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Abstract. The aim of the present paper is to prove the Hyers-Ulam stability of the quadratic
functional equation

f(x + y) + f(x + σ(y)) = 2f(x) + 2f(y), x, y ∈ E

and the Jensen functional equation

f(x + y) + f(x + σ(y)) = 2f(x), x, y ∈ E

on a restricted domain, where σ is an involution of the normed space E.

1. Introduction

In 1940, S. M. Ulam [27], during his talk before the mathematics club of the
university of Wisconsin raised a question concerning the stability of functional
equations: Given a group (G1, ·), a metric group G2 with the metric d, a
number ε > 0 and a mapping f : G1 → G2 which satisfies the inequality

d(f(x · y), f(x)f(y)) ≤ ε
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for all x, y in G1, does there exists a homomorphism a: G1 −→ G2 and a
constant k > 0 such that

d(a(x), f(x)) ≤ kε

for all x in G1?

In 1941, D. H. Hyers [8] has given the following answer to Ulam’s question.

Theorem 1.1. [8] Let f : E1 → E2 be a mapping between Banach spaces E1,
E2 such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε for all x, y ∈ E1,

for some ε > 0. Then, there exists exactly one additive mapping A : E1 → E2

A(x + y) = A(x) + A(y) for all x, y ∈ E1

such that
‖A(x)− f(x)‖ ≤ ε for all x, y ∈ E1,

given by the formula

A(x) = lim
n→+∞ 2−nf(2nx), x ∈ E1.

Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then A is linear.

In 1978, Th. M. Rassias [16] considerably weakened the condition for the
bounded of the norm of the Cauchy difference

f(x + y)− f(x)− f(y)

by allowing growth of the form ε(‖x‖p + ‖y‖p) for the norm of the Cauchy
difference, where 0 ≤ p < 1, and still obtained the formula

A(x) = lim
n→+∞ 2−nf(2nx)

for the additive mapping approximating f .

The terminology Hyers-Ulam-Rassias stability originates from his historical
background. Since then, a great deal of work has been done by a number of
authors in various directions, (see for example [4], [5], [6], [7], [11], [10], [13],
[17], [18], [19], [20], [21], [22]).

Concerning the stability of functional equations on restricted domains, F.
Skof [24] was the first author to solve the Ulam problem for additive mappings.
Given a real normed vector spaces X and E, a function f : X → E will satisfy
the functional equation

f(x + y) = f(x) + f(y) for all x, y ∈ X
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if and only if

‖f(x + y)− f(x)− f(y)‖ → 0 as ‖x‖+ ‖y‖ → +∞.

In [9] D. H. Hyers, G. Isac and Th. M. Rassias considered the asymptotical
aspect of Hyers-Ulam stability close to the asymptotic derivability.

In [12] S. -M. Jung investigated the Hyers-Ulam stability for quadratic map-
pings

f(x + y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ E (1.1)
on restricted domain.

Theorem 1.2. [12] Let d and δ ≥ 0 be given. Assume that a mapping f :
E1 −→ E2 satisfies the inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ δ

for all x and y in E1 such that ‖x‖ + ‖y‖ > d. Then there exists a unique
mapping Q : E1 −→ E2, solution of equation (1.1) such that

‖f(x)−Q(x)‖ ≤ 7
2
δ

for all x in E1.

In this paper, we consider the quadratic functional equation

f(x + y) + f(x + σ(y)) = 2f(x) + 2f(y), x, y ∈ E (1.2)

and the Jensen functional equation

f(x + y) + f(x + σ(y)) = 2f(x), x, y ∈ E (1.3)

where σ : E → E is an involution of the normed space E, i.e. σ(x + y) =
σ(x) + σ(y) and (σ ◦ σ)(x) = x for all x, y ∈ E.

The functional equations (1.2) and (1.3) has been solved by Stetkær [26].
The stability problem for the quadratic equation (1.1) was proved firstly by
Skof [25]. In [4] Cholewa extended the skof’s result on an abelian group.

Recently the Hyers-Ulam-Rassias stability of the functional equations (1.2)
and (1.3) has been investigated in [1], [2] and [3]. We refer also to [14] and [15]
for the stability of equation (1.2) and (1.3), respectively. If we look carefully
at the proof of the main part of the result obtained in ([1], Theorem 2.1), we
easily recognize that the result is true if we replace the abelian group G by a
commutative semigroup S not necessarily unitary.

Theorem 1.3. [1] Let δ ≥ 0 be given. Assume that a mapping f : E1 −→ E2

satisfies the inequality

‖f(x + y) + f(x + σ(y))− 2f(x)− 2f(y)‖ ≤ δ
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for all x and y in E1, where E1 is a commutative semigroup without unity and
E2 is a Banach space. Then there exists a unique mapping Q : E1 −→ E2,
solution of equation (1.2) such that

‖f(x)−Q(x)‖ ≤ δ

2

for all x in E1.

Theorem 1.4. [15] Let δ ≥ 0 be given. Assume that a mapping f : E1 −→ E2

satisfies the inequality

‖f(x + y) + f(x + σ(y))− 2f(x)‖ ≤ δ

for all x and y in E1. Then there exists a unique additive mapping J : E1 −→
E2, solution of equation (1.3) such that J(σ(x)) = −J(x) and

‖f(x)− f(0)− J(x)‖ ≤ 3
2
δ

for all x in E1.

In the present paper, we establish new theorems about the Hyers-Ulam
stability on restricted domains of the functional equations (1.2) and (1.3).
Furthermore, we apply the results obtained to the asymptotic behavior of the
above functional equations (1.2) and (1.3).

Throughout this paper, let E be a real normed space and F be a real Banach
space.

2. Stability of equation (1.2) on a restricted domain

In the present section, we investigate the Hyers-Ulam stability of the qua-
dratic functional equation (1.2) on a restricted domain. We present our main
result in theorem below.

Theorem 2.1. Let d > 0 and δ > 0 be given. Assume that a mapping
f : E → F satisfies the inequalities

‖f(x + y) + f(x + σ(y))− 2f(x)− 2f(y)‖ ≤ δ, (2.1)

for all x, y ∈ E with ‖y‖ ≥ d. Then, there exists a unique mapping q: E −→ F
solution of equation (1.2) such that

‖f(x)− q(x)‖ ≤ 7
2
δ (2.2)

for all x ∈ E.
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Proof. Let x, y ∈ E with ‖y‖ < d. If y = 0, then we have

‖f(x + 0) + f(x + σ(0))− 2f(x)− 2f(0)‖
= ‖2f(0)‖
= ‖f(0 + 0) + f(0− 0)− 2f(0)− 2f(0)‖.

So in view of [12], we obtain

‖f(x + 0) + f(x + σ(0))− 2f(x)− 2f(0)‖ ≤ 7δ

2
.

If y 6= 0, we choose z = 2ny, with n ∈ N.

Case 1: σ(y) 6= y. For n large enough, we can easily verify that

‖z‖ = 2n‖y‖ ≥ d,

‖y + z − σ(z)‖ = 2n‖ y

2n
+ y − σ(y)‖ ≥ d

and
‖y − σ(z)‖ = 2n‖ y

2n
− σ(y)‖ ≥ d.

Therefore, from (2.1), the triangle inequality and the following decomposition

f(x + y) + f(x + σ(y))− 2f(x)− 2f(y)
= −[f(x + y + z − σ(z)) + f(x + σ(y) + σ(z)− z) (2.3)

−2f(x)− 2f(y + z − σ(z))]
+2[f(x + z) + f(x + σ(z))− 2f(x)− 2f(z)]
+[f(x + y) + f(x + σ(z) + σ(y)− z)− 2f(x + σ(z))− 2f(y − σ(z))]
+[f(x + z + y − σ(z)) + f(x + σ(y))− 2f(x + z)− 2f(y − σ(z))]
−2[f(y − σ(z) + z) + f(y)− 2f(y − σ(z))− 2f(z)],

we get
‖f(x + y) + f(x + σ(y))− 2f(x)− 2f(y)‖ ≤ 7δ. (2.4)

Case 2: σ(y) = y. By using (2.3), we obtain

2[f(x + y) + f(x + σ(y))− 2f(x)− 2f(y)]
= 2[f(x + z) + f(x + σ(z))− 2f(x)− 2f(z)]

+[f(x + y) + f(x + σ(z) + σ(y)− z)− 2f(x + σ(z))− 2f(y − σ(z))]
+[f(x + z + y − σ(z)) + f(x + σ(y))− 2f(x + z)− 2f(y − σ(z))]
−2[f(y − σ(z) + z) + f(y)− 2f(y − σ(z))− 2f(z)].
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So in view of inequality (2.1), the triangle inequality and for n large enough,
we get

2‖f(x + y) + f(x + σ(y))− 2f(x)− 2f(y)‖ ≤ 6δ.

Finally, the inequality (2.4) holds true for all x, y ∈ E. By applying The-
orem 1.3 one gets that there exists a unique mapping q : E → F which is a
solution of equation (1.2) and satisfies the inequality (2.2). This completes
the proof. ¤

The following corollary holds according to Theorem 2.1 and some compu-
tations used by S. -M. Jung in [12].

Corollary 2.2. A mapping f : E → F is a solution of equation (1.2) if and
only if

sup
x∈E

‖f(x + y) + f(x + σ(y))− 2f(x)− 2f(y)‖ → 0 as ‖y‖ → +∞. (2.5)

Corollary 2.3. A mapping f : E → F is a solution of equation (1.2) if and
only if

‖f(x + y) + f(x + σ(y))− 2f(x)− 2f(y)‖ → 0 as ‖x‖+ ‖y‖ → +∞. (2.6)

The following result is a generalization of the one obtained in [12]. We
notice here that {(x, y) ∈ E2 : ‖y‖ ≥ d} ⊂ {(x, y) ∈ E2 : ‖x‖+ ‖y‖ ≥ d}.
Corollary 2.4. (σ = −I) Let d > 0 and δ > 0 be given. Assume that a
mapping f : E → F satisfies the inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ δ (2.7)

for all x, y ∈ E with ‖y‖ ≥ d. Then, there exists a unique mapping q: E −→ F
solution of the quadratic functional equation (1.1) such that

‖f(x)− q(x)‖ ≤ 7
2
δ (2.8)

for all x ∈ E.

Corollary 2.5. A mapping f : E → F is a solution of (1.1) if and only if

sup
x∈E

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ → 0 as ‖y‖ → +∞. (2.9)

Corollary 2.6. A mapping f : E → F is a solution of (1.1) if and only if

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ → 0 as ‖x‖+ ‖y‖ → +∞. (2.10)

Corollary 2.7. (σ = I) Let d > 0 and δ > 0 be given. Assume that a mapping
f : E → F satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ δ (2.11)
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for all x, y ∈ E with ‖y‖ ≥ d. Then, there exists a unique additive mapping
A: E −→ F such that

‖f(x)−A(x)‖ ≤ 7δ (2.12)

for all x ∈ E.

Corollary 2.8. A mapping f : E → F is additive if and only if

sup
x∈E

‖f(x + y)− f(x)− f(y)‖ → 0 as ‖y‖ → +∞. (2.13)

Corollary 2.9. A mapping f : E → F is additive if and only if

‖f(x + y)− f(x)− f(y)‖ → 0 as ‖x‖+ ‖y‖ → +∞. (2.14)

3. Stability of equation (1.3) on a restricted domain

In this section, we will investigate the stability of Jensen functional equation
(1.3) on a restricted domain.

Theorem 3.1. Let d > 0 and δ > 0 be given. Assume that a mapping
f : E → F satisfies the inequality

‖f(x + y) + f(x + σ(y))− 2f(x)‖ ≤ δ (3.1)

for all x, y ∈ E with ‖y‖ ≥ d. Then, there exists a unique additive mapping
J : E −→ F solution of equation (1.3) such that J(σ(x)) = −J(x) and

‖f(x)− f(0)− J(x)‖ ≤ 3δ (3.2)

for all x ∈ E.

Proof. Let x, y ∈ E such that 0 < ‖y‖ < d. We choose z = 2ny, where n is
large enough, so ‖z‖ ≥ d, ‖z + y‖ ≥ d and ‖σ(z) + y‖ ≥ d. From (3.1), the
triangle inequality and the following equation

2[f(x + y) + f(x + σ(y))− 2f(x)]
= −[f(x + y + z) + f(x + y + σ(z))− 2f(x + y)]

−[f(x + σ(y) + z) + f(x + σ(y) + σ(z))− 2f(x + σ(y))]
+[f(x + y + z) + f(x + σ(y) + σ(z))− 2f(x)]
+[f(x + y + σ(z)) + f(x + σ(y) + z)− 2f(x)],

we have
‖f(x + y) + f(x + σ(y))− 2f(x)‖ ≤ 2δ. (3.3)

Finally, the inequality (3.3) holds true for all x, y ∈ E. By applying now
Theorem 1.4, we get the rest of the proof. ¤
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Corollary 3.2. A mapping f : E → F is a solution of (1.3) if and only if

sup
x∈E

‖f(x + y) + f(x + σ(y))− 2f(x)‖ → 0 as ‖y‖ → +∞. (3.4)

Corollary 3.3. A mapping f : E → F is a solution of (1.3) if and only if

‖f(x + y) + f(x + σ(y))− 2f(x)‖ → 0 as ‖x‖+ ‖y‖ → +∞. (3.5)

Corollary 3.4. Let d > 0 and δ > 0 be given. Assume that a mapping
f : E → F satisfies the inequality

‖f(x + y) + f(x− y)− 2f(x)‖ ≤ δ (3.6)

for all x, y ∈ E with ‖y‖ ≥ d. Then, there exists a unique additive mapping
J : E −→ F solution of equation (1.3) with σ(x) = −x such that J(-x)=-J(x)
and

‖f(x)− f(0)− J(x)‖ ≤ 3δ (3.7)
for all x ∈ E.

Corollary 3.5. A mapping f : E → F is a solution of (1.3) with σ(x) = −x
if and only if

sup
x∈E

‖f(x + y) + f(x− y)− 2f(x)‖ → 0 as ‖y‖ → +∞. (3.8)

Corollary 3.6. A mapping f : E → F is a solution of (1.3) with σ(x) = −x
if and only if

‖f(x + y) + f(x− y)− 2f(x)‖ → 0 as ‖x‖+ ‖y‖ → +∞. (3.9)
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