theorem of solutions for this kind nonlinear inclusion problems for or-
dered extended set-valued mappings is established, a approximation algorithm
is suggested, and the relation of between the first valued x0 and a solution in
the nonlinear inclusion problems is discussed. The results in the instrument
are obtained in the field. For details, we refer the reader to [1-10] and the
references therein.

1.1. Preliminaries.
Let X be a real ordered Hilbert space with a norm ‖ · ‖, an inner product

〈·, ·〉, zero θ, and a partial ordered relation ≤ defined by the normal cone P
[5], the N be the normal constant of P, for arbitrary x, y ∈ X, lub{x, y} and
glb{x, y} express the least upper bound of the set {x, y} and the greatest lower
bound of the set {x, y} on the partial ordered relation ≤, respectively. Here,
suppose lub{x, y} and glb{x, y} always exist. Let us recall some concepts and
results.

Definition 1.2. [9] Let X be an ordered Hilbert space, and P be a cone of
X. ≤ is a partial ordered relation defined by the cone P, for x, y ∈ X, if
holds x ≤ y(or y ≤ x), then x and y is said to be comparison between each
other(denoted by x ∝ y for x ≤ y and y ≤ x).

Proposition 1.3. [2] If x ∝ y, then lub{x, y} and glb{x, y} exist, x−y ∝ y−x,
and θ ≤ (x− y) ∨ (y − x).
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Proposition 1.4. [2] If for any natural number n, x ∝ yn, and yn → y∗(n →
∞), then x ∝ y∗.

Proposition 1.5. Let X be an ordered Hilbert space, ⊕ be a XOR operator
[5], and both α and β be tow reals. If for x, y, u, v ∈ X, defined by x ¯ y =
(x− y) ∧ (y − x), then we have the following relations:

(1) x¯ y = y ¯ x;
(2) x¯ x = θ;
(3) x¯ θ ≤ θ, if x ∝ θ;
(4) x⊕ y = −((−x)¯ (−y));
(5) x¯ y = −((−x)⊕ (−y));
(6) x⊕ y = (−x)⊕ (−y);
(7) x¯ y = (−x)¯ (−y);
(8) (x + y)¯ (u + v) ≥ (x¯ u) + (y ¯ v);
(9) (x + y)¯ (u + v) ≥ (x¯ v) + (y ¯ u);

(10) αx⊕ βx = |α− β|x, if x ∝ θ.

Proof. This directly follows from the definitions of the ∨, ∧, ⊕ and ¯. ¤
Obviously, if M is a comparison mapping, then M(x) ∝ I for all x ∈ X.

1.2. Ordered RME Mappings in Ordered Hilbert Spaces.

Definition 1.6. Let X be a real ordered Hilbert space, M : X → 2X be a set-
valued mapping and M(x) be a nonempty closed subset in X, and g : X → X
be a single-valued mapping.

(i) M is said to be a comparison mapping, if for any vx ∈ M(x), x ∝ vx,
and if x ∝ y, then for any vx ∈ M(x) and any vy ∈ M(y), vx ∝
vy(∀x, y ∈ X).

(ii) M is said to be a comparison mapping with respect to g, if for any
vx ∈ M(g(x)), x ∝ vx, and if x ∝ y, then for any vx ∈ M(g(x)) and
any vy ∈ M(g(y)), vx ∝ vy(∀x, y ∈ X).

(iii) a comparison mapping M is said to be ordered rectangular, if for each
x, y ∈ X, ux ∈ M(x), and uy ∈ M(y) the following relation:

〈ux ¯ uy,−(x⊕ y)〉 = 0

holds.
(iv) a comparison mapping M is said to be λ-ordered monotone, if there

exists a constant λ > 0 such that

λ(vx − vy) ≥ x− y ∀x, y ∈ X, vx ∈ M(x), vy ∈ M(y).

(v) a comparison mapping M is said to be β-ordered extended, if there
exists a constant β > 0 such that

β(x⊕ y) ≤ vx ⊕ vy ∀x, y ∈ X, vx ∈ M(x), vy ∈ M(y).
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(vi) a comparison mapping M with respect to JM,λ is said to be ordered
RME with respect to JM,λ, if M is rectangular and λ-ordered monotone
with respect to JM,λ and β-ordered extended, and (I + λM)(X) = X
for λ, β > 0.

Obviously, if M is a comparison mapping, then M(x) ∝ I for all x ∈ X.

2. Main Results

2.1. Propositions of Resolvent Operator JM,λ.

Lemma 2.1. If M is a rectangular mapping, then a inverse mapping JM,λ =
(I + λM)−1 : X → 2X of (I + λM) is single-valued for λ > 0, where I is the
identity mapping on X.

Proof. Let u ∈ X, and x and y be two elements in (I + λM)−1(u). Then, it
follows that u − I(x) ∈ λM(x) and u − I(y) ∈ λM(y). From Lemma 2.1 in
[5], we have

1
λ

(u− I(x))¯ 1
λ

(u− I(y)) =
1
λ

(x¯ y)

= − 1
λ

(x⊕ y).

Since M is an rectangular mapping,

〈 1
λ

(u− I(x))¯ 1
λ

(u− I(y)),−(x⊕ y)〉 = 〈− 1
λ

(x⊕ y),−(x⊕ y)〉

=
1
λ
‖x⊕ y‖2

= 0.

It follows that x = y. Thus (I + λM)−1(u) is a single-valued mapping. The
proof is completed. ¤

Definition 2.2. Let X be a real ordered Hilbert space, P be a normal cone
with normal constant N in X, and M be a rectangular mapping. The resolvent
operator JM,λ : X → X of the M(x) is defined by

JM,λ(x) = (I + λM)−1(x)

for all x ∈ X, where λ > 0 is a constant.

Theorem 2.3. Let X be an ordered Hilbert space, P be a normal cone with
the normal constant N in X, ≤ be an ordered relation defined by the cone P,
the operator ⊕ be XOR. If M : X → 2X is a rectangular, a comparison and
λ-ordered monotone mapping with respect to JM,λ, then the resolvent operator
JM,λ : X → X is comparison [5].
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Proof. Since M : X → 2X is a comparison mapping with respect to JM,λ so
that x ∝ JM,λ(x). For any x, y ∈ X, let x ∝ y, and vx = 1

λ(x − JM,λ(x)) ∈
M(JM,λ(x)) and vy = 1

λ(y − JM,λ(y)) ∈ M(JM,λ(y)). Setting

vx − vy =
1
λ

(x− y + JM,λ(y)− JM,λ(x)),

by using the λ-ordered monotonicity of M , we have

0 ≤ λ(vx − vy)− (x− y) = JM,λ(y)− JM,λ(x)),

and λ(vx − vy)− (x− y) ∈ P. Therefor JM,λ(y) ∝ JM,λ(x) [5]. ¤

Theorem 2.4. Let X be an ordered Hilbert space, P be a normal cone with
the normal constant N in X, ≤ be an ordered relation defined by the cone P.
If M : X → 2X is an ordered RME set-valued mapping with respect to JM,λ,
then for the resolvent operator JM,λ : X → X, the following relation:

(λβ − 1)JM,λ(x)⊕ JM,λ(y) ≤ (x⊕ y) (2.1)

holds.

Proof. Let M be an ordered RME set-valued mapping with respect to JM,λ,
and set ux = JM,λ(x), vx = 1

λ(x − JM,λ(x)), uy = JM,λ(y) and vy = 1
λ(y −

JM,λ(y)). Then for x, y ∈ X and λ > 0, vx ∈ M(JM,λ(x)), vy ∈ M(JM,λ(y))
and JM,λ is a comparison mapping.

Since M : X → 2X is a λ-ordered monotone mapping with respect to
JM,λ and β-ordered extended set-valued mapping, and x ∝ y so that for
x, y ∈ X, vx ∈ M(ux), vy ∈ M(uy), we have ux ∝ uy, vx ∝ vy. By (8) of the
Proposition 1.5, we have

vx ⊕ vy =
1
λ

(x− ux)⊕ 1
λ

(y − uy)

≤ 1
λ

(ux ⊕ uy + (x⊕ y)).

Therefore, it follows from β(ux ⊕ uy) ≤ (vx ⊕ vy) that

(λβ − 1)JM,λ(x)⊕ JM,λ(y) ≤ (x⊕ y).

The proof is completed. ¤

2.2. Convergence of Approximation Sequence for Solving the Prob-
lem(1.1).

In this section, we will show the convergence of the approximation sequences
for finding a solution of the problem (1.1), and discuss the relation between
the first valued x0 and a solution in the problem (1.1).
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Lemma 2.5. Let X be an ordered Hilbert space, P be a normal cone with
the normal constant N in X, ≤ be an ordered relation defined by the cone P,
the operator ⊕ be XOR. If M : X → 2X is a rectangular mapping, then the
inclusion problem (1.1) has a solution x∗ if and only if x∗ = JM,λ(x∗) in X.

Proof. This directly follows from the definition of the resolvent operator JM,λ

of M(x). ¤

Theorem 2.6. Let X be an ordered Hilbert space, P be a normal cone with the
normal constant N in X, ≤ be an ordered relation defined by the cone P. If
M : X → 2X is a RME set-valued mapping, then a sequence {xn} convergence
strongly to x∗ solution of problem (1.1) for β > 2

λ > 0, which is generated by
following algorithm:

For any given x0 ∈ X, let x1 = JM,λ(x0), and for n > 0, set

xn+1 = JM,λ(xn).

And also, we have

‖x∗ − x0‖ ≤ 2 + N − λβ

λδ
‖JM,λ(x0)− x0‖, (∀x0 ∈ X). (2.2)

Proof. For any x0 ∈ X, let x1 = JM,λ(x0). By λ-monotonicity of M , (I +
λM)(X) = X, the comparison of JM,λ, and Theorem 2.3, we know that x1 ∝
x0. Further, we can obtain a sequence {xn}, and xn+1 ∝ xn( where n =
0, 1, 2, · · · ). Using the Lemma 2.8 in [5], the Theorem 2.4 and condition β >
2
λ > 0, we have

θ ≤ xn+1 ⊕ xn

≤ JM,λ(xn)⊕ JM,λ(xn−1)

≤ 1
λβ − 1

(xn ⊕ xn−1). (2.3)

By Lemma 2.5 and Definition 2.2 in [5], we obtain

‖xn − xn−1‖ ≤ δnN‖x1 − x0‖, (2.4)

where δ = 1
λβ−1 . Hence, for any m > n > 0, we have

‖xm − xn‖ ≤
m−1∑

i=n

‖xi+1 − xi‖

≤ N‖x1 − x0‖
m−1∑

i=n

δi.

It follows from the condition β > 2
λ > 0 that 0 < δ < 1 and ‖xm − xn‖ → 0,

as n, m →∞, and hence the sequence {xn} is a Cauchy sequence in complete
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space X. We can set xn → x∗ as n →∞(x∗ ∈ X). By the conditions, we have

x∗ = lim
n→∞xn+1

= lim
n→∞JM,λ(xn)

= JM,λ(x∗).

We know that x∗ is a solution of the inclusion problem (1.1) by Lemma 2.5.
From Lemma 2.6 in [5] and (2.2), we have (JM,λ(xn)) ∝ x∗(n = 0, 1, 2, · · · )
and

‖x∗ − x0‖ = lim
n→∞ ‖xn − x0‖

≤ lim
n→∞

n∑

i=1

‖xi+1 − xi‖

≤ lim
n→∞N

n∑

i=2

δn−1‖x1 − x0‖+ ‖x1 − x0‖

≤ 2 + N − λβ

λδ
‖JM,λ(x0)− x0‖.

This completes the proof. ¤
Remark 2.7. Though the method of solving problem by the resolvent opera-
tor is as same in [8], or [10] for nonlinear inclusion problem, but the character
of ordered RME set-valued mapping is difference from one of (A, η)-accretive
mapping [8], or monotone mapping [10].
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