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Abstract. The main purpose of the present paper is to study the asymptotic behavior near
the origin of radial solutions of the equation

Apu(@) +u'(z) + f(z) =0 in R¥\{0},
where p > 2,¢ > 1, N > 1 and f is a continuous radial function on RV\{0}. The study

depends strongly of the sign of the function f and the asymptotic behavior near the origin
of the function |z|* f(|z|) with suitable conditions on A > 0.

1. INTRODUCTION

This paper deals with the following radial equation
N -1
(Ju/P=20)" () + =[P (1) + () + () =0, 7 >0 (L1)

where p > 2, ¢ > 1, N > 1 and f is a continuous radial function on ]0, +oo[
and strictly positive near the origin.

The difficulty in studying the equation (1.1) lies in the presence of the
inhomogeneous term f(r) that can be singular at the origin and influences on
the existence and the asymptotic behavior of solutions of equation (1.1).
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Note that if f = 0 and p = 2, the equation (1.1) becomes the Emden-Fowler
equation

)+ Y ) ) =0, (1.2)

that has been the subject of much literature. The first study in the radial
case is due to Emden-Fowler (see for example [8], [9] and [10]). He proved the
existence results and gave a classification of entire radial solutions of equation

(1.2) on RY and RV\{0}. In the case N > 2, it has been shown the existence

of two critical values % and % Regarding the non-radial case, the study

was made by Lions [13] when ¢ < 5, Aviles [1] when ¢ = - and Gidas-
Spruck [11] when ¢ < £22. Caffarelli, Gidas and Spruck [7] extended the
study to the case ¢ = %

In the case f =0 and p > 2, the first results are due to Ni and Serrin [14].

They have shown the existence of two critical values % and Mg’{ij;ﬂo.

Guedda and Véron [12] studied the existence of entire solutions and asymptotic
behavior near 0 of radial solutions in the case ¢ < %.

The non-radial case was investigated by Bidaut-Véron and Pohozaev (see
N]S?;__;)'

In the case where f is not identically zero and p = 2, Bae [2] studied the
equation

[4]) and also by Guedda and Véron in the case g <

Au(z) +ul(z)+ f(z) =0  in RV\{0} (1.3)
and gave the asymptotic behavior near zero and near infinity of positive radial
solutions of (1.3), that is solutions that satisfy the equation

-1

u”’(r) + N u'(r) +ui(r) + f(r)=0, r>0. (1.4)

The first step to understand the effect of the function f on the equation
(1.1), is to deal with the type of f(r) = Lr— with A > 0, that is, we consider
the equation

N

-1
(' [P~2) (r) + PR () + Lt =0, r>0. (L5

In the case N > p and ¢ > %__;), the equation (1.5) possesses a positive
solution if

_ _ 1\ ¢/(¢+1-p)
AP S RN o Y A% (1.6)
g+1-—p p—1 q

p—1 1/(g+1-p)
() e )T s
q+1—p q+1—p

where
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This solution is given by

p—1 1/(g+1-p)

u(r) = <) AP/ lat1=p), (1.8)
q

In this work, we present a complete study of singular solutions of equation

(1.1), that is to say solutions u such that lin% u(r) = +o00. We prove existence
r—

and nonexistence results and we study the asymptotic behavior of solutions
of equation (1.1) near the origin. The study depends strongly on the limit of
the function rP?/(¢+1-p) f (r) when r tends to 0 and the comparison of ¢ with

the two critical values stf:;) and N(é’\,—j)ﬂ .

This paper is organized as follows. In section 2 we present some preliminary
results that will be useful to study equation (1.1) under some conditions of the
inhomogeneous term f. In section 3, we study the asymptotic behavior near
the origin of solutions of equation (1.1). Finally, existence and nonexistence
results are respectively established in sections 4 and 5.

2. PRELIMINARY RESULTS AND OTHER FORMULATIONS OF THE PROBLEM

In this section, we give some properties of solutions of equation

N

(|u’|p_2u')/ (r) + T_l|u’|p_2u’(r) +ul(r)+ f(r)=0, r>0 (2.1)

where p > 2, ¢ > 1, N > 1 and f is a continuous radial function on |0, +o0]
and strictly positive near the origin.

We start with the following result that gives an information of monotonicity
of solutions of equation (2.1) near the origin. For this, we use some ideas
introduced in [6].

Proposition 2.1. Let u be a solution of equation (2.1). Then, wu is strictly
monotone near 0 and linéu(r) € [0,400]. Moreover, if N > p, then u is
T—>

strictly decreasing near 0 and liII(l) u(r) €]0, +o0].
r—>
Proof. According to equation (2.1), we have for any r > 0,
(erl ]u'\p*Qu’), (r) = —rN 7Ll (r) — PV (). (2.2)
Since f is strictly positive near the origin, rV~1|u/[P=24/ is strictly decreasing
near the origin. Hence, u is strictly monotone near 0 and therefore we have
lim u(r) € [0, 4o00].
r—0
Suppose that «/(r) > 0 near 0. Then, liH(l) u(r) exists and finite. On the
r—

other hand, using again the fact that (erl\u’\pﬁu’)/ (r) < 0 for small r, we
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obtain

lim V1o P72/ (1) €]0, 4-00].
r—0

Hence, there exists a small R and a constant C' > 0 such that
W' (r) > Cr3=N/ =D for any r € (0, R).

This cannot take place because v/ € L'(0,R) and r(1=M/=1) ¢ L1(0, R)
when N > p. Consequently, v/(r) < 0 for small r and lin}) u(r) €]0,400]. O
r—

Remark 2.2. Assume that N > p. Let u be a solution of equation (2.1) such
that lir% u(r) is finite and strictly positive. Then, limo T(N_l)/(p_l)u'(r) = 0.
r— r—

Indeed, since the function 7V~!|u/|P=24/(r) is strictly negative and strictly
decreasing near the origin, then hII(l) N7/ P72/ (1) €] — 00, 0]. Using the fact
r—

that v is integrable near 0 and N > p, then necessarily hH(l) T(N_l)/(p_l)u'(r) =
r—
0.

Now, if f is positive on |0, +o00[, we have the following results.

Proposition 2.3. Assume that N > p and f is positive. Let u be a solution
of equation (2.1). Then u'(r) <0 and u(r) > 0, for any r > 0.

Proof. Since f is positive on |0, +-0c[, then by (2.2), 7N~ u/|P~24/ is decreasing
on ]0,+oo[. According to Proposition 2.1, we have u/(r) < 0 near 0, hence
u'(r) < 0 for any r > 0.

We show now that w is strictly positive on |0, +o00[. According to Propo-
sition 2.1, we have Tll_l}%) u(r) €]0,4o00]. Let 9 be the first zero of u. Then

necessarily u/(rg) < 0. If v/(rg) < 0, then u changes sign, which is impossible.
If w/(rg) = 0, then integrating (2.2) on (r,rg) for r > 0 and using the fact that
u? + f is strictly positive on (r,r9) and u'(rg) = 0, we obtain «/(r) > 0 on
(0,79). This contradicts the fact that u/(r) < 0 for any r» > 0. Consequently,
u(r) > 0 for any r > 0. O

Proposition 2.4. Assume that N > p, q > p— 1 and f is positive. Let u be
a solution of equation (2.1). Then, for any r > 0, we have

u(r) < C(N,p,q)r P/@t1=p), (2.3)

where

D (p—1)/(g+1-p) N 1/(g+1-p)
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Proof. Since f is positive, we have

(TN_1|ul|p_2u')/ (r) < —T‘N_luq(r).

r

Integrating this last inequality on (5,
strictly decreasing on |0, +oo[, we get

r) for r > 0 and using the fact that w is

1—-27N
N

Using the fact that u is strictly positive and strictly decreasing, we obtain

PVl Ju/ P2 (1) < T‘Nuq(r).

1— 27N 1/(p—1)
o' (ru~ P () < — ( ~ ) p/(0=1)

Since ¢ > p — 1, we arrive at

N\ /(1)
(r—1-0)/(p—1))’ gtl-p(1-2 1/(p—1)
<u ) (r) > P I r .

Integrating this last inequality on (0,7) for » > 0 and using the fact that
lin%)u(r) €]0,4+o00] and ¢ > p — 1, we get the desired estimate (2.3). This
T—

completes the proof. O

Remark 2.5. Assume that N > p and ¢ > p — 1. Let u be a solution of
equation (2.1). Then r#/(4+1=P)y(r) is bounded for small 7.

Indeed, we use the same proof of Proposition 2.4 since f is strictly positive
and wu is strictly decreasing near the origin.

Now, we focus on the study of solutions u(r) of equation (2.1) which tend
to 400 as r tends to 0.

Definition 2.6. The solution u of equation (2.1) is called singular if it can
not be extended by continuity at zero, that is, liH(l] u(r) = +oo.
T

N(p-1)

. Letu b ngul
N—p et u be a singular

Proposition 2.7. Assume that N > p and q >
solution of equation (2.1). Then

lim NP/ P~y () = 0
r—0

and

lim T(N_l)/(p_l)u’(r) =0.
r—0
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Proof. We know from Remark 2.5, that the function 7P/ (4t1=P)y(r) is bounded

~ N(p—1) g N=p p
near the origin. Therefore, for ¢ > Np that is =1 > 7w Ve have

lim NP/ P~y () = 0.
r—0

On the other hand, the function rV~!u/|P~24/ is strictly decreasing and

strictly negative near the origin, therefore liH(l) rN=D/=04/ (1) €] — 00,0].
T

Hence, using Hpital’s rule (because lin% u(r) = +o0 and N > p), we obtain
r—

}ig(l) T(Nfl)/(pfl)u/(r) —0.

g

Remark 2.8. When N < p, the singular solution u of equation (2.1) is also
strictly decreasing near the origin. Indeed, since u is strictly monotone near
0 by Proposition 2.1 and hr% u(r) = 400, necessarily u’ < 0 near 0.

r—r

Before proving other results, we introduce the following change of variable
that will play an important role in the proofs of theorems.

For any real ¢, we set

ve(t) = ru(r) where c# 0 and t = —1Inr. (2.5)
Then v, satisfies the following equation
wh(t) = Tewe(t) + e Pt =PI (1) 4 g.(t) = 0, (2.6)
where
ge(t) = e~ Pre=l p(et), (2.7)
wc(t) = ‘hc’p_th(t)a (2'8)
he(t) = vL(t) + cv.(t) (2.9)
and
Fe=N-p—c(p—1). (2.10)
Note that
he(t) = =<t (7). (2.11)

Hence, the study of monotonicity of u depends of the sign of h.(t) which is
that of wc(t). On the other hand, it’s easy to see that

(r°u)’ = " Ec(r), (2.12)
where
Ec(r) = cu(r) + rd'(r). (2.13)
Moreover, we have
vl(t) = —1°E.(r). (2.14)

[
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Hence, the monotonicity of r“u or v. can be obtained by the sign of E.. In

fact, observe that for any r > 0 such that «/(r) # 0 we have
_ N-— _
o0 0B = 1) (e S8 ) 2 )£ 0. (215)

Consequently, if E.(ro) =0 for some r9 > 0, equation (2.1) gives

- . N— _ _
=18 [ C0EL0) = <) (=5 ) [P 2w )
—rbul(rg) — 18 f(ro), (2.16)
from which we can study the sign of E.(7).

The following results give some properties of singular solutions of equation
(2.1).

Proposition 2.9. Assume that N > p and q¢ > %__;). Let u be a singular

solution of equation (2.1). Then,
(i) E(N_p)/(p_l)(’r‘) > 0 for small r.
(ii) of li1;n_>i(1;1frpq”q+l_p)f(r) > L, then we have Epjqi1—p)(r) # 0 for
small r where L is given by (1.6).

Proof. (i) According to (2.15), we have EEN_p)/(p_l)(r) < 0 for small r (be-
cause f > 0 and v’ < 0, near the origin). Therefore, En_p)/p-1)(r) # 0
for small r. Since ll_l;[}) r(N_p)/(p_l)u(r) = 0 by Proposition 2.7, necessarily
E(N_p)/(p_l)(r) > (0 for small 7.

(ii) Suppose that there exists a small  such that £}, /g41—p)(r) = 0. Taking
= q+71’_p in (2.16) and multiplying by r?%/(4+1-P)=1 we obtain
(p—1) rPa/(a+1-p)—1 }u/‘p% (r) ]/)/(qulfp) (r)

= ATHP pp= D/ H=p)p=1 ) _ ppa/(aH1=p)ya () — pPa/(@F1=D) (1) - (2.17)

Cc

where A is given by (1.7). Using the change of variable (2.5), the last equation
is equivalent to

o) -2
(p—1) pp/(at1=p)=1 |ul‘p (r) ;/(qulfp) (r) = &(Vps(g+1-p) (1) = 9p/(g+1-p) (1),
(2.18)
where
P(s) = ANTHITPgP~l g0 5> 0. (2.19)
A simple calculation gives

_ 1\ V(g+1-p)
max é(s) = o ((“) A) ~ 1, (2.20)

520 q
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where L is given by (1.6). But lim i(]g1f P4/ @H1=P) (1) > I there exists € > 0
r—

such that g,/(g+1-p)(t) > L + ¢ for large t. Hence, E;/(q—}—l—p) (r) <0 and so

Ey/(g+1-p)(r) # 0 for small r. The proof is complete. O

s N(p—1)
Proposition 2.10. Assume that N > p and q > N -

gular solution of equation (2.1) satisfying lin(l)rp/(qﬂfp)u(r) = 0. Suppose
r—

Let u be a sin-

that 7o P=D+P f(r) is bounded for small r and lin%rau(r) = +oo for some
T—

0 <o < F—. Then Ep)gi1-p)(r) >0 and Eg(r) <0, for small r.

Proof. The idea is to show that E,,(q41—p)(r) # 0 and Ey(r) # 0, for small 7.
Thereafter, taking into account (2.12) and the fact that lir% PP/ @)y () = 0
T
and lim 77u(r) = +oo, we deduce easily that E},/g1-p)(r) > 0 and E,(r) < 0
r—0
for small . The proof will be done in two steps.

Step 1. E,/(g+1-p)(r) # 0 for small r.

Suppose that there exists a small r such that Ej/,41-p)(r) = 0. Taking

p

g n (2.16) and multiplying by r?®=1 we obtain

C =

o _ -2
(p—1) rle+D(p-1) W}P ;/(qﬂfp)(?”)

= oDyl | NaHI=p _ oy at1l=p _ o (o=1) £(0) (b (p) 1P| (2.21)

Since hH(l] P @+ 1=P)y () = 0, ro@=D+P f(1) is bounded for small r and
T

lim r?u(r) = 400, we have E’ (r) > 0. Hence, E,/(g4+1—p)(1) # 0 for

r—0 p/(q+1-p)
small r.

Step 2. E,(r) # 0 for small r.

In the same way as the Step 1, assume that there exists a small r such that
E,(r) = 0. Using (2.16), we have

(p — 1) D@D |/ P72 (1) EL (1)

:ra(p_l)up_l(r) Fgap_l—rpuq+1_p(7“)—rp+"(p_1)f(r) (r”u(r))l_p , (2.22)

where ', is given by (2.10). Taking into account our hypothesis and the fact
that T'; > 0 (because 0 < 0 < q+7f_p %), we deduce that E!(r) > 0.

Hence, E,(r) # 0 for small . This completes the proof. O
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3. ASYMPTOTIC BEHAVIOR NEAR THE ORIGIN

In this section, we study the asymptotic behavior near the origin of solutions
of equation (2.1) under given conditions on function f. The study requires
some ideas of papers [2| and [3].

Lemma 3.1. Assume that N > p and q > %__;). Let u be a singular solution

of equation (2.1). Then the function rP/(@H1=P)*Ly/ (1) is bounded near the
origin.

Proof. According to Proposition 2.1, Remark 2.5 and Proposition 2.9, we have
u is strictly decreasing, r?/(4+1=P)y(r) is bounded and E(N_p)/@p-1) > 0, for
small 7. Therefore, using (2.13), it’s easy to see that rP/(dt1=P)F1Ly/ (1) is
bounded near the origin. O

Lemma 3.2. Assume that N > p and q > %jp}). Let u be a singular solution
of equation (2.1). If the functions r?/(t1=Py(r) and P2/ @H1=P) £ (1) converge
when 1 tends to 0, then the function /(@ =P)*1y/ (1) converges also when r

tends to 0.

Proof. We use the change (2.5) with ¢ = 4—
is strictly positive and bounded for large t. We show that hy,/g11-p)(t) is
monotone for large t. In fact, suppose by contradiction that there exist two
sequences {s;} and {k;} going to 400 as i — +oo such that {s;} and {k;}
are local minimum and local maximum of hy,/(441—p), respectively, satisfying
s; < ki < sj4+1 and

. Then the function hy,/(g41-p)(t)

0< lggligf P (g1—p) (t) < ligigop hp)(g+1-p)(t) < +00. (3.1)
That is
0< lm hygp)(si) < Lm hygr1-p)(ki) <400, (3.2)

which in turn implies that

0< ziggloo wp/(qul,p)(Si) < z—lg—noo wp/(q+1,p)(]€i) < +00. (33)

On the other hand, equation (2.6) gives

pq
wzlﬂ/(qulfp) (t)— <N_ q—|—1—p> Wp/(g+1—p) (t)"i'vg/(qﬂ—p) (t)+gp/(q+1—p) (t)

—0. (3.4)



246 A. Bouzelmate and A. Gmira

Since w’ o/ (q1— p)( si) = w;/(qﬂ_p)(k:i) = 0, equation (3.4) gives

pq
N (N - q+1—p> Wp/(a1-p) (31) T Vg 1) (50) + Gp/(g+1-p)(51)

Pq
=0.

But v,/ g+1-p) and gp/(q+1—p) converge when ¢ tends to +oo and N >
hence we have

+1 -p’

zilinoo wP/(Q+1_p)(si) - zginoo Wp/(g+1— P)(k )

which contradicts (3.3). Consequently, hy,/(441—p) converges when ¢ tends to
400, that is, 7P/(4T1=P)+1y)/ (1) converges when 7 tends to 0. O

For any I > 0, assume in the following that z; and zy are two roots of the
equation

21— NPTl = g(2) =0, (3.5)

where ¢ is given by (2.19).
If I > 0, it’s easy to see that 0 < 21 < z9. In particular, if [ = L, then

1/(g+1-p)
E)

7 A, where L and A are given respectively by (1.6)

If I =0, then z; = 0 and 2z = A.

Lemma 3.3. Assume that N > p, q¢ > (pwl) and lln%)rp‘J/(qH_p)f( r)=1>
r—r

0. Let u be a singular solution of equation (2.1) such that

lim 7P/ (@1 =Py (r) = d.

r—0

Then d is a root of equation (3.5). In particular, if | = L, then d =
(E)l/(qul—p)A

q
Proof. By hypothesis, we know that v},/(441-p)(t) converges when ¢ — +oo,
therefore according to Lemma 3.2, hy/(441-p) converges also, which in turn
implies by relation (2.9) that U; /(g+1-p) (t) converges necessarily to 0 when

. p
t— +OO, hence t—1}+moo hp/(q+1_p) (t) = m d and by (28),

p Pt
. —1
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/

Since tiiinoo 9p/(q+1—p)(t) = I, by equation (3.4), w J(g+1-p) (t) converge neces-

P

sarily to 0. By letting ¢ — +o0o in equation (3.4), we obtain | — ¢(d) = 0.
1/(¢+1-p)

Finally, it’s easy to see that if [ = L, then d = (%) A O

N(p—1)
Theorem 3.4. Assume that N > p and q > N

solution of equation (2.1). If lir% qu/(q+1_p)f(r) = L, then we have
r—

p—1 1/(g+1-p)
lim inf P/ (@F1=Ply(r) = <> A.
r—0 q

Proof. First of all, if v)/(441—p) converges, the theorem is a direct result of
Lemma 3.3. Since v}, /(q41-p) 1S bounded, it remains to handle the case where it
oscillates. Suppose that there exists a sequence {n;} going to +00 as i — +00
such that v,/,11-p) has a local minimum in 7;. Hence, U;/(qﬂ,p) (i) =0

Let u be a singular

and UZ/(qulip) (n;) > 0 (note that ’Ug/( exists because v/ < 0 near 0).

q+1-p)
Therefore, using (2.9), we obtain

p
a1 p Ue/ari-n) ()

hp/(q+1—p) (m:) =
and
;/(Q-H—p) (mi) = UZ/(qH_p) (ni) > 0.

This implies that

p—1
N — p p—1 A
Wp/(g+1-p) (1) = ( - p> U/ (q+1-p) (1)
and
-2
w:;/(qul—p) (1) = (p = 1) | g1y (mi)|” h;/(qﬂ—p) (i) = 0.
Taking ¢t = n; in equation (3.4) and using (2.19), we obtain
0 < Wy (1) ()
—p. p—1
= AT ) () = g1 () = I/t (1)
= & (Vp/(g+1-) (1)) = Gp/(g+1-p) (m:)
< L = 9p/(g+1-p) (0i)-
Since —lgfloo Ip/(q+1-p) (M) = L, i_lzinoogi) (Up/(q+1_p)(77i)) = L. Consequently,

7

according to (2.20),

' o p—1)\Y+i-p)
lim vy (g11-p) (1) = 1,}31;}}5 Up/(g+1-p)(t) = <> A.

i——+00 q

The proof is complete. O
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It is obvious that the previous theorem gives only an information of
lim i(I)lf P/(@+1=P)y (). Next, we examine the convergence of r?/(4+1=P)y(r) at
r—

0. For this reason, assume that f is differentiable and satisfies the following
conditions:

1
(Hy) / (TPQ/(q+1_p)f)+ dr < oo,
0

T

1 _
(H2) / (rpq/(qﬂfp)f) dr < oo.
0

T

In addition to the above assumptions, the study of asymptotic behavior of

u near the origin will depend on the convergence of rP4/(a+1-p) f (r) near 0 and

N(p—1) and N(p—V+p

the comparison of ¢ with N—p N—p

N(p—1)
Lemma 3.5. Assume that N > p and q > Np_p

of equation (2.1). Suppose that lir% P4/ @H1=P) £ () = | > 0. Then we have
T—

. Let u be a singular solution

lim inf 77/ 4+H1=Py (1) > 0
r—0

and

lim sup 7P/ (@+1=P)F1y/ () < 0.
r—0

Proof. The proof will be done in two steps.
Step 1. liminf r?/(4H1=Ply(r) > 0.
r—0
Assume by contradiction that lim i(I)lf rP/(@+1=P)y () = 0. This means that
r—

ltlglﬁg Up/(q+1—p)(t) = 0. Since vy, (g41-p)(t) is bounded for large ¢, we distin-

guish two cases.

Case 1. Let v,/(q41-p)(t) be monotone for large t. Then v,/ (g41—p)(t)
converges to 0 when ¢ — +o00. On the other hand, using the fact that u is
strictly decreasing and E(n_p)/(p—1)(r) > 0 for small  (by Proposition 2.9),
we obtain for large ¢
N-—p

1 Yp/lat1-p) (t)- (3.6)

0 < hyygr1-p)(t) < =

Then tljeroo hp(g+1-p)(t) = 0. Hence, by equation (3.4), tEerOO w;/(q+1_p) (t) =

—1 < 0. But this contradicts the fact that t—lg—noo Wp/(g+1-p)(t) = 0.
Case 2. Let vy/(q41-p)(t) oscillate for large t. Then there exists a se-
quence {n;} going to +oo as i — +oo such that Up/(q+1-p) has a local min-

imum in 7;. Hence, U;/(qﬂ,p)(??i) = 0 and u]’[,’/(qH,p)(m) > 0. Therefore,
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i D) = / , : :
Z_l}inoo Wp/(q+1—p)(m:) = 0 and Wy (g+1-p) (n;) > 0. But according to equation

(3.4), we have lligl Wy (g+1-p) (M) = =1 < 0. This is a contradiction.
1—+00

It follows from both cases that lim i(glf PP/ @Ry (r) > 0.
r—

Step 2. limsup P/ (@H1=PH/ () < 0.
r—0

Since v/ < 0 near 0, assume by contradiction that lim sup P/ (4+H1=P)+1y/ (1) =
r—0
0. This means that 1t131+1£10f hp/(g+1-p)(t) = 0. In the same way as the Step 1,

since hy,/(q+1-p)(t) is bounded for large ¢ (by Lemma 3.1), we distinguish two
cases.
Case 1. Let hy/(g+1-p)(t) be monotone for large t. Then hy,/ (g1 1-p)(t)

converges to 0 when t — +oo. That is, lir%rp/(“l*p)ﬂu’(r) = 0. This
r—

implies using Hpital’s rule that lim r?/ (q+1_p)u(r) = 0. Which contradicts the

r—0
fact that liminf r?/(4+1=P)y(r) > 0.
r—0

Case 2. Let hy/(g11-p)(t) oscillate for large t. Then there exists a sequence
{si} going to +o0 as i — +oo such that hy/,11-p) has a local minimum in
s;. Hence, zilgloo wp/(qH_p)(si) =0 and w;/(qﬂ_p)(si) = 0. But according to

equation (3.4), we have lim v? (s;) = =1 < 0. This contradicts the
i——400 p/(

q+1-p)
fact that vy /(g41-p) is positive. The proof of lemma is complete. O

We need also this classic result of [11] of which we recall the demonstration.

Lemma 3.6. Let W be a positive differentiable function satisfying
+oo
(i) W (t)dt < 400 for large to,
to

(il) W'(t) is bounded for large t.
Then lim W(t) =0.
t—-+o0

Proof. We claim that W (t) — 0 as ¢t — +o00. Suppose this is not the case.
Then given ¢ > 0, there exists a sequence {¢;} going to +o0 as j — 400
satisfying W (t;) > 2e. Since W'(t) is bounded for large ¢, there exists a
constant K > 0 such that |[W’'(¢)| < K for large t. By the mean value theorem

€
for W, we have W(t) > ¢ for |t —t;| < I Choose a subsequence #; such that
2e
to >to and t; >t/ —1+ Eté for j > 1. Therefore, we get

m t; m t;-71
> W (t)dt > Z/
=17t =17t

+e/K e2
W (t)dt > zm +o00 as m — +o0.
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This implies that

—+00
W (t) dt = +oo.

to

This contradiction completes the proof. O

The following theorem deals with the case lin% P/ @+1=P) £(1) = | > 0 and
r—

g # Meir

Theorem 3.7. Assume that N > p. Let u be a singular solution of equation
(2.1). Suppose that lirr(l) rp‘J/(qH_p)f(r) =1>0 and f satisfies
r—
(H) if > Mgt
or
(Hp) if 2=t < g < MR,

Then | < L and rP/\@1=Ply(r) converges when r — 0 to one of the roots z
or za of equation (3.5) such that 0 < z1 < 2.

Proof. Define the following energy function associated with equation (3.4),

p—1 P D
F(t = |h N (t [ S—
() p ‘ p/(q+1 p)( )l q_|_1_p

A P p—1 »
T <q +1- p) Yp/(g+1-p) (t) (37)

+1
+ﬁvg/ (g+1-p)(B) F 10p (1) (1),

Wp/(g+1-p) (E)Up/(g+1-p) ()

where

gN —p) - (N(p—1) +p)
qg+1—p

Note that according to our hypothesis, we have A # 0. Moreover, by Lemma 3.1,

hp/(q+1-p)(t) is bounded for large ¢, which in turn implies that w,/(g4+1-p)(t)

is bounded for large ¢t. Therefore, F'(t) is bounded for large t.

A=

(3.8)

For the rest of the proof we proceed in three steps.

Step 1. The function F(t) converges when ¢ — +o0.
A straightforward calculation gives

F'(t) = AX(t) = (9p/(q+1-p) (8) = D0 (g41-p) (), (3.9)

where
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p—1
-1 p -1
Xt = [\hp/@ﬂp) OF - (qﬂ_p> Up/g+1-p) (t)]
p
X |: ‘hp/(q-i-l—p) (t)‘ - mvp/(q-l,-l—p) (t):| . (310)

Integrating (3.9) on (7, t) for large T', we obtain
F(t) = C(T)+AR®) = (9p/(q+1-p)(t) = DVp/(g+1-p)
t
+/T Ip/(a+1-p)(5)Vp/ (g+1-p) 45, (3.11)
where
R(t) = /TtX(s) ds. (3.12)
Since the function s — sP~1 is monotone, X (t) > ()) Therefore, the function

t)
R(t) is positive and increasing. Moreover, by (3.11) and the fact that A # 0,
R(t) can be written as follows

Fit) 1
R(t) = A + Z(gp/(qﬂ—p) () = DUp/(g+1-p)
I C(T)
_A/T g;/(q+1_p)vp/(q+1—p)ds — 714 . (3.13)

Since vp,/(g4+1-p)(t) and F(t) are bounded for large ¢, t_l}grnoo Ip/(q+1-p)(t) =1

+ .
and — (9;;/(q+1—p)(3)) < ;/(q+1_p)(5) < (g;;/(q+1—p)(5)) , according to the
+o00

sign of A and the fact that / (g;/(qﬂ_p)(s))i ds < 400 from (Hi) or
T

400 +
/ (g]',/(qﬂfp)(s)) ds < 400 from (Hs), we get R(t) is bounded for large

T
—+00

t. Hence, R(t) converges when t — +o00, that is / X (s) ds exists. Letting
T
t — +oo in (3.13), we deduce that F'(t) converges when t — +o00. Let F' =
lim F(t).
t—+o00
. / o
Step 2. tkg{loo ’Up/(q+1_p)(t) =0.
According to (3.10) and (2.9), and the fact that h,g41-p)(t) is strictly
positive for large ¢, it suffices to claim that tligrn X (t) = 0. For this, since
—+00
—+00

X(s)ds < 400, by Lemma 3.6, it remains to show that X’(¢) is bounded
T
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for large ¢. Rewrite X () as follows

-1 p
X(t) = w;)%‘;rl),p) (t) - m Wp/(g+1-p) (t)vp/(qul*p) (t)
» p—1 o1 , (314)
B <q +1-— p> Yp/(a+1-p) v/ (q+1-p) (1)-

Hence
P
X'(0) = -7 Postari-n (g1 (1)

b
B m Wp/(q+1—p) (t)l}zl)/(q+1_p) (t)
__pr
qg+1—p

p—1
p —2 2
~emy <q+1_p> Upf(a1-n) D ar1-p) 1)

p—1
p -1
- <q+1p> U/ (a+1-p) D Vs(g1-p) (0)- (3.15)

Since v /(g+1—p)(t)s Pp/(g+1—p)(t) and gpq+1-p)(t) are bounded for large ¢,
according to (2.9) and (3.4), U;/(qﬂ_p) (t) and w]’:'/(qﬂ_p) (t) are bounded for
large t. Therefore, the first four terms of the second member of (3.15) are
bounded for large ¢. It remains to prove that UI,)/ /(q+1—p) (t) is bounded for

Up/(g+1-p) (D)W (g+1—p) ()

large t. According to (2.9), we have

p
Ug/(qulfp) (t) = ;/(qﬂfp) (t) - g+1-— pvilo/(qﬂfp) (). (3.16)

Therefore, it suffices to prove that h; J(g+1—p) (t) is bounded for large t.
Since hy/(g41-p)(t) > 0 for large ¢, we have by (2.8)

1

2
plar1-n® = 27 (oyigrn () wygiap (- (B17)

Since t_l}grnoogp/(qﬂ_p)(t) =1 > 0, by Lemma 3.5, ltlgl_ﬁgof P/ (g+1—p) () > 0.
Therefore, there exists a constant K > 0 such that hy,/(g+1-p)(t) > K for large

t. Hence, (Ry/(g+1-p) (t))Q_p is bounded for large ¢. Consequently, h;)/(q+1_p) (t)

is bounded for large ¢ and according to (3.16) and (3.15), X’(¢) is bounded for
large t. Hence, using Lemma 3.6, we get . li+m X(t)=0.
—400

Step 3. v,/ (g+1-p)(t) converges when ¢ — +oo.
Assume by contradiction that vy,/(44.1—p)(t) oscillates for large . Then there
exist two sequences {n;} and {&} going to 400 as i — +oo such that {n;}



Singular solutions of an inhomogeneous elliptic equation 253

and {§;} are local minimum and local maximum of v,/(4+1-p), Tespectively,
satisfying n; < & < m41 and

0 < lgr_)%&f Up/(g+1-p) (1) = 1m0 (g11-) (M) = @

i——+00
. . 3.18
= ligligop Up/(at1-p) (1) = z—lg—noo Up/(q+1-p) (&) = B < +oo0. (3.18)
Let
w6 =2 M =t [Cora (3.19)
s)=— st + + s =1[ls— r)dr, s2>0, 3.19
P q+1 0

where ¢ is given by (2.19). Since U;)/(q+1_p)(77i) = U],)/(q+1—p)(€i) = 0, using
(3.7), (3.18), (2.8) and (2.9), we obtain

Jim F(m) =4(e) and lim F(&) = $(B). (3.20)
Since lim F(t) = F (by Step 1), then

t——+o0

Pla) =9(B) = F. (3.21)

Therefore, there exist v € (a, 8) and t; € (1,&;) such that v, g41-p)(ti) =
v, ¥'(7) =0 and ¢(y) # F.

On the other hand, according to the Step 2, Zl:gloo U;/(q+1_p) (t;) = 0, which
in turn implies by (2.9) that Zginoo hp(g+1-p)(ti)= o75— 7. Hence,

lim F(t:) = $(y) = F.

i——400
This is a contradiction. Therefore, v, 411-p)(t) converges when ¢t — +oo.
Moreover, by Lemma 3.5 and Lemma 3.3, lim v,/ (441-p)(t) = d > 0 and
t——+o00

I = ¢(d), hence d = z or zp where z; and 2 are two roots of equation (3.5)
such that 0 < z; < z9. Finally, by (2.20), it is clear that [ < L. The proof is
complete. O

Now, if hH(l) P4/ @H1=P) (1) = | > 0 and ¢ = N(ﬁ,_if;ﬂ’, we have this result.
r—

Np—1)+p
N-p
singular solution of equation (2.1). Suppose that liH(l) rpq/(qﬂfp)f(r) =1>0
r—
and f satisfies (H1) or (Ha). Then u satisfies one of the following cases:

Theorem 3.8. Assume that N > p and q = Let u be a

(1) liH(l) P/ @Ry (r) = 21 or z.
r—
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(ii) rP/(at1=P)y oscillates and

21 < a=lim iglf PP/ @Ry (r) < 2y
T

< B = limsup r?/ @1y () < Z, (3.22)

r—0

where Z # z1 is the root of the equation
V(Z) = ¥(21). (3.23)

Moreover, a and (B satisfy the following estimates

I 1 (N_p>1’ BP—aP N-p BNP/(N=p) _ o Np/(N—p) (3.24)
p\ P f—a Np p—«
and
PP - pr —aP o1 ( p )pN(lep
N(N—p)p—1 = gNp/(N=p) _qNp/(N=p) — p—1 \ N—p N )
(3.25)

In both cases, we have | < L.

Remark 3.9. Since Z satisfies (3.23), ¢(z1) =1 and ¢ = M?{ijﬁ;ﬂ’, it is easy
to see that
p=1(N-p\’" , NE-D+p npw-p
¢Z:< >z—z . 3.26
(7)== () o - (3.26)
Proof. We take the same notation as in the proof of Theorem 3.7 with A = 0,
where A is given by (3.8).
Since vy/(q4+1—p)(t) is bounded for large , t_lgrnoo Ip/(g+1—p)(t) = 1, using the

fact that

g;o/(qulfp)(S) Z - <91/0/(q+17p)(8))

“+o0o , _
/T (gp/(q+1—p)(5)> ds < +oo,

and

from (H;) or
/ < / +
gp/(qulfp)(S) = (gp/(qulfp)(s))

—+00 , +
/T (gp/(q+1—17)(s)> ds < +o0,

from (Hj), we get respectively according to (3.11) that —F'(¢) converges or

F(t) converges, when t — +oc0. Let F' = lim F\(t).
t——+o00

Since vy, /(q+1-p)(t) is bounded for large ¢, we have two possibilities, either
Up/(g+1-p) (t) converges when t — 400, therefore according to Lemma 3.3,

and
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tligloo Up/(g+1—-p)(t) = 21 or zz where 21 and zp are two roots of equation

(3.5) such that 0 < z; < zy and therefore by (2.20), we have [ < L. Fi-
ther v,/(g+1-p)(t) oscillates, therefore h;/(qﬂ,p) (i) = Ug/(q+17p) (m) > 0 and
h;/(qﬂfp) &) = ’U;//(q+17p)(<’i) < 0 where {n;} and {(;} are respectively local
minimum and local maximum of v,,,41—p). Therefore, by equation (3.4), we
have

0< wzlv/(qul—p) (n:) = ¢ (Up/(q+1—p) (771)) = 9p/(g+1-p) (1) (3.27)

and
0> w;/(q+1—p)(<i) = ¢ (Up/(q—i-l—p) (CZ)) — 9p/(qg+1-p) (Cz) (3'28)

On the other hand, according to Theorem 3.7,
lim F(t) = F = ¢(a) =9 (f),

t—+00

N(p—1)+p

N b and a < S,

which gives using expression of ¢ and the fact that ¢ =
l AgF1-p BP — aP 1 /3q+1 — it
p B-a g+l B-a
1 (N_p>P/3p_ap N —p BNp/(N=p) _ o Np/(N=p)

p\ »p B—a Np B—a

This proves (3.24).
A simple study of the function v gives

¥'(21) = 9'(22) =0,
YP'(s) >0 for0<s <z (ifl >0),
YP'(s) <0 forz < s < 29, (3.29)
YP'(s) >0 fors > 29,
sggloow(s) = 100
Hence, there exists Z > z3 such that ¢(Z) = ¢(z1).
Now to prove estimate (3.22), we let i — 400 in (3.27) and (3.28) and we
obtain

P(B) <1< ¢(a), (3.30)
that is, by (3.19)
P () <0 <A(B). (3.31)

Combining this with (3.29) and the fact that ¢ (a) = ¢(8), we deduce z; < a <
z9 < 8. Moreover, we have § < Z, otherwise (3) > ¥(Z) = ¢(z1) > ¥(a),
which contradicts ¢(a) = ¥(5). Consequently estimate (3.22) is satisfied.
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Concerning (3.25), we use the fact that [ > 0 and (3.24) to obtain the left
inequality. To prove the right inequality of (3.25), we begin with the case
[ >0. Then 8 > a > 0. Therefore, according to (3.30), we have

Ag+1-p ga+1

B0(8) <18 =(8) + = — 5"~ =

and
Aat1-p » adtl!

ad(a) > lo = v(a) + “——a” — .
which in turn implies that
Ag+1-p et Agt1-p adtl
— P < = < — p .
Bo(B) ) BY + e ¥(B) = (a) < ag(a) P

Using expression of ¢, we get
p— 1Aq+1fpﬂp __4q gl < p— 1Aq+1fpap _ 9 e+t
g+1 - p qg+1

Using ¢ = N(LJHP, we obtain the right inequality of (3.25).
N-p

If [ = 0, it is easy to see that

_ \p—1\ (N-p)/p*
=0 = A, 7= (NP 7
pp

and
g —a? _ PP o1 p \'Np-1D+p
BNp/(N=p) — oNP/(N=p) — N(N —p)»=1 = p—1\ N —p N '
Finally (3.30) and (2.20) give [ < L. This completes the proof. O

Now we study the case lin% rp‘I/(q“Ll_p)f(r) =0 and q # N(:?V_i_lj)]ﬂ). For this,
r—

we introduce the following condition:
(Hz) rpa/(a+1=P)*1 /(1) is bounded for small r and

1
/ P/ (@H1=P) =1 £ () dr < oo.
0

Theorem 3.10. Assume that N > p. Let u be a singular solution of equation
(2.1). Suppose that hH(l) P/ @+H1=P) £ (1) = 0 and f satisfies one of the following
r—

conditions:

6) () and (Hy), of g > T2 UEE,
(i) (Ha) and (Hy), of 22—V o, Ne=D+p

N —p N—p
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Then lim rp/(q+1_p)u(r) =0 or lim rp/(‘”'l_p)u(r) =A.
r—0 r—0

Proof. According to Lemma 3.3, if v, /(411-,) converges, t£+moo Up/(g+1—p)(t) =

0 or A. Therefore, it suffices to show in the two cases that v}, /(q41—p) converges.
Note that the energy function F'(t) given by (3.7) does not allow as to
prove that hm Up J(g+1 p)( ) = 0. For this reason, we introduce another

energy functlon E defined as follows:

p—1
B = P /(1= O = T gr1) (D0 g1y (1) (3.32)
q 1 @+D/a , 1 g1 '
q 1 AF /1 “"’p/(q+1—p) (t)‘ T ﬁvg/(qﬂfp) OF
where A is given by (3.8) and
Pq
D =Tpgi1p =N - —21—. (3.33)

qg+1-p
Therefore
E/(t) = AY(t) — gp/(q+1_p) (t)fU;/(q-i-l—p) (t)
1

- Agp/(qﬂ—p) (t) (Fl/q ‘wp/(q+1—p)(t)} fa_ Up/(g+1-p) (t)> , (3:34)

where )

1
Y(t) = (”p/(qﬂfp)(t) /e ‘wp/ (q+1— p)(t)‘ q)

X (Ug/(qﬂ—p)( -T |wp/(q4r1—p) (t)D :
Similarly to the energy function F it is easy to see that F(t) is bounded
for large t. The rest of the proof is done in two steps.

(3.35)

Step 1 llm wp/(q+1 p)( ) - 0

In the same way as the proof of Theorem 3.7, we integrate (3.34) on (7, 1)
for large T', we obtain

E(t) =C(T)+ AS(t) = gp/(g+1-p) () Vp/(g+1-p) ()

¢
+/T gzlo/(q+1—p)(S>Up/(q+1—p)(3) ds
¢

(3.36)

where
/ Y (s)ds. (3.37)

Since the function s — s? is monotone, Y (t) > 0. Therefore, the function S(t)
is positive and increasing. Using the fact that A #£ 0, we have
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Et 1
St) = - 20 + Agp/(q+1—p)(t)vp/(qﬂ—p)(t)

1
A/ gp/(q+1 p)( )Up/(q+1-p)(8) ds
7
1
+/T Ip/(g+1-p)(S) <F1/q ‘wp/(qﬂfp)(s)‘ e
C(T)

A

Up/(qulfp)(S)) ds

(3.38)
Since vy /(g41-p)(t); Wp/(g+1—p)(t) and E(t) are bounded for large ¢, from (H3)

+oo
lim gp/(g+1-p)(t) =0, /T Ip/(q+1—p)(8) ds < 400

t—4o0

and

/ < / < / +
- (gp/(q+1—p)(5)> = gp/(q+1—p)(8) = (gp/(q+1—p)(5)> ’

then according to the sign of A and the fact that /
T

+o0 , —
(gp/(qH—p)(S)) ds <
+oo +
+oo from (Hp) or / (g;/(qﬂ_p)(s)) ds < +oo from (Hs), we get S(t)
T

is bounded for large t. Hence S(t) converges when t — +o00. Letting t — 400
n (3.38), we get tli+m E(t) exists and is finite.
—+00

Recall that for any 1 < ¢ < 2, there is a ¢, such that
(la?"%a = [b]27%b) (a = b) = co(a = b)* (Ja| + b))*™2, (3.39)
for any a, b € R such that |a| + |b| > 0. In particular, we have

(Up/(q+1—p)( ) = TV |wp)ga1-p)(t )

x (“Z/<q+1—p>(t T |wp/(q+1-p) t)D (3.40)
= ¢ <UZ/(q+1fp) (t) =T ‘Wp/(qﬂ ) t)|
% (UZ/(qH p) (t) +T “’JP/(q-H —p) (t)‘)

Since wy,/(q41—p)(t) > 0 for large ¢, according to (3.4) and (3.35), we have for
large t

(1-1/q)

2
Y(t) =2 ¢ (w;/(qﬂfp)(t) + 9p/(a+1-p) (t))

-(1-1/q)
X (“z/(qﬂ—p) (t) + T |wp/(g+1-p) (t)\) L (341)
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1
But vy /(g41-p)(t) and wy/(g+1-p)(t) are bounded for large t and 1 — — > 0,
q
there exists a constant C' > 0 such that for large t,

2
(w;/(qﬂ—p) (&) + 9p/(g+1-p) (t)) < CY ().
Which implies that

t 2
| (s ® + oriass ) ds < 0560

Hence, we have

t t
/T Wpi(gr1-p)(8) ds < CS(t) =2 /T (g 1-p) (8)9p/ (a1-p) (5) ds

¢
2
- /T gp/(qﬂfp)(s) ds

¢
< COS5(t) - 2/T Wo/(g+1-p) (8)9p/(g+1-p)(5) ds.

Since S(t) and w;/(qﬂ_p) (t) are bounded for large t and from (Hs)

t t
/ Ip/(q+1-p)(8) ds < +o0, / wf/(qﬂ_p)(s) ds is also bounded. Moreover,
T T

t
2 o . .
/ Wh(q pr)(s) ds is increasing, hence necessarily we have

+00
2
/T w;/(q+1_p)(s) dS < +o0.

On the other hand, deriving equation (3.4), we obtain

-1

w;//(qulfp) (t) - Fw;/(qﬂfp) (t)+ qvg/(qﬂfp) (t)vzla/(qﬂfp) (t)+ g;/(qﬂfp) (tz - 0)‘
3.42

Since w;/(qﬂ_p) (t)/, Up/(g+1—p) (‘t), U;/(q+1_p) (t) and g;)//gqﬂ_p) (t) are bounded

for large t, and (g, ;11 (t) is bounded by (Hs)), Wy (g+1—p) (t) is bounded

for large t. Therefore, using Lemma 3.6, we have tiiinoo wl’)/(qﬂ_p)(t) = 0.

Step 2. v,/ (g+1-p)(t) converges when ¢ — +oo.
Letting ¢ — 400 in equation (3.4) and taking account of lim g,/ (g41-p) ()
t—+o0

= 0, we obtain

lim —Twy(g11-p)(t) + v Jgr1p () =0. (3.43)

t——+o0
Assume by contradiction that v),/(g41-p)(t) oscillates for large t. Then, in-
equality (3.18) is satisfied. But, ’U;/(q+17p)(77i) = U;)/(qulip) (&) = 0. Hence,
by (3.43), we have ¢(a) = ¢(8) = 0, where ¢ is given by (2.19). Since a < f3,
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necessarily @« = 0 and § = A (where A is given by (1.7)). But by (3.32), we
have lim FE(n;) =0 and

i—+o00
-1 p p—1
lim E(&) = AP <0

i 400 (&) q—|—1<q—|—1—p> <%

which contradicts the fact that E(t) converges when ¢ — +o0o. Consequently,
Up/(q+1—p)(t) converges when t — +oc. The proof of theorem is complete. [

Next, we consider the case that linérp/(q"‘l_p)u(T) = 0. According to
T

Lemma 3.3, this can only take place in the case liH(l) pPa/(a+1=P) £ () = 0.
r—

Assume now that there exists 0 < k < - such that 7k f(r) is bounded
Pq

for small . We begin with the case p < k < 1

Theorem 3.11. Assume that N > p and q¢ > st,p__;). Let v be a singular

solution of equation (2.1) such that lin% rP/@F1=P)y(r) = 0. Suppose that there
r—

exists a constant p < k < q+plq_p such that r* f(r) is bounded for small v. Then

u has the following asymptotic behavior near 0

(1) r*=P)/®P=Dy(r) is bounded, if p<k< i

(ii) U0 s bounded, k= p.

Proof. (i) Let 0 = ];%217. Using the change (2.5) (for ¢ = o), we claim that

vy (t) is bounded for large ¢t. For contradiction, we distinguish two cases.
Case 1. lim v,(t) = +oo.

t——4o00
p

g+1-—p
to Proposition 2.10, we have E,/11-p)(r) > 0 and E,(r) < 0, for small r.

Hence using the fact that «/(r) < 0 for small r,

Since 0 < 0 < and r7P=D+2 £ (1) is bounded for small 7, according

rlu| p
o< . 3.44
U g+1-—p ( )
That is, using the change (2.5), we have for large ¢,
p =
ot <we (i P(t) < [ ———— : 3.45
0 < (2 ) (3.49)

Multiplying equation (2.6) (for ¢ = o) by ve F(t), we obtain

(wo (o3 (1) + (0 = 1) [ho ()7 07 (1) = (N = p) wo (t)oy () + Go(t) =0,
(3.46)
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where
Go(t) = el TFIPImPIyaTI=D(4) 4 g (£)uLP(t) = 0. (3.47)
Since lim el @F1=P)=Ptya+1=P(¢) — ( (because lim /@1 Ply(r) = 0), g, (t)
t—+o0 r—0
is bounded for large t and lim v2~!(t) = 400, we have lim Gy (t) = 0.
t—+oc0 t—r+00
Let
Po(t) = we(t)vg P (t). (3.48)
Then estimation (3.45) implies that for large ¢
p\!
Pl <o (t) < <) 3.49
o Po(t) P — (3.49)
and moreover by (3.46), we have
—2, (1) = (0= 1) e (/77 — (N = p) 0o(t) + G (8). (3.50)
Let
N —
u(s) = sP/®-1) _ Ffs, s> 0. (3.51)
Using the fact that ¢, () > 0 for large ¢, we get for large ¢
—¢o(t) = (p — Di (0o (t)) + Go(t). (3.52)
A simple study of the function p gives the existence of a constant K > 0
~1 -1
such that p(s) < —K for oP7! < s < (qﬁ'ﬁ R %)p . Since

o (t) satisfies (3.49) for large ¢ and tligl Gy (t) =0, by (3.52), there exists a
— 400
constant K7 > 0 such that for large ¢
¢ (t) > K.
Integrating this last inequality on (7', t) for large T', we obtain . 11_1&1 o (t) =
—1+00
+00, which contradicts the fact ¢, () is bounded for large ¢ by (3.49).

Case 2. Suppose that there exist two sequences {s;} and {t;} going to +oo
as i — 400 such that {s;} and {¢;} are local minimum and local maximum of
Vg, respectively, satisfying s; < t; < s;41 and . ligrn Vs (ti) = +oo.

—+00

Taking t = ¢; in equation (2.6), we obtain

W (1) = Ty we(t;y) — e~ PolaHI=ptiya .y — g (t;) = 0. (3.53)
Since v (t;) = 0, by (2.9) and (2.8), we have
Up_l(ti) — gl P,

Wo (tz)
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Hence, equation (3.53) can be written as

t.
wf,(ti) = wy(t;) [Ty — o'lfpef(P*U(qulfp))tiUngl*p(ti) — fjg((tl«)) . (3.54)
g 7
/
t,
According to our hypothesis, we have lim Wo(ti) =T, hence W/ (¢;) > 0 for

i—+00 Wy (tl)
large i. But hl(t;) = v(t;) < 0, which implies that w/(¢;) < 0. This is a
contradiction. Consequently, v,(t) is bounded for large ¢.

(ii) According to Proposition 2.7, we have lir% rN=D/(P=1y/ (1) = 0. Hence,
r—

integrating equation (2.1) on (0, r) for small r and using the fact that «'(r) < 0
near 0, we obtain

T‘N_1|’LL/|p_1:/ sN Ly (s) der/ sNLE(s) ds. (3.55)

0 0

According to (i), if there exists 0 < p < % such that rP+e(P=1) £(r) is
q -Pp

bounded for small 7, then r2u(r) is bounded also for small r. In particular for

k k(p—1
0= 7 we have rPH#®=1)/4 f(r) is bounded for small r (because p+ %) >

k and 7Ff(r) is bounded for small ) and therefore 7*/9u(r) is bounded for

small r. hence, by (3.55) and the fact that N > +]917q > k, there exists a
q -Pp

constant C' > 0 such that for small r, we have

/[P~ < ortk, (3.56)
Since k = p, the last inequality becomes for small r,
lu'| < Cr1t, (3.57)

Therefore, integrating (3.57) on (r,79) for 7o < 1 and using the fact that v’ < 0
near 0, we obtain

u(r) < C(rg) + Cllnr|.
u(r)

is bounded for small 7. O
[ln 7|

Which implies that

Lemma 3.12. Under hypotheses of Theorem 3.11 forp < k < qfl‘{p, we have

k—p\P!
liminf r*f(r) < (N — k) <p> lim sup 7 ~PuP~1(r) (3.58)
r—0 p—1 r—0

and

k—p\F!
limsup r¥ f(r) > (N — k) (11)) lim inf 7¥ PP~ (r). (3.59)

r—0 p— r—0
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Proof. To show estimate (3.58), we assume by contradiction that
kE—p p=1
liminf 7% f(r) > (N — k) <> lim sup r*~PuP~1(r).
r—0 p—1 r—0

k—
217 in (2.5), there exists

Hence, using the change (2.5) and taking ¢ =0 =

b1 > 0 such that for large t,
go(t) = e ¥ fe™) > (N — k) oP 2P L(t) + by. (3.60)

We claim that v,(t) is strictly monotone for large t. For this, using (2.14),
it suffices to show that E,(r) # 0 for small r. Suppose by contradiction that
there exists a small r such that E,(r) = 0. Then, according to (2.16), we have

(0= D W PELr) = (N~ K)oP el ) (3:61)
—e ((pa—k(at1=p)/(=1)ty)d (1) — g, (¢).

Using (3.60), we get for small r,
(p— D)r* Y/ [P2EL (1) < (N — k) oP 1o~ H(t) — g, (t) < —by < 0. (3.62)

Hence, E,(r) # 0 for small r. Consequently v,(t) is strictly monotone for
large t.

Moreover, since v,(t) is bounded for large ¢ by Theorem 3.11, v,(t) con-
verges when ¢t — +o00. Let t_leroo U, (t) = di > 0. We distinguish two cases.

Case 1. v/ (t) is monotone for large t.
Since v/ (t) # 0 and v, (t) is bounded, for large ¢, necessarily , h+m vl (t) =0,
—+00

which implies by (2.9) that tliin he(t) = od; and therefore lim w,(t) =
—+00

t—+o00
ap_ldlffl.
On the other hand, according to (2.6), we have
wo(t) = (N = kJwo(t) — e (P Mer ==l (1) — go(1). (3.63)
Therefore, according to (3.60), we have for large ¢,
wy (1) < x(t) = b1, (3.64)
where
X)) = (N —k)wg(t) — e (Paklatl=p))/(b=1))t,,a 4
—(N — k) aP P~ (1). (3.65)

q+1-p’
. h—IP x(t) = 0. Hence, there exists a constant C' > 0 such that w/ (t) < —C
—+00

From k < —£1 lim vy(t) = di and lim w,(t) = 0P ', we have
t—+o00 t—+o00



264 A. Bouzelmate and A. Gmira

for large t. Integrating this last inequality on (T,t) for large T', we obtain

lim wy(t) = —oo. This is a contradiction.
t—+o00

Case 2. Uf,( ) is not monotone for large ¢.

Since v/ (t) # 0 and v,(t) is bounded, for large ¢, we have two possibilities,
liminf v/ (t) = 0 if v/ (t) > 0 for large ¢ or limsup v, (¢) = 0 if v/ (t) < 0 for
t—+o0 t—+o00

large ¢. Therefore, there exists a sequence {~;} going to +oo as i — 400
such that {v;} is a local extrema of v/, satisfying lim vl (vi) = 0. Therefore,

lim w,(y;) = o~ b~ Pand lim ! () =0 (because V(i) = 0 and there-
i——+00 i——400

fore lhgl h. (vi) = 0). Taking ¢t = v; in equation (3.63) and letting i — +o0,
1—+00

we obtain
lim g,(v) = (N — k:)ap_ld]lofl.

i—+00
This is impossible according to (3.60) because b; > 0. Consequently, estimate
(3.58) is satisfied.
Now, we show estimate (3.59). Suppose by contradiction that

k—p\"!
limsup ¥ f(r) < (N — k) <]19> lim inf 7* PP~ (7).

r—0 p— r—0
Taking o = p =L there exists by > 0 such that for large ¢
go(t) < (N — k) P 0P~ L(t) — bo. (3.66)

In the same way, we show that the last inequality implies that v,(t) is
strictly monotone for large t. Suppose by contradiction that there exists a
small r such that E,(r) = 0. Then, according to (3.61) and (3.66), we have
for small r,

(p _ 1) k_l‘ul|p_2E/( ) > by — —((PQ—k(q+1—p))/(p—1))th(t)_ (3.67)
Since th+m e~ ((Pa=k(a+1=p))/(p=1)t,a () = O because k <

bounded for large ¢t by Theorem 3.11, for small r, we have

i and vo(t) is

b
(p— 1)rk_1|u’\p_2E(’,(r) > 2 > 0.

Hence, E,(r) # 0 for small r and therefore v, (t) is strictly monotone for large
t.

Now, it is enough to repeat the same reasoning as the first case using equa-
tion (3.63) and estimate (3.66) to obtain the contradiction. Consequently,
estimate (3.59) is satisfied. This completes the proof. O

Now, the following result proves that if f (r) lr=k for p <k <

q+1 P’
then the singular solution u has also an equivalent near 0.
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Theorem 3.13. Assume that N > p and q¢ > %__;). Let u be a singu-

lar solution of equation (2.1) such that lin%) rP/@H1=P)y(r) = 0. Suppose that
r—

lir%rkf(r):l>0f0rp§k< EL_. Then
r—

qg+1-p-

_ 1/(p—1)
(i) lim rF=P)/ =1y () p-1 <le> , if p<k< e

r—0 T k-p - q+1—p’
. ) u(r) _ l 1/(p—1) ) B
(i) P—I}(l) Inr| <N—p> U k=p

Proof. (i) Let o = f)%f. We know by Theorem 3.11 that v,(t) is bounded
for large t. Assume that v,(t) oscillates for large ¢. Then there exist two
sequences {n;} and {&;} going to 400 as ¢ — +o0 such that {n;} and {¢;} are
local minimum and local maximum of v, respectively, satisfying n; < & < n;+1

and

0 < liminfo,(t) = lim vs(n) =«

t——+o0 i—+00
< limsupvy(t) = lim v, (&) = B < +oo. (3.68)
t—+00 1—>+00

Since v/ (n;) = vl (&) = 0, V2 (n;) > 0 and vJ(&;) < 0, using (2.8) and (2.9),
we have

lim wy(n;) = 0P LaP™1,
i—r+00

limwo (&) = 0?71,
1—+00

wh () >0 and W (&) <0.
Therefore according to (3.63), we have

(N — k)wy () — e~ (Pa=kat1=p)/=1mi0,0 (n.y — g () > 0 (3.69)
and
(N — k)wy (&) — e~ (Pak(at1=p)/(=1)& a0 (¢} — g_(&) < 0. (3.70)

Letting ¢ — 400 in the two previous inequalities and using the fact that

I () = .
(i g (t) = I, we obtain

l
=l " <
S N1 =

But this contradicts (3.68). Therefore, v, (t) converges when ¢t — +o0.
On the other hand, we have by Lemma 3.12,

l
lmfaf () < gt < limsuped )
o0

p—1
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) 1 l 1/(13—1) p— 1 l 1/(P—1)
Hence, tl}inoo Ug(t) = ; (]V-k) = m (M) .
(ii) Multiplying equation (2.2) by 7?1~V we obtain

/
ppHI=N (TNil ‘u"p_2 u’) + rPul(r) +rPf(r) = 0. (3.71)
Since rfr(lt,)| is bounded for small r, lir% rP/9u(r) = 0. therefore, by (3.71),
T—
lim 7PN (erl |u"p_2 u’)l =1
r—0

Hence, since liH(l) pN=1 |u"p72 u/(r) = 0 (by Proposition 2.7) and N > p, we
r—
obtain using Hopital’s rule,

_ -l
li p—11,//P—2 — )
Lim /|7 (1) N

Taking into account the fact that u’ < 0 near 0, we have

. . I L(p—1)
71~1—I>I(1)T|u(r)|:<]\7—p> .

Since lim u(r) = +o0 and lim Inr = —oo, using again Hopital’s rule, we obtain
r—0 r—0
l 1(p—1)
lim ulr) = — lim ulr) = — lim rd/(r) = .
r—0 [ln 7| r—0 Inr r—0 N—p
The proof is complete. O

The following result gives an equivalent of v/ near the origin.

Theorem 3.14. Assume that N > p and q¢ > %jp}). Let u be a singu-

lar solution of equation (2.1) such that liH(l) PP/ @F1=P)y(r) = 0. Suppose that
r—

}i_r)r(l)rkf(r) =1>0 forp<k < H. Then we have

1/(p-1)
(i) im0y = — (T ke PO
r—0 N -k ’ g+1-—p

s ron l A —
(ii) }1_1)1(1)7%(7’)— <N—p , if k=p.

Proof. (i) Let o = Ik;_;’l’. Then, by the change (2.5) and Theorem 3.13, we have
1/(p—1)

. ~1(_1

lim Ua-(t): = (ﬁ) .

t——+o0
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) A\ Y-
Now, we show that tl}f&—noo he(t)= (m) . Since E(y_p)/(p—1)(r) >0

for small r by Proposition 2.9, h,(t) is bounded for large t. Suppose by
contradiction that h,(t) oscillates for large ¢t. Then there exist two sequences
{si} and {k;} going to +o00 as i — 400 such that {s;} and {k;} are local
minimum and local maximum of h,, respectively, satisfying s; < k; < Sij+1
and

lgLnJrlglof he(t) = z_lfinoo he(si) =my < lir_r:_is_gop he(t) = Z—lg—noo ho (ki) = M.

(3.72)

Therefore W) (s;) = wf (ki) = 0 (because (1) = hj(k;) = 0), lm_w,(s;) =
i—+00

]ml|p72 my and Z_l)linoowa( ) = | My|P™ 2 M. Since k < Uy converges

q+1 P’
and tliin e f(e7!) = I, we deduce, by taking respectively t = s; and t = k;
—+00
in equation (2.6) and letting i — +o00, that
—(N — k) [mi[P"*my = —l = —(N — k) | M [P~% M.

Since N

Ima [P~ my = | My P2 My > 0.
That is, m1 = M;. Which contradicts (3.72). Therefore, h,(t) converges when
t — 400, hence by (2.9), we have 1tlier vl (t) = 0 (because v, converges).
—+oo

1/(p—1)
Consequently, tlgn he(t)= (ﬁ) g

1/(p-1)
}%T(kfl)/(pfl)u/(r):_<ﬁ> /(p '

, which is equivalent by (2.11) to

(ii) It can be easily deduced from (ii) of Theorem 3.13 by using Hopital’s
rule. The proof is complete. O

Finally concerning the case 0 < k < p, we will show under some assumptions
that the solution u of equation (2.1) can be extended by continuity at 0.

Theorem 3.15. Assume that N > p and q > Nip p) Let uw be a solution of
equation (2.1) such that hH(l) P/ @F1=P)yy(r) = 0. Suppose that there exists a
r—
constant 0 < k < p such that v f(r) is bounded for small r. Then lir% u(r) is
T—

finite and strictly positive.

Proof. According to Proposition 2.1, we have u is strictly decreasing near 0 and
lir% u(r) €]0, +o0]. Assume that u is singular, that is liII(l) u(r) = +oo. Then,

since 0 <k <p< 55 p , according to Theorem 3.11, 7¥/9u(r) is bounded for
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small r. Therefore, inequality (3.56) is satisfied for small r. Integrating this
last inequality on (r,rg) for small ry and using the fact that p > k, we obtain

u(r) < C(rg) — CrP=k)/(p=1),

That is, u(r) is bounded for small r. But this contradicts the fact that u is
singular. Consequently, hH(l) u(r) €]0,4o00[. The proof is complete. O
r—

4. EXISTENCE OF A SINGULAR SOLUTION

In this section, we establish the existence of singular solutions of equation
(2.1) under some assumptions on f. We use the technical results introduced
by [15].

In view of the first section, if u is a singular solution of (2.1), then

lim N =D/=Dy/ (1) = 0
r—0

when N > p and ¢ > %__;). Hence a natural problem arises:

Find a function u defined on ]0, rmax[ such that u € C°(J0rmax[)N C(J0rmax|)
and |u/|P~2u" € C(]0, rmax|), where 0 < rpax < 400 and satisfying

N -1

(J/[P=2) (r) + W/ [P (r) + ul(r) + £(r), >0,

(P)
lim u(r) = +oo0, lim r(N—l)/(p—l)u/(T) -0,
r—0 r—0

where p > 2, ¢ > 1, N > 1 and f is a continuous radial function and strictly
positive on |0, +o0].

N(p—1)
Theorem 4.1. Assume that N > p and q > Npi_p.

exists a constant 0 < k < p such that r* f(r) is bounded for small r. Then
problem (P) has a unique solution defined on a mazimal interval 0, rmax],
where 0 < rpax < 400.

Suppose that there

Proof. Recall by Remark 2.2 that if u is a solution of (2.1) such that lin% u(r) =
r—

~ > 0, then necessarily lir% r(N_l)/(p_l)u’(r) = 0. Hence, for any v > 0, we
r—r

consider the problem
N -1

([ [P=2) (r) + [/ P72 () + ul(r) + f(r), >0,

@ u(0) =7, lim T(Nfl)/(pfl)u’(r) =0

’ r—0 )
First, we show that for any v > 0, problem (@) has a unique solution
u defined on a maximal interval [0, 7,4,[. To establish local existence and
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uniqueness, we use a method introduced in [5] and we will try to convert the
problem (Q) into a fixed point problem of some operator.

Note that the difficulty lies in the fact that there was no initial data, but
has only a limited condition.

Let u be a solution of problem (Q) on [0, 7na.[. Then, integrating equation
(2.2) on (0, r) for any 7 € [0, rimqz[ and using the fact that }13% rp(N=D/ =14/ (1)

= 0, we obtain

u(r) =~ — /OT G(F[u](s))ds, (4.1)

where
G(s) = |s|@P/eNs s e R (4.2)
and the nonlinear mapping F' is given by
Flo](s) = slN/ oN-1 [cpq(o) + f(a)]da. (4.3)
0
Let R >0, v > M > 0 and consider the following complete metric space:
Eymr={p € C([0, R]) : o =7l < M}, (4.4)
where C ([0, R]) is the Banach space of real continuous functions on [0, R]
with the uniform norm, denoted by || - ||o.
Next we define the mapping 7 on E, yr by
Tielr) =9 = [ G(Plel(s)as. (15)

The idea is to show that 7 is a contraction from E, js r into itself for small
R. We will do it in two steps.

Step 1. 7 maps E, g into itself for small M and R.
Since ©(r) € [y — M,y + M] and 0 < f(r) < Cr~" near the origin with
k <p < N, for small R

(v +M)? C

(v — M)? 1—k
— s < < . .
N s < Fly](s) < S+N—]€S for s €]0, R| (4.6)
Therefore for sufficiently small R, we have
Ci1s < Fly](s) < Cos' k. (4.7)

On the other hand, we have by (4.5)
ITlel(r) — | < / |F[p])(s)| "D ds for any r € [0, R]. (4.8)
0

Hence, owing to (4.5) and (4.2), we obtain for any r € [0, R]

N T
|T[90](T) _,7| < 2 p_(]i) )R(p k)/(p 1). (4.9)
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So we can choose R sufficiently small such that

[ Tlel(r) =7l <M, for ¢ € Ey R (4.10)
That is, T[(,O] € E%MJ{.

Step 2. T is a contraction from E, ys g into itself for small R.
For any r € [0, R] and any ¢,v¢ € E, g, we have

[ TTel(r) = IT¥](r)] < /Or |G(Flp](s)) = GF[¢](s))lds, (4.11)
where F[p] is given by (4.3). Next, let
®(s) = min([Fle](s)[, [F[¥](s)])-

Then
I TTel(r) = TIl(r)] < /(]T(‘@(S))(z_p)/(p_l)IFM(S) — Flgl(s)lds.  (4.12)
Using (4.7), we have
O(s) > Cys. (4.13)
And according to (4.3) and (4.4), we have
g(M + )7

[Flel(s) = Fy](s)] <
Therefore for any r € [0, R]

g(p — )PP (AL 4 )1
Np

sl =l (4.14)

RP/®=D o — |, -

(4.15)
So we can choose R small enough such that 7 is a contraction. Consequently,
the Banach Fixed Point Theorem implies the existence of unique fixed point
u = u, of T which is a solution of (4.1), that is solution of problem (Q). This
solution can be extended to a maximal interval [0, rpax[, 0 < rmax < 400.
Now, we have by the maximum principle v + wu, is increasing and by
Proposition 2.4, uy(r) < C(N,p,q) r~P/(@+1=P) \where C(N,p,q) is explicitly
given by (2.4). Therefore . converges when v — +00 to v which is a solution
of problem (P) on a maximal interval |0, rypax[, 0 < rmax < +00. The proof
is complete. O

I Tlel(r) = TIl(r)] <

5. NONEXISTENCE RESULT

In this section, we present a nonexistence result concerning singular solu-
tions of equation (2.1). Note that the comparison near the origin between
the functions f and Lr~P9/(@+1=P) where L is given by (2.20), will play an
important role in proving this result.
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Theorem 5.1. Let N > p and q > %__;). If limi(l)lfrpq/(ﬁl*p)f(r) > L,
r—

then equation (2.1) does not possess any singular solutions.

Proof. Suppose that lim i(l)lf rp‘J/(‘IH_p)f(r) > L. Let u be a singular solution
r—

of equation (2.1). According to Proposition 2.9, we have Ej,/(44.1—p)(r) # 0 for

small 7, that is, by (2.14), vp/(g11-p)(t) is strictly monotone for large t.
Moreover vy /(4+1-p) is bounded by Proposition 2.4 and Remark 2.5, hence

it converges. Let _lgrn Up/(g+1—p) (t) = d > 0. This being said, we have then

two possibilities, hm+1nf Up/(q+1 p(t) =0 if vp/(q+1 _p)(t) > 0 for large ¢ or

lir_riiupvp/(qﬂ _p(t) =0 if v o/ (q1— p)() < 0 for large t. Therefore, there

exists a sequence {7} going to +oo as i — 400 such that {v;} is a local
extrema of v/ v/ (q+1-p) satisfying hin v v/ (g+1-p) (7i) = 0. Therefore, we have

P Pl
1
Z_I}inoowp/(qﬂ —p)(7i) = <q+ 1— > P

Moreover, by deriving equation (2.9) and using the fact that vp /(g+1—p) (vi) =0,
we obtain Z_l)lgl hp/(q+1 _p»(71) = 0. Hence, hm wp/(q_H » (i) = 0. Taking
t = ; in equation (3.4) and letting i — +oo, we obtam
lim 9p/(g+1 p)(’yl) =¢(d) < L,

1—~400

where ¢ and L are given respectively by (2.19) and (2.20). But this contradicts
the fact that ltiglJrinf 9p/(q+1—p)(t) > L. The proof is complete. O
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