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Abstract. In this paper, we determine position vector of a line of curvature of a regular

surface which is relatively normal-slant helix, with respect to Darboux frame. Then, a vector

differential equation is established by means Darboux formulas, in the case of the geodesic

torsion is vanishes. In terms of solution, we determine the parametric representation of a

line of curvature which is relatively normal-slant helix, with respect to standard frame in

Euclidean 3-space. Thereafter, we apply this result to find the position vector of a line of

curvature which is isophote curve.

1. Introduction

Curves theory is an important branch in the differential geometry studies.
We have a lot of special curves such as circular helices, general helices, slant
helices, k-slant helices etc. Characterizations of these special curves are heavily
studied for a long time and are still studies. We can see the applications of
helical structures in nature and mechanic tools. In the field of computer
aided design and computer graphics, helices can be used for the tool path
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description, the simulation of kinematic motion or design of highways. Also
we can see the helix curve or helical structure in fractal geometry.

In a recent paper, Doǧan and Yayli [3] study isophote curves and their
characterizations in Euclidean 3-space. An isophote curve is defined as a
curve on a surface whose unit normal field restricted to the curve makes a
constant angle with a fixed direction. They also obtain the axis of an isophote
curve. In 2017, Macit et al. [7] have defined a relatively normal-slant helix on
a surface by using the Darboux frame (T, V, U) along the curve whose vector
field V makes a constant angle with a fixed direction.

The determining of the position vector of some different curves according to
the intrinsic equations κ = κ (s) and τ = τ (s) (where κ and τ are the curvature
and torsion of the curve) is considered as a one of important subjects. Recently,
the parametric representation of genral helices [6, 10] and slant helices and
slant slant helices as an important special curves in euclidean space E3 are
deduced in [1, 2, 4].

In this work, first, we establish position vector of a line of curvature which
is relatively normal-slant helix with respect to Darboux frame. Second, we use
vector differential equations established by means Darboux frame in Euclidean
space E3 to determine position vectors of a line of curvature which is relatively
normal-slant helix in terms of the normal curvature and geodesic curvature in
E3. Then, we can deduce the parametric representation of a line of curvature
which is isophote curve.

2. Relatively normal-slant and line of curvature
lying on a regular surface

In this section, we give the definition and a characterization of relatively
normal-slant helix as well as a line of curvature lying on a regular surface, and
we deduce an immediate property in the case where the curve satisfies the two
conditions.

Let M be a regular surface, and ϕ : I ⊂ R −→ M be a regular curve with
arc-length parametrization. The Frenet frame along the curve ϕ is denoted by
(T,N,B, κ, τ), where T is unit tangent vector, N is principal normal vector,
B is the binormal vector, κ and τ are the curvature and the torsion of ϕ,
respectively. On the other hand, if we denote the Darboux frame along the
curveϕ by (T, V, U) , we have the derivative formula of the Darboux frame as:

 T ′ = κgV + κnU,
V ′ = −κgT + τgU,
U ′ = −κnT − τgV,

(2.1)
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where T is the unit tangent vector of the curve ϕ, U is the unit normal
vector of the surface restricted to the curve ϕ, V is the unit vector given by
V = U × T, and κg, κn, τg denote the geodesic curvature, normal curvature,

geodesic torsion of the curve ϕ, respectively [8].

The relations between geodesic curvature, normal curvature, geodesic tor-
sion and κ, τ are given as follows:

κn = κ cos (φ) ,
κg = κ sin (φ) ,

τg = τ +
dφ

ds
,

(2.2)

where φ is the angle between the vectors N and U.

Remark 2.1. ([9]) For a curve ϕ lying on a surface, the following are well
known:

(1) ϕ is a geodesic curve if the geodesic curvature κg vanishes.
(2) ϕ is an asymptotic line if the normal curvature κn vanishes.
(3) ϕ is a line of curvature if the geodesic torsion τg vanishes.

Definition 2.2. Let ϕ be a unit speed curve lying on a regular surface and
(T, V, U) be the Darboux frame along ϕ. The curve ϕ is called a relatively
normal-slant helix if the vector field V of ϕ makes a constant angle with a
fixed direction, that is, there exists a fixed unit vector d and a constant angle
θ such that

〈V, d〉 = cos (θ) . (2.3)

Theorem 2.3. ([7]) A unit speed curve ϕ on a surface with (κg, τg) 6= (0, 0)
is a relatively normal-slant helix if and only if

σr =
1(

τ2g + κ2g
) 3

2

(
τ ′gκg − κ′gτg − κn

(
τ2g + κ2g

))
(2.4)

is constant.

From the above theorem and characterization of general helix
(
τ
κ is constant

)
and slant helix

(
κ2

(κ2+τ2)
3
2

(
τ
κ

)′
is constant

)
[5, 10] the following results follow:

Corollary 2.4. ([7]) Let ϕ be a curve lying on a regular surface
∑

:

(1) If ϕ is an asymptotic curve on
∑

with κg 6= 0, then ϕ is a relatively
normal-slant helix on

∑
if and only if ϕ is a slant helix.

(2) If ϕ is a geodesic curve on
∑

with τg 6= 0, then ϕ is a relatively
normal-slant helix on

∑
if and only if ϕ is a general helix.
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(3) If ϕ is a line of curvature on
∑

with κg 6= 0, then ϕ is a relatively

normal-slant helix on
∑

if and only if
κn
κg

is constant.

According to [1, 2] and Corollary 2.4, we know the parametric representation
of an asymptotic (resp. geodesic) curve on a regular surface, which is relatively
normal-slant helix. In this work, we propose to give the position vector of a
line of curvature which is relatively normal-slant helix with respect to Darboux
frame and standard frame, respectively.

First, we give the following result:

Corollary 2.5. Let ϕ be a line of curvature lying on a regular surface, which
is a relatively normal-slant helix, with κg 6= 0. Then ϕ is a plane curve and
its axis, noted d, belongs to the plane perpendicular to the vector tangent T.

Proof. The fact that ϕ is a line of curvature and also a relatively normal-slant
helix, we have τg = 0 and κn

κg
is constant. By means formulas (2.2), we get

that the torsion τ = 0. On the other hand, differentiating the equation (2.3),
and using the derivative formula of Darboux frame (2.1), we obtain the result
as desired. �

3. Position vector of a line of curvature of a regular surface
which is relatively normal-slant helix, with respect to

Darboux frame

Theorem 3.1. The position vector ϕ (s) of a line of curvature of a regular
surface with κg 6= 0, which is relatively normal-slant helix, with respect to
Darboux frame (T, V, U) is given by :

ϕ (s) = α (s)T +

(
−
∫
κgα (s) ds+ c1

)
V +

(
−
∫
κnα (s) ds+ c2

)
U, (3.1)

where

α (s)

= cos
(√

1 + σ2rc
∫
κgds

)(
c3 − 1√

1+σ2
rc

∫
d
ds

(
1
κg

)
sin
(√

1 + σ2rc
∫
κgds

)
ds

)
+ sin

(√
1+σ2rc

∫
κgds

)(
c4+ 1√

1+σ2
rc

∫
d
ds

(
1
κg

)
cos
(√

1+σ2rc
∫
κgds

)
ds

)
,

while c1,c2, c3, c4 are arbitrary constants, and σrc =
κn
κg
.

Proof. Let ϕ = ϕ (s) be a line of curvature, that is, τg = 0, lying on a regular
surface in Euclidean 3-space, which is relatively normal-slant helix, that is, κnκg
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is constant. Then, we may express its position vector as follows:

ϕ (s) = α (s)T (s) + β (s)V (s) + γ (s)U (s) , (3.2)

where α, β and γ are differentiable functions of s ∈ I ⊂ R. Differentiating the
above equation with respect to s and using the derivative formula of Darboux
frame (2.1), we get the following: α′ − κgβ − κnγ = 1,

β′ + ακg = 0,
γ′ + ακn = 0.

(3.3)

By means of the change of variables t =
∫
κgds, the system (3.3) becomes:

α̇− β − σrcγ = 1
κg
,

β̇ + α = 0,
γ̇ + σrcα = 0,

(3.4)

where σrc =
κn
κg

and dot denote the derivative with respect to t. The second

and third equation of (3.4) leads to

β (t) = −
∫
α (t) dt+ c1,

γ (t) = −
∫
σrcα (t) dt+ c2,

(3.5)

where c1, c2 are arbitrary constants. Differentiating the first equation of (3.4)
and using the second and the third equation of (3.4) , we get the following
equation:

α̈+
(
1 + σ2rc

)
α =

d

dt

(
1

κg

)
. (3.6)

The general solution of equation (3.6) is

α (t) = cos
(√

1 + σ2rct
)(

c3 − 1√
1+σ2

rc

∫
d
dt

(
1
κg

)
sin
(√

1 + σ2rct
)
dt

)
+ sin

(√
1 + σ2rct

)(
c4 + 1√

1+σ2
rc

∫
d
dt

(
1
κg

)
cos
(√

1 + σ2rct
)
dt

)
,

(3.7)
where c3, c4 are arbitrary constants. Setting t =

∫
κgds and substituting

equation (3.7) and (3.5) into (3.2) we get equation (3.1) which completes the
proof. �

As a consequence of the above theorem we have the following corollary.

Corollary 3.2. The position vector ϕ (s) of a line of curvature lying on a
regular surface with κg a non-zero constant, which is relatively normal-slant
helix, with respect to Darboux frame (T, V, U) is given by

ϕ (s) = α (s)T + β (s)V + γ (s)U,
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for

α (s) = c3 cos
(
κg
√

1 + σ2rcs
)

+ c4 sin
(
κg
√

1 + σ2rcs
)
,

β (s) =
−1√

1 + σ2rc

(
c3 sin

(
κg
√

1 + σ2rcs
)
− c4 cos

(
κg
√

1 + σ2rcs
))

+ c1,

γ (s) =
−σrc√
1 + σ2rc

(
c3 sin

(
κg
√

1 + σ2rcs
)
− c4 cos

(
κg
√

1 + σ2rcs
))

+ c2,

while c1,c2, c3, c4 are arbitrary constants, and σrc = κn
κg
.

4. Position vector of a line curvature of a regular surface
which is relatively normal-slant helix, with respect to

standard frame

Theorem 4.1. Let ϕ = ϕ (s) be a line of curvature, that is, τg = 0, lying on
a regular surface in Euclidean 3-space with κn 6= 0, κg 6= 0. Then, the vector
V satisfies a vector differential equation of third order as follows:

V ′′′ (t) +
(
1 + σ2rc

)
V ′ (t)− σ′rc (t)

σrc (t)

(
V ′′ (t) + V (t)

)
= 0, (4.1)

where t =
∫
κgds and σrc = κn

κg
.

Proof. Let ϕ = ϕ (s) be a line of curvature, that is, τg = 0, lying on a regular
surface with κn 6= 0 and κg 6= 0. By means of the change of variables t =

∫
κgds

in (2.1) , we have the new Darboux equations as follows:
dT
dt = V + σrcU,
dV
dt = −T,
dU
dt = −σrcT,

(4.2)

where σrc = κn
κg
. Differentiating the second equation of (4.2) and using the

first equation of (4.2) , we obtain

d2V (t)

dt2
= −V (t)− σrc (t)U (t) . (4.3)

Differentiating (4.3) , we have

d3V (t)

dt3
= −dV (t)

dt
− dσrc (t)

dt
U (t)− σrc (t)

dU (t)

dt
. (4.4)

By substituting the second equation of (4.2) in the third equation of (4.2) , we
give

dU

dt
= σrc

dV (t)

dt
. (4.5)
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If we substitute (4.5) and (4.3) in the equation (4.4) , we have a vector differ-
ential equation of third order (4.1) as desired. �

The solution of equation (4.1) gives a position vector of a line of curvature,
however, in the case where this curve is also a relatively normal-slant helix,
we have the following theorem:

Theorem 4.2. The position vector ϕ (s) of a line of curvature of a regular sur-
face, with κn 6= 0, κg 6= 0, which is relatively normal-slant helix, is computed
in the natural representation form with respect to standard frame (e1, e2, e3)
by 

ϕ1 (s) =
n

m

√
1 + σ2rc

∫
sin
(√

1 + σ2rc
∫
κgds

)
ds,

ϕ2 (s) = − n
m

√
1 + σ2rc

∫
cos
(√

1 + σ2rc
∫
κgds

)
ds,

ϕ3 (s) = c,

or in the parametric form
ϕ1 (t) = n

m

√
1 + σ2rc

∫
1
κg

sin
(√

1 + σ2rct
)
dt,

ϕ2 (t) = − n
m

√
1 + σ2rc

∫
1
κg

cos
(√

1 + σ2rct
)
dt,

ϕ3 (t) = c,

where t =
∫
κgds, σrc = κn

κg
and c is a constant, m = n√

1−n2
, n = cos(θ) and

θ is the angle between the fixed straight line e3 (axis of relatively normal-slant
helix) and the vector V of the curve ϕ.

Proof. Let s −→ ϕ (s) be the arc-length parametrization of a line of curvature
lying on a regular surface with κn 6= 0 and κg 6= 0. As ϕ is a relatively normal-
slant helix, then σrc = κn

κg
is constant. Therefore the Eq.(4.1) becomes

V ′′′ (t) +
(
1 + σ2rc

)
V ′ (t) = 0, (4.6)

where t =
∫
κgds.

If we write the vector V in (e1, e2, e3) , as the following:

V (t) = V1 (t) e1 + V2 (t) e2 + V3 (t) e3, (4.7)

by reason of the curve ϕ is a relatively normal-slant helix, that is, the vector
V makes a constant angle θ, with the constant vector called the axis of the
relatively normal-slant helix, so, without loss of generality, we can take the
axis of a relatively normal-slant helix parallel to e3. Then

V3 = 〈V, e3〉 = cos (θ) = n. (4.8)

Also, the vector V is a unit vector, so the following condition is satisfied

V 2
1 (t) + V 2

2 (t) = 1− n2. (4.9)
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The general solution of equation (4.9) is given by V1 (t) =
n

m
cos (λ (t)) ,

V2 (t) =
n

m
sin (λ (t)) ,

(4.10)

where m = n√
1−n2

and λ is an arbitrary function of t. Each one of the compo-

nents of the vector V satisfies the equation (4.6) . So, substituting the compo-
nents V1 (t) and V2 (t) in the equation(4.6) , we get the following differential
equations of the function λ (t)(

λ′′′ − λ′3 +
(
1 + σ2rc

)
λ′
)

sin (λ) + 3λ′λ′′ cos (λ) = 0, (4.11)(
λ′′′ − λ′3 +

(
1 + σ2rc

)
λ′
)

cos (λ)− 3λ′λ′′ sin (λ) = 0. (4.12)

It is easy to prove that the above two equations lead to the following two
equations

3λ′λ′′ = 0, (4.13)

λ′′′ − λ′3 +
(
1 + σ2rc

)
λ′ = 0. (4.14)

As λ is not constant, then λ′ 6= 0. The equation (4.14) becomes

−λ′2 +
(
1 + σ2rc

)
= 0. (4.15)

The general solution of the equation (4.15) is

λ =
√

1 + σ2rct+ c0, (4.16)

where c0 is a constant of integration. The constant c0 can be disappear if we
change the parameter λ −→ λ+ c0. Now, the vector V take the following form

V (t) =
( n
m

cos
(√

1 + σ2rct
)
,
n

m
sin
(√

1 + σ2rct
)
, n
)
. (4.17)

On the other hand, as dϕ
ds = T and using the second equation of (4.2), we

have

ϕ (t) = −
∫

1

κg

(
dV

dt

)
dt. (4.18)

Substituting the solution (4.17) in the equation (4.18) and setting t =
∫
κgds,

which completes the proof. �

Corollary 4.3. Let ϕ be a line of curvature lying on a regular surface, with
κn 6= 0 and κg 6= 0. We denote by (T,N,B) and (T, V, U) , the Frenet frame
and Darboux frame along the curve ϕ, respectively. If ϕ is a relatively normal-
slant helix, that is, its vector V makes a constant angle with a fixed direction,
noted d, then the vectors d and B are collinear.
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Proof. If ϕ is a line of curvature (τg = 0) and relatively normal-slant helix(
κn
κg

= constant
)
, according to Corollary 2.5, ϕ belongs to a fixed plane (zero

torsion), hence the binormal vector B is constant. According to Theorem 4.2,
and as the curvature of ϕ is not zero, we have e3 = ±B, which completes the
proof. �

Now, we may give the following lemmas for the special cases of a line of
curvature lying on a regular surface which is relatively normal-slant helix.

Lemma 4.4. The position vector ϕ(s) of a line of curvature which is relatively
normal-slant helix with κg (s) = κg, where κg ∈ R∗, is expressed in the natural
representation form, with respect to standard frame (e1, e2, e3) by

ϕ1 (s) = − n

mκg
cos
(√

1 + σ2rcκgs
)
,

ϕ2 (s) =
n

mκg
sin
(√

1 + σ2rcκgs
)
,

ϕ3 (s) = c,

where σrc = κn
κg
, c is a constant, m = n√

1−n2
, n = cos (θ) and θ is the angle

between the fixed straight line e3 (axis of relatively normal-slant helix) and the
vector V of the curve ϕ.

We can see a special example of such curve when κn = 7, κg = 1, n = 2
3 , in

the Figure 1-(A).

Lemma 4.5. The position vector ϕ(s) of a line of curvature which is relatively
normal-slant helix with κn (s) = a

s and κg (s) = b
s , is expressed in the natural

representation form, with respect to standard frame (e1, e2, e3) by

ϕ1 (s)

=
ns
√
b2 + a2

mb (b2 + a2 + 1)

[
sin
(√

b2 + a2 ln (s)
)
−
√
b2 + a2 cos

(√
b2 + a2 ln (s)

)]
,

ϕ2 (s)

=
−ns
√
b2 + a2

mb (b2 + a2 + 1)

[
cos
(√

b2 + a2 ln (s)
)

+
√
b2 + a2 sin

(√
b2 + a2 ln (s)

)]
,

ϕ3 (s) = c,

where σrc = κn
κg
, c is a constant, m = n√

1−n2
, n = cos (θ) and θ is the angle

between the fixed straight line e3 (axis of relatively normal-slant helix) and the
vector V of the curve ϕ.

We can see a special example of such curve when a = 2, b = 3 and n = 1
5 ,

in the Figure 1-(B).
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Lemma 4.6. The position vector ϕ(s) of a line of curvature which is relatively

normal-slant helix with κn (s) =
√
1−a2
1+s2

and κg (s) = a
1+s2

, is expressed in the

natural representation form, with respect to standard frame (e1, e2, e3) by
ϕ1 (s) =

n

ma cos (ω)
,

ϕ2 (s) =
n

2ma
ln

(
1− sin (ω)

1 + sin (ω)

)
,

ϕ3 (s) = c,

where ω = arctan (s) , c is a constant, m = n√
1−n2

, n = cos (θ) and θ is the

angle between the fixed straight line e3 (axis of relatively normal-slant helix)
and the vector V of the curve ϕ.

We can see a special example of such curve when n = 1
2 and a = 1

2 , in the
Figure 1-(C).

Figure 1

5. Application for isophote curves

In this section we will deduce the position vector of special curves such as,
line of curvature of a regular surface which is an isophote curve. First, we give
the definition.

Definition 5.1. ([2]) Let ϕ be a unit speed curve lying on a regular surface
and (T, V, U) be the Darboux frame along ϕ. The curve ϕ is called an isophote
curve if the vector field U of ϕ makes a constant angle with a fixed direction,
that is, there exists a fixed unit vector d and a constant angle η such that

〈U, d〉 = cos (η) . (5.1)
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Theorem 5.2. ([2]) A unit speed curve ϕ on a regular surface with (κn, τg)
6= (0, 0) , is an isophote curve if and only if

µi (s) =
1(

τ2g + κ2n
) 3

2

(
κg
(
τ2g + κ2n

)
+ τ ′gκn − κ′nτg

)
(s) . (5.2)

is a constant function.

Corollary 5.3. ([2]) Let ϕ be a curve lying on an oriented surface
∑

:

(1) If ϕ is an asymptotic curve on
∑

with τg 6= 0, then ϕ is an isophote
curve on

∑
if and only if ϕ is a general helix.

(2) If ϕ is a geodesic curve on
∑

with κn 6= 0, then ϕ is an isophote curve
on
∑

if and only if ϕ is a slant helix.
(3) If ϕ is a line of curvature on

∑
with κn 6= 0, then ϕ is an isophote

curve on
∑

if and only if
κg
κn

is constant.

Similar to the previous section, we can also give the following characteriza-
tions for a line of curvature which is an isophote curve without proof.

Theorem 5.4. Let ϕ = ϕ (s) be a line of curvature lying on a regular surface
in Euclidean 3-space with κn 6= 0 and κg 6= 0. Then the vector U satisfies a
vector differential equation of third order as follows

U ′′′ (t) +
(
1 + µ2ic

)
U ′ (t)− µ′ic (t)

µic (t)

(
U ′′ (t) + U (t)

)
= 0, (5.3)

where t =
∫
κnds and µic =

κg
κn
.

Theorem 5.5. The position vector ϕ (s) of a line of curvature lying on a
regular surface with κn 6= 0, κg 6= 0, which is an isophote curve, is computed
in the natural representation form, with respect to standard frame (e1, e2, e3)
by 

ϕ1 (s) =
n

m

√
1 + µ2ic

∫
sin
(√

1 + µ2ic
∫
κnds

)
ds,

ϕ2 (s) = − n
m

√
1 + µ2ic

∫
cos
(√

1 + µ2ic
∫
κnds

)
ds,

ϕ3 (s) = c,

(5.4)

or in the parametric form
ϕ1 (t) =

n

m

√
1 + µ2ic

∫ 1

κn
sin
(√

1 + µ2ict
)
dt,

ϕ2 (t) = − n
m

√
1 + µ2ic

∫ 1

κn
cos
(√

1 + µ2ict
)
dt,

ϕ3 (t) = c,

(5.5)

where t =
∫
κnds, µic =

κg
κn

and c is a constant, m = n√
1−n2

, n = cos(η) and η

is the angle between the fixed straight line e3 (axis of isophote curve) and the
vector U of the curve ϕ.
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Data Availability: The data used to support the findings of this study are
available from the corresponding author upon request. The articles used to
support the findings of this study are included within the article and are cited
at relevant places within the text as references.
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l’Institut, (1806), 416-454.

[7] N. Macit and M. Duldul, Relatively normal-slant helices lying on a surface and their
characterizations, Hacettepe J. Math. Statis., 46(7) (2017), 397-408.

[8] B. O’Neill, Elementary differential geometry, Academic Press, 1996.
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