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Abstract. The main purpose of the present paper is to study the asymptotic behavior near
the origin of radial solutions of the equation

∆p u(x) + uq(x) + f(x) = 0 in RN\{0},

where p > 2, q > 1, N ≥ 1 and f is a continuous radial function on RN\{0}. The study

depends strongly of the sign of the function f and the asymptotic behavior near the origin

of the function |x|λf(|x|) with suitable conditions on λ > 0.

1. Introduction

This paper deals with the following radial equation(
|u′|p−2u′

)′
(r) +

N − 1

r
|u′|p−2u′(r) + uq(r) + f(r) = 0, r > 0 (1.1)

where p > 2, q > 1, N ≥ 1 and f is a continuous radial function on ]0,+∞[
and strictly positive near the origin.

The difficulty in studying the equation (1.1) lies in the presence of the
inhomogeneous term f(r) that can be singular at the origin and influences on
the existence and the asymptotic behavior of solutions of equation (1.1).
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Note that if f ≡ 0 and p = 2, the equation (1.1) becomes the Emden-Fowler
equation

u′′(r) +
N − 1

r
u′(r) + uq(r) = 0, (1.2)

that has been the subject of much literature. The first study in the radial
case is due to Emden-Fowler (see for example [8], [9] and [10]). He proved the
existence results and gave a classification of entire radial solutions of equation
(1.2) on RN and RN\{0}. In the case N > 2, it has been shown the existence
of two critical values N

N−2 and N+2
N−2 . Regarding the non-radial case, the study

was made by Lions [13] when q < N
N−2 , Aviles [1] when q = N

N−2 and Gidas-

Spruck [11] when q < N+2
N−2 . Caffarelli, Gidas and Spruck [7] extended the

study to the case q = N+2
N−2 .

In the case f ≡ 0 and p > 2, the first results are due to Ni and Serrin [14].

They have shown the existence of two critical values N(p−1)
N−p and N(p−1)+p

N−p .

Guedda and Véron [12] studied the existence of entire solutions and asymptotic

behavior near 0 of radial solutions in the case q < N(p−1)
N−p .

The non-radial case was investigated by Bidaut-Véron and Pohozaev (see

[4]) and also by Guedda and Véron in the case q < N(p−1)
N−p .

In the case where f is not identically zero and p = 2, Bae [2] studied the
equation

∆u(x) + uq(x) + f(x) = 0 in RN\{0} (1.3)

and gave the asymptotic behavior near zero and near infinity of positive radial
solutions of (1.3), that is solutions that satisfy the equation

u′′(r) +
N − 1

r
u′(r) + uq(r) + f(r) = 0, r > 0. (1.4)

The first step to understand the effect of the function f on the equation
(1.1), is to deal with the type of f(r) = Lr−λ with λ > 0, that is, we consider
the equation(

|u′|p−2u′
)′

(r) +
N − 1

r
|u′|p−2u′(r) + uq(r) + Lr−λ = 0, r > 0. (1.5)

In the case N > p and q > N(p−1)
N−p , the equation (1.5) possesses a positive

solution if

λ =
pq

q + 1− p
and L =

q + 1− p
p− 1

(
p− 1

q

)q/(q+1−p)
Λq, (1.6)

where

Λ =

((
p

q + 1− p

)p−1(
N − pq

q + 1− p

))1/(q+1−p)

. (1.7)
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This solution is given by

ũ(r) =

(
p− 1

q

)1/(q+1−p)
Λr−p/(q+1−p). (1.8)

In this work, we present a complete study of singular solutions of equation
(1.1), that is to say solutions u such that lim

r→0
u(r) = +∞. We prove existence

and nonexistence results and we study the asymptotic behavior of solutions
of equation (1.1) near the origin. The study depends strongly on the limit of

the function rpq/(q+1−p)f(r) when r tends to 0 and the comparison of q with

the two critical values N(p−1)
N−p and N(p−1)+p

N−p .

This paper is organized as follows. In section 2 we present some preliminary
results that will be useful to study equation (1.1) under some conditions of the
inhomogeneous term f . In section 3, we study the asymptotic behavior near
the origin of solutions of equation (1.1). Finally, existence and nonexistence
results are respectively established in sections 4 and 5.

2. Preliminary results and other formulations of the problem

In this section, we give some properties of solutions of equation(
|u′|p−2u′

)′
(r) +

N − 1

r
|u′|p−2u′(r) + uq(r) + f(r) = 0, r > 0 (2.1)

where p > 2, q > 1, N ≥ 1 and f is a continuous radial function on ]0,+∞[
and strictly positive near the origin.

We start with the following result that gives an information of monotonicity
of solutions of equation (2.1) near the origin. For this, we use some ideas
introduced in [6].

Proposition 2.1. Let u be a solution of equation (2.1). Then, u is strictly
monotone near 0 and lim

r→0
u(r) ∈ [0,+∞]. Moreover, if N ≥ p, then u is

strictly decreasing near 0 and lim
r→0

u(r) ∈]0,+∞].

Proof. According to equation (2.1), we have for any r > 0,(
rN−1|u′|p−2u′

)′
(r) = −rN−1uq(r)− rN−1f(r). (2.2)

Since f is strictly positive near the origin, rN−1|u′|p−2u′ is strictly decreasing
near the origin. Hence, u is strictly monotone near 0 and therefore we have

lim
r→0

u(r) ∈ [0,+∞].

Suppose that u′(r) > 0 near 0. Then, lim
r→0

u(r) exists and finite. On the

other hand, using again the fact that
(
rN−1|u′|p−2u′

)′
(r) < 0 for small r, we
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obtain

lim
r→0

rN−1|u′|p−2u′(r) ∈]0,+∞].

Hence, there exists a small R and a constant C > 0 such that

u′(r) > Cr(1−N)/(p−1), for any r ∈ (0, R).

This cannot take place because u′ ∈ L1(0, R) and r(1−N)/(p−1) 6∈ L1(0, R)
when N ≥ p. Consequently, u′(r) < 0 for small r and lim

r→0
u(r) ∈]0,+∞]. �

Remark 2.2. Assume that N ≥ p. Let u be a solution of equation (2.1) such

that lim
r→0

u(r) is finite and strictly positive. Then, lim
r→0

r(N−1)/(p−1)u′(r) = 0.

Indeed, since the function rN−1|u′|p−2u′(r) is strictly negative and strictly

decreasing near the origin, then lim
r→0

rN−1|u′|p−2u′(r) ∈]−∞, 0]. Using the fact

that u′ is integrable near 0 and N ≥ p, then necessarily lim
r→0

r(N−1)/(p−1)u′(r) =

0.

Now, if f is positive on ]0,+∞[, we have the following results.

Proposition 2.3. Assume that N ≥ p and f is positive. Let u be a solution
of equation (2.1). Then u′(r) < 0 and u(r) > 0, for any r > 0.

Proof. Since f is positive on ]0,+∞[, then by (2.2), rN−1|u′|p−2u′ is decreasing
on ]0,+∞[. According to Proposition 2.1, we have u′(r) < 0 near 0, hence
u′(r) < 0 for any r > 0.

We show now that u is strictly positive on ]0,+∞[. According to Propo-
sition 2.1, we have lim

r→0
u(r) ∈]0,+∞]. Let r0 be the first zero of u. Then

necessarily u′(r0) ≤ 0. If u′(r0) < 0, then u changes sign, which is impossible.
If u′(r0) = 0, then integrating (2.2) on (r, r0) for r > 0 and using the fact that
uq + f is strictly positive on (r, r0) and u′(r0) = 0, we obtain u′(r) > 0 on
(0, r0). This contradicts the fact that u′(r) < 0 for any r > 0. Consequently,
u(r) > 0 for any r > 0. �

Proposition 2.4. Assume that N ≥ p, q > p− 1 and f is positive. Let u be
a solution of equation (2.1). Then, for any r > 0, we have

u(r) ≤ C(N, p, q) r−p/(q+1−p), (2.3)

where

C(N, p, q) =

(
p

q + 1− p

)(p−1)/(q+1−p)( N

1− 2−N

)1/(q+1−p)
. (2.4)
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Proof. Since f is positive, we have(
rN−1|u′|p−2u′

)′
(r) ≤ −rN−1uq(r).

Integrating this last inequality on
(
r
2 , r
)

for r > 0 and using the fact that u is
strictly decreasing on ]0,+∞[, we get

rN−1|u′|p−2u′(r) < −1− 2−N

N
rNuq(r).

Using the fact that u is strictly positive and strictly decreasing, we obtain

u′(r)u−q/(p−1)(r) < −
(

1− 2−N

N

)1/(p−1)

r1/(p−1).

Since q > p− 1, we arrive at(
u(p−1−q)/(p−1)

)′
(r) >

q + 1− p
p− 1

(
1− 2−N

N

)1/(p−1)

r1/(p−1).

Integrating this last inequality on (0, r) for r > 0 and using the fact that
lim
r→0

u(r) ∈]0,+∞] and q > p − 1, we get the desired estimate (2.3). This

completes the proof. �

Remark 2.5. Assume that N ≥ p and q > p − 1. Let u be a solution of
equation (2.1). Then rp/(q+1−p)u(r) is bounded for small r.

Indeed, we use the same proof of Proposition 2.4 since f is strictly positive
and u is strictly decreasing near the origin.

Now, we focus on the study of solutions u(r) of equation (2.1) which tend
to +∞ as r tends to 0.

Definition 2.6. The solution u of equation (2.1) is called singular if it can
not be extended by continuity at zero, that is, lim

r→0
u(r) = +∞.

Proposition 2.7. Assume that N > p and q >
N(p− 1)

N − p
. Let u be a singular

solution of equation (2.1). Then

lim
r→0

r(N−p)/(p−1)u(r) = 0

and

lim
r→0

r(N−1)/(p−1)u′(r) = 0.
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Proof. We know from Remark 2.5, that the function rp/(q+1−p)u(r) is bounded

near the origin. Therefore, for q > N(p−1)
N−p , that is N−p

p−1 > p
q+1−p , we have

lim
r→0

r(N−p)/(p−1)u(r) = 0.

On the other hand, the function rN−1|u′|p−2u′ is strictly decreasing and

strictly negative near the origin, therefore lim
r→0

r(N−1)/(p−1)u′(r) ∈] − ∞, 0].

Hence, using Hpital’s rule (because lim
r→0

u(r) = +∞ and N > p), we obtain

lim
r→0

r(N−1)/(p−1)u′(r) = 0.

�

Remark 2.8. When N < p, the singular solution u of equation (2.1) is also
strictly decreasing near the origin. Indeed, since u is strictly monotone near
0 by Proposition 2.1 and lim

r→0
u(r) = +∞, necessarily u′ < 0 near 0.

Before proving other results, we introduce the following change of variable
that will play an important role in the proofs of theorems.

For any real c, we set

υc(t) = rcu(r) where c 6= 0 and t = − ln r. (2.5)

Then υc satisfies the following equation

ω′c(t)− Γc ωc(t) + e−(p−c(q+1−p))tυqc (t) + gc(t) = 0, (2.6)

where
gc(t) = e−(p+c(p−1))tf(e−t), (2.7)

ωc(t) = |hc|p−2hc(t), (2.8)

hc(t) = υ′c(t) + cυc(t) (2.9)

and
Γc = N − p− c(p− 1). (2.10)

Note that
hc(t) = −rc+1u′(r). (2.11)

Hence, the study of monotonicity of u depends of the sign of hc(t) which is
that of ωc(t). On the other hand, it’s easy to see that

(rcu)′ = rc−1Ec(r), (2.12)

where
Ec(r) = cu(r) + ru′(r). (2.13)

Moreover, we have
υ′c(t) = −rcEc(r). (2.14)
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Hence, the monotonicity of rcu or υc can be obtained by the sign of Ec. In
fact, observe that for any r > 0 such that u′(r) 6= 0 we have

(p−1)
∣∣u′∣∣p−2 (r)E′c(r) = (p−1)

(
c−N−p

p−1

) ∣∣u′∣∣p−2 u′(r)−ruq(r)−rf(r). (2.15)

Consequently, if Ec(r0) = 0 for some r0 > 0, equation (2.1) gives

(p−1) rp−10

∣∣u′∣∣p−2 (r0)E
′
c(r0) = −(p−1)

(
c−N−p

p−1

)
|c|p−2c up−1(r0)

−rp0u
q(r0)− rp0f(r0), (2.16)

from which we can study the sign of Ec(r) .

The following results give some properties of singular solutions of equation
(2.1).

Proposition 2.9. Assume that N > p and q > N(p−1)
N−p . Let u be a singular

solution of equation (2.1). Then,

(i) E(N−p)/(p−1)(r) > 0 for small r.

(ii) if lim inf
r→0

rpq/(q+1−p)f(r) > L, then we have Ep/(q+1−p)(r) 6= 0 for

small r where L is given by (1.6).

Proof. (i) According to (2.15), we have E′(N−p)/(p−1)(r) < 0 for small r (be-

cause f > 0 and u′ < 0, near the origin). Therefore, E(N−p)/(p−1)(r) 6= 0

for small r. Since lim
r→0

r(N−p)/(p−1)u(r) = 0 by Proposition 2.7, necessarily

E(N−p)/(p−1)(r) > 0 for small r.

(ii) Suppose that there exists a small r such that Ep/(q+1−p)(r) = 0. Taking

c = p
q+1−p in (2.16) and multiplying by rpq/(q+1−p)−1, we obtain

(p− 1) rpq/(q+1−p)−1 ∣∣u′∣∣p−2 (r)E′p/(q+1−p)(r)

= Λq+1−p rp(p−1)/(q+1−p)up−1(r)− rpq/(q+1−p)uq(r)− rpq/(q+1−p)f(r), (2.17)

where Λ is given by (1.7). Using the change of variable (2.5), the last equation
is equivalent to

(p−1) rpq/(q+1−p)−1 ∣∣u′∣∣p−2 (r)E′p/(q+1−p)(r) = φ(υp/(q+1−p)(t))−gp/(q+1−p)(t),

(2.18)
where

φ(s) = Λq+1−psp−1 − sq, s ≥ 0. (2.19)

A simple calculation gives

max
s≥0

φ(s) = φ

((
p− 1

q

)1/(q+1−p)
Λ

)
= L, (2.20)
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where L is given by (1.6). But lim inf
r→0

rpq/(q+1−p)f(r) > L, there exists ε > 0

such that gp/(q+1−p)(t) ≥ L + ε for large t. Hence, E′p/(q+1−p)(r) < 0 and so

Ep/(q+1−p)(r) 6= 0 for small r. The proof is complete. �

Proposition 2.10. Assume that N > p and q > N(p−1)
N−p . Let u be a sin-

gular solution of equation (2.1) satisfying lim
r→0

rp/(q+1−p)u(r) = 0. Suppose

that rσ(p−1)+pf(r) is bounded for small r and lim
r→0

rσu(r) = +∞ for some

0 < σ < p
q+1−p . Then Ep/(q+1−p)(r) > 0 and Eσ(r) < 0, for small r.

Proof. The idea is to show that Ep/(q+1−p)(r) 6= 0 and Eσ(r) 6= 0, for small r.

Thereafter, taking into account (2.12) and the fact that lim
r→0

rp/(q+1−p)u(r) = 0

and lim
r→0

rσu(r) = +∞, we deduce easily that Ep/(q+1−p)(r) > 0 and Eσ(r) < 0

for small r. The proof will be done in two steps.

Step 1. Ep/(q+1−p)(r) 6= 0 for small r.
Suppose that there exists a small r such that Ep/(q+1−p)(r) = 0. Taking

c = p
q+1−p in (2.16) and multiplying by rσ(p−1), we obtain

(p− 1) r(σ+1)(p−1) ∣∣u′∣∣p−2E′p/(q+1−p)(r)

= rσ(p−1)up−1
[
Λq+1−p − rpuq+1−p − rp+σ(p−1)f(r) (rσu(r))1−p

]
. (2.21)

Since lim
r→0

rp/(q+1−p)u(r) = 0, rσ(p−1)+pf(r) is bounded for small r and

lim
r→0

rσu(r) = +∞, we have E′p/(q+1−p)(r) > 0. Hence, Ep/(q+1−p)(r) 6= 0 for

small r.

Step 2. Eσ(r) 6= 0 for small r.
In the same way as the Step 1, assume that there exists a small r such that

Eσ(r) = 0. Using (2.16), we have

(p− 1) r(σ+1)(p−1) ∣∣u′∣∣p−2 (r)E′σ(r)

= rσ(p−1)up−1(r)

[
Γσσ

p−1−rpuq+1−p(r)−rp+σ(p−1)f(r) (rσu(r))1−p
]
, (2.22)

where Γσ is given by (2.10). Taking into account our hypothesis and the fact

that Γσ > 0 (because 0 < σ < p
q+1−p <

N−p
p−1 ), we deduce that E′σ(r) > 0.

Hence, Eσ(r) 6= 0 for small r. This completes the proof. �
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3. Asymptotic behavior near the origin

In this section, we study the asymptotic behavior near the origin of solutions
of equation (2.1) under given conditions on function f . The study requires
some ideas of papers [2] and [3].

Lemma 3.1. Assume that N > p and q > N(p−1)
N−p . Let u be a singular solution

of equation (2.1). Then the function rp/(q+1−p)+1u′(r) is bounded near the
origin.

Proof. According to Proposition 2.1, Remark 2.5 and Proposition 2.9, we have
u is strictly decreasing, rp/(q+1−p)u(r) is bounded and E(N−p)/(p−1) > 0, for

small r. Therefore, using (2.13), it’s easy to see that rp/(q+1−p)+1u′(r) is
bounded near the origin. �

Lemma 3.2. Assume that N > p and q > N(p−1)
N−p . Let u be a singular solution

of equation (2.1). If the functions rp/(q+1−p)u(r) and rpq/(q+1−p)f(r) converge

when r tends to 0, then the function rp/(q+1−p)+1u′(r) converges also when r
tends to 0.

Proof. We use the change (2.5) with c = p
q+1−p . Then the function hp/(q+1−p)(t)

is strictly positive and bounded for large t. We show that hp/(q+1−p)(t) is
monotone for large t. In fact, suppose by contradiction that there exist two
sequences {si} and {ki} going to +∞ as i → +∞ such that {si} and {ki}
are local minimum and local maximum of hp/(q+1−p), respectively, satisfying
si < ki < si+1 and

0 ≤ lim inf
t→+∞

hp/(q+1−p)(t) < lim sup
t→+∞

hp/(q+1−p)(t) < +∞. (3.1)

That is

0 ≤ lim
i→+∞

hp/(q+1−p)(si) < lim
i→+∞

hp/(q+1−p)(ki) < +∞, (3.2)

which in turn implies that

0 ≤ lim
i→+∞

ωp/(q+1−p)(si) < lim
i→+∞

ωp/(q+1−p)(ki) < +∞. (3.3)

On the other hand, equation (2.6) gives

ω′p/(q+1−p)(t)−
(
N− pq

q + 1− p

)
ωp/(q+1−p)(t)+υqp/(q+1−p)(t)+gp/(q+1−p)(t)

= 0. (3.4)
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Since ω′p/(q+1−p)(si) = ω′p/(q+1−p)(ki) = 0, equation (3.4) gives

−
(
N − pq

q + 1− p

)
ωp/(q+1−p)(si) + υqp/(q+1−p)(si) + gp/(q+1−p)(si)

= −
(
N − pq

q + 1− p

)
ωp/(q+1−p)(ki) + υqp/(q+1−p)(ki) + gp/(q+1−p)(ki)

= 0.

But υp/(q+1−p) and gp/(q+1−p) converge when t tends to +∞ and N > pq
q+1−p ,

hence we have

lim
i→+∞

ωp/(q+1−p)(si) = lim
i→+∞

ωp/(q+1−p)(ki),

which contradicts (3.3). Consequently, hp/(q+1−p) converges when t tends to

+∞, that is, rp/(q+1−p)+1u′(r) converges when r tends to 0. �

For any l ≥ 0, assume in the following that z1 and z2 are two roots of the
equation

zq − Λq+1−pzp−1 + l = l − φ(z) = 0, (3.5)

where φ is given by (2.19).
If l > 0, it’s easy to see that 0 < z1 ≤ z2. In particular, if l = L, then

z1 = z2 =
(
p−1
q

)1/(q+1−p)
Λ, where L and Λ are given respectively by (1.6)

and (1.7).
If l = 0, then z1 = 0 and z2 = Λ.

Lemma 3.3. Assume that N > p, q > N(p−1)
N−p and lim

r→0
rpq/(q+1−p)f(r) = l ≥

0. Let u be a singular solution of equation (2.1) such that

lim
r→0

rp/(q+1−p)u(r) = d.

Then d is a root of equation (3.5). In particular, if l = L, then d =(
p−1
q

)1/(q+1−p)
Λ.

Proof. By hypothesis, we know that υp/(q+1−p)(t) converges when t → +∞,
therefore according to Lemma 3.2, hp/(q+1−p) converges also, which in turn
implies by relation (2.9) that υ′p/(q+1−p)(t) converges necessarily to 0 when

t→ +∞, hence lim
t→+∞

hp/(q+1−p)(t) =
p

q + 1− p
d and by (2.8),

lim
t→+∞

ωp/(q+1−p)(t) =

(
p

q + 1− p

)p−1
dp−1.
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Since lim
t→+∞

gp/(q+1−p)(t) = l, by equation (3.4), ω′p/(q+1−p)(t) converge neces-

sarily to 0. By letting t → +∞ in equation (3.4), we obtain l − φ(d) = 0.

Finally, it’s easy to see that if l = L, then d =
(
p−1
q

)1/(q+1−p)
Λ. �

Theorem 3.4. Assume that N > p and q > N(p−1)
N−p . Let u be a singular

solution of equation (2.1). If lim
r→0

rpq/(q+1−p)f(r) = L, then we have

lim inf
r→0

rp/(q+1−p)u(r) =

(
p− 1

q

)1/(q+1−p)
Λ.

Proof. First of all, if υp/(q+1−p) converges, the theorem is a direct result of
Lemma 3.3. Since υp/(q+1−p) is bounded, it remains to handle the case where it
oscillates. Suppose that there exists a sequence {ηi} going to +∞ as i→ +∞
such that υp/(q+1−p) has a local minimum in ηi. Hence, υ′p/(q+1−p)(ηi) = 0

and υ′′p/(q+1−p)(ηi) ≥ 0 (note that υ′′p/(q+1−p) exists because u′ < 0 near 0).

Therefore, using (2.9), we obtain

hp/(q+1−p)(ηi) =
p

q + 1− p
υp/(q+1−p)(ηi)

and
h′p/(q+1−p)(ηi) = υ′′p/(q+1−p)(ηi) ≥ 0.

This implies that

ωp/(q+1−p)(ηi) =

(
p

q + 1− p

)p−1
υp−1p/(q+1−p)(ηi)

and

ω′p/(q+1−p)(ηi) = (p− 1)
∣∣hp/(q+1−p)(ηi)

∣∣p−2 h′p/(q+1−p)(ηi) ≥ 0.

Taking t = ηi in equation (3.4) and using (2.19), we obtain

0 ≤ ω′p/(q+1−p)(ηi)

= Λq+1−pυp−1p/(q+1−p)(ηi)− υ
q
p/(q+1−p)(ηi)− gp/(q+1−p)(ηi)

= φ
(
υp/(q+1−p)(ηi)

)
− gp/(q+1−p)(ηi)

≤ L− gp/(q+1−p)(ηi).

Since lim
i→+∞

gp/(q+1−p)(ηi) = L, lim
i→+∞

φ
(
υp/(q+1−p)(ηi)

)
= L. Consequently,

according to (2.20),

lim
i→+∞

υp/(q+1−p)(ηi) = lim inf
t→+∞

υp/(q+1−p)(t) =

(
p− 1

q

)1/(q+1−p)
Λ.

The proof is complete. �
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It is obvious that the previous theorem gives only an information of
lim inf
r→0

rp/(q+1−p)u(r). Next, we examine the convergence of rp/(q+1−p)u(r) at

0. For this reason, assume that f is differentiable and satisfies the following
conditions:

(H1)

∫ 1

0

(
rpq/(q+1−p)f

)+
r
dr <∞,

(H2)

∫ 1

0

(
rpq/(q+1−p)f

)−
r
dr <∞.

In addition to the above assumptions, the study of asymptotic behavior of
u near the origin will depend on the convergence of rpq/(q+1−p)f(r) near 0 and

the comparison of q with N(p−1)
N−p and N(p−1)+p

N−p .

Lemma 3.5. Assume that N > p and q > N(p−1)
N−p . Let u be a singular solution

of equation (2.1). Suppose that lim
r→0

rpq/(q+1−p)f(r) = l > 0. Then we have

lim inf
r→0

rp/(q+1−p)u(r) > 0

and

lim sup
r→0

rp/(q+1−p)+1u′(r) < 0.

Proof. The proof will be done in two steps.

Step 1. lim inf
r→0

rp/(q+1−p)u(r) > 0.

Assume by contradiction that lim inf
r→0

rp/(q+1−p)u(r) = 0. This means that

lim inf
t→+∞

υp/(q+1−p)(t) = 0. Since υp/(q+1−p)(t) is bounded for large t, we distin-

guish two cases.
Case 1. Let υp/(q+1−p)(t) be monotone for large t. Then υp/(q+1−p)(t)

converges to 0 when t → +∞. On the other hand, using the fact that u is
strictly decreasing and E(N−p)/(p−1)(r) > 0 for small r (by Proposition 2.9),
we obtain for large t

0 < hp/(q+1−p)(t) <
N − p
p− 1

υp/(q+1−p)(t). (3.6)

Then lim
t→+∞

hp/(q+1−p)(t) = 0. Hence, by equation (3.4), lim
t→+∞

ω′p/(q+1−p)(t) =

−l < 0. But this contradicts the fact that lim
t→+∞

ωp/(q+1−p)(t) = 0.

Case 2. Let υp/(q+1−p)(t) oscillate for large t. Then there exists a se-
quence {ηi} going to +∞ as i → +∞ such that υp/(q+1−p) has a local min-
imum in ηi. Hence, υ′p/(q+1−p)(ηi) = 0 and υ′′p/(q+1−p)(ηi) ≥ 0. Therefore,
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lim
i→+∞

ωp/(q+1−p)(ηi) = 0 and ω′p/(q+1−p)(ηi) ≥ 0. But according to equation

(3.4), we have lim
i→+∞

ω′p/(q+1−p)(ηi) = −l < 0. This is a contradiction.

It follows from both cases that lim inf
r→0

rp/(q+1−p)u(r) > 0.

Step 2. lim sup
r→0

rp/(q+1−p)+1u′(r) < 0.

Since u′ < 0 near 0, assume by contradiction that lim sup
r→0

rp/(q+1−p)+1u′(r) =

0. This means that lim inf
t→+∞

hp/(q+1−p)(t) = 0. In the same way as the Step 1,

since hp/(q+1−p)(t) is bounded for large t (by Lemma 3.1), we distinguish two
cases.

Case 1. Let hp/(q+1−p)(t) be monotone for large t. Then hp/(q+1−p)(t)

converges to 0 when t → +∞. That is, lim
r→0

rp/(q+1−p)+1u′(r) = 0. This

implies using Hpital’s rule that lim
r→0

rp/(q+1−p)u(r) = 0. Which contradicts the

fact that lim inf
r→0

rp/(q+1−p)u(r) > 0.

Case 2. Let hp/(q+1−p)(t) oscillate for large t. Then there exists a sequence
{si} going to +∞ as i → +∞ such that hp/(q+1−p) has a local minimum in
si. Hence, lim

i→+∞
ωp/(q+1−p)(si) = 0 and ω′p/(q+1−p)(si) = 0. But according to

equation (3.4), we have lim
i→+∞

υqp/(q+1−p)(si) = −l < 0. This contradicts the

fact that υp/(q+1−p) is positive. The proof of lemma is complete. �

We need also this classic result of [11] of which we recall the demonstration.

Lemma 3.6. Let W be a positive differentiable function satisfying

(i)

∫ +∞

t0

W (t) dt < +∞ for large t0,

(ii) W ′(t) is bounded for large t.

Then lim
t→+∞

W (t) = 0.

Proof. We claim that W (t) → 0 as t → +∞. Suppose this is not the case.
Then given ε > 0, there exists a sequence {tj} going to +∞ as j → +∞
satisfying W (tj) ≥ 2ε. Since W ′(t) is bounded for large t, there exists a
constant K > 0 such that |W ′(t)| ≤ K for large t. By the mean value theorem

for W, we have W (t) ≥ ε for |t− tj | <
ε

K
. Choose a subsequence t′j such that

t′0 > t0 and t′j > t′j−1 +
2ε

K
t′0 for j > 1. Therefore, we get

m∑
j=1

∫ t′j

t′j−1

W (t) dt >

m∑
j=1

∫ t′j−1+ε/K

t′j−1

W (t) dt >
ε2

K
m→ +∞ as m→ +∞.
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This implies that ∫ +∞

t0

W (t) dt = +∞.

This contradiction completes the proof. �

The following theorem deals with the case lim
r→0

rpq/(q+1−p)f(r) = l > 0 and

q 6= N(p−1)+p
N−p .

Theorem 3.7. Assume that N > p. Let u be a singular solution of equation
(2.1). Suppose that lim

r→0
rpq/(q+1−p)f(r) = l > 0 and f satisfies

(H1) if q > N(p−1)+p
N−p

or

(H2) if N(p−1)
N−p < q < N(p−1)+p

N−p .

Then l ≤ L and rp/(q+1−p)u(r) converges when r → 0 to one of the roots z1
or z2 of equation (3.5) such that 0 < z1 ≤ z2.

Proof. Define the following energy function associated with equation (3.4),

F (t) =
p− 1

p

∣∣hp/(q+1−p)(t)
∣∣p − p

q + 1− p
ωp/(q+1−p)(t)υp/(q+1−p)(t)

−A
p

(
p

q + 1− p

)p−1
υpp/(q+1−p)(t)

+
1

q + 1
υq+1
p/(q+1−p)(t) + lυp/(q+1−p)(t),

(3.7)

where

A =
q(N − p)− (N(p− 1) + p)

q + 1− p
. (3.8)

Note that according to our hypothesis, we haveA 6= 0. Moreover, by Lemma 3.1,
hp/(q+1−p)(t) is bounded for large t, which in turn implies that ωp/(q+1−p)(t)
is bounded for large t. Therefore, F (t) is bounded for large t.

For the rest of the proof we proceed in three steps.

Step 1. The function F (t) converges when t→ +∞.
A straightforward calculation gives

F ′(t) = AX(t)− (gp/(q+1−p)(t)− l)υ′p/(q+1−p)(t), (3.9)

where
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X(t) =

[ ∣∣hp/(q+1−p)(t)
∣∣p−1 − ( p

q + 1− p

)p−1
υp−1p/(q+1−p)(t)

]
×
[ ∣∣hp/(q+1−p)(t)

∣∣− p

q + 1− p
υp/(q+1−p)(t)

]
. (3.10)

Integrating (3.9) on (T, t) for large T , we obtain

F (t) = C(T ) +AR(t)− (gp/(q+1−p)(t)− l)υp/(q+1−p)

+

∫ t

T
g′p/(q+1−p)(s)υp/(q+1−p) ds, (3.11)

where

R(t) =

∫ t

T
X(s) ds. (3.12)

Since the function s → sp−1 is monotone, X(t) ≥ 0. Therefore, the function
R(t) is positive and increasing. Moreover, by (3.11) and the fact that A 6= 0,
R(t) can be written as follows

R(t) =
F (t)

A
+

1

A
(gp/(q+1−p)(t)− l)υp/(q+1−p)

− 1

A

∫ t

T
g′p/(q+1−p)υp/(q+1−p)ds−

C(T )

A
. (3.13)

Since υp/(q+1−p)(t) and F (t) are bounded for large t, lim
t→+∞

gp/(q+1−p)(t) = l

and −
(
g′p/(q+1−p)(s)

)−
≤ g′p/(q+1−p)(s) ≤

(
g′p/(q+1−p)(s)

)+
, according to the

sign of A and the fact that

∫ +∞

T

(
g′p/(q+1−p)(s)

)−
ds < +∞ from (H1) or∫ +∞

T

(
g′p/(q+1−p)(s)

)+
ds < +∞ from (H2), we get R(t) is bounded for large

t. Hence, R(t) converges when t→ +∞, that is

∫ +∞

T
X(s) ds exists. Letting

t → +∞ in (3.13), we deduce that F (t) converges when t → +∞. Let F =
lim

t→+∞
F (t).

Step 2. lim
t→+∞

υ′p/(q+1−p)(t) = 0.

According to (3.10) and (2.9), and the fact that hp/(q+1−p)(t) is strictly
positive for large t, it suffices to claim that lim

t→+∞
X(t) = 0. For this, since∫ +∞

T
X(s) ds < +∞, by Lemma 3.6, it remains to show that X ′(t) is bounded
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for large t. Rewrite X(t) as follows

X(t) = ω
p/(p−1)
p/(q+1−p)(t)−

p

q + 1− p
ωp/(q+1−p)(t)υp/(q+1−p)(t)

−
(

p

q + 1− p

)p−1
υp−1p/(q+1−p)(t)υ

′
p/(q+1−p)(t).

(3.14)

Hence

X ′(t) =
p

p− 1
hp/(q+1−p)(t)ω

′
p/(q+1−p)(t)

− p

q + 1− p
ωp/(q+1−p)(t)υ

′
p/(q+1−p)(t)

− p

q + 1− p
υp/(q+1−p)(t)ω

′
p/(q+1−p)(t)

− (p− 1)

(
p

q + 1− p

)p−1
υp−2p/(q+1−p)(t)υ

′2
p/(q+1−p)(t)

−
(

p

q + 1− p

)p−1
υp−1p/(q+1−p)(t)υ

′′
p/(q+1−p)(t). (3.15)

Since υp/(q+1−p)(t), hp/(q+1−p)(t) and gp/(q+1−p)(t) are bounded for large t,
according to (2.9) and (3.4), υ′p/(q+1−p)(t) and ω′p/(q+1−p)(t) are bounded for

large t. Therefore, the first four terms of the second member of (3.15) are
bounded for large t. It remains to prove that υ′′p/(q+1−p)(t) is bounded for

large t. According to (2.9), we have

υ′′p/(q+1−p)(t) = h′p/(q+1−p)(t)−
p

q + 1− p
υ′p/(q+1−p)(t). (3.16)

Therefore, it suffices to prove that h′p/(q+1−p)(t) is bounded for large t.

Since hp/(q+1−p)(t) > 0 for large t, we have by (2.8)

h′p/(q+1−p)(t) =
1

p− 1

(
hp/(q+1−p)(t)

)2−p
ω′p/(q+1−p)(t). (3.17)

Since lim
t→+∞

gp/(q+1−p)(t) = l > 0, by Lemma 3.5, lim inf
t→+∞

hp/(q+1−p)(t) > 0.

Therefore, there exists a constant K > 0 such that hp/(q+1−p)(t) ≥ K for large

t. Hence,
(
hp/(q+1−p)(t)

)2−p
is bounded for large t. Consequently, h′p/(q+1−p)(t)

is bounded for large t and according to (3.16) and (3.15), X ′(t) is bounded for
large t. Hence, using Lemma 3.6, we get lim

t→+∞
X(t) = 0.

Step 3. υp/(q+1−p)(t) converges when t→ +∞.
Assume by contradiction that υp/(q+1−p)(t) oscillates for large t. Then there

exist two sequences {ηi} and {ξi} going to +∞ as i → +∞ such that {ηi}
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and {ξi} are local minimum and local maximum of υp/(q+1−p), respectively,
satisfying ηi < ξi < ηi+1 and

0 ≤ lim inf
t→+∞

υp/(q+1−p)(t) = lim
i→+∞

υp/(q+1−p)(ηi) = α

< lim sup
t→+∞

υp/(q+1−p)(t) = lim
i→+∞

υp/(q+1−p)(ξi) = β < +∞. (3.18)

Let

ψ(s) = −Λq+1−p

p
sp +

sq+1

q + 1
+ ls = ls−

∫ s

0
φ(r) dr, s ≥ 0, (3.19)

where φ is given by (2.19). Since υ′p/(q+1−p)(ηi) = υ′p/(q+1−p)(ξi) = 0, using

(3.7), (3.18), (2.8) and (2.9), we obtain

lim
i→+∞

F (ηi) = ψ(α) and lim
i→+∞

F (ξi) = ψ(β). (3.20)

Since lim
t→+∞

F (t) = F (by Step 1), then

ψ(α) = ψ(β) = F. (3.21)

Therefore, there exist γ ∈ (α, β) and ti ∈ (ηi, ξi) such that υp/(q+1−p)(ti) =
γ, ψ′(γ) = 0 and ψ(γ) 6= F .

On the other hand, according to the Step 2, lim
i→+∞

υ′p/(q+1−p)(ti) = 0, which

in turn implies by (2.9) that lim
i→+∞

hp/(q+1−p)(ti)=
p

q+1−p γ. Hence,

lim
i→+∞

F (ti) = ψ(γ) = F.

This is a contradiction. Therefore, υp/(q+1−p)(t) converges when t → +∞.
Moreover, by Lemma 3.5 and Lemma 3.3, lim

t→+∞
υp/(q+1−p)(t) = d > 0 and

l = φ(d), hence d = z1 or z2 where z1 and z2 are two roots of equation (3.5)
such that 0 < z1 ≤ z2. Finally, by (2.20), it is clear that l ≤ L. The proof is
complete. �

Now, if lim
r→0

rpq/(q+1−p)f(r) = l ≥ 0 and q = N(p−1)+p
N−p , we have this result.

Theorem 3.8. Assume that N > p and q =
N(p− 1) + p

N − p
. Let u be a

singular solution of equation (2.1). Suppose that lim
r→0

rpq/(q+1−p)f(r) = l ≥ 0

and f satisfies (H1) or (H2). Then u satisfies one of the following cases:

(i) lim
r→0

rp/(q+1−p)u(r) = z1 or z2.
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(ii) rp/(q+1−p)u oscillates and

z1 ≤ α = lim inf
r→0

rp/(q+1−p)u(r) < z2

< β = lim sup
r→0

rp/(q+1−p)u(r) ≤ Z, (3.22)

where Z 6= z1 is the root of the equation

ψ(Z) = ψ(z1). (3.23)

Moreover, α and β satisfy the following estimates

l =
1

p

(
N − p
p

)p βp − αp
β − α

− N − p
Np

βNp/(N−p) − αNp/(N−p)

β − α
(3.24)

and

pp

N(N−p)p−1
≤ βp − αp

βNp/(N−p)−αNp/(N−p)
≤ 1

p−1

(
p

N−p

)p N(p−1)+p

N
.

(3.25)
In both cases, we have l ≤ L.

Remark 3.9. Since Z satisfies (3.23), φ(z1) = l and q = N(p−1)+p
N−p , it is easy

to see that

ψ(Z) =
p− 1

p

(
N − p
p

)p
zp1 −

N(p− 1) + p

Np
z
Np/(N−p)
1 . (3.26)

Proof. We take the same notation as in the proof of Theorem 3.7 with A = 0,
where A is given by (3.8).

Since υp/(q+1−p)(t) is bounded for large t, lim
t→+∞

gp/(q+1−p)(t) = l, using the

fact that

g′p/(q+1−p)(s) ≥ −
(
g′p/(q+1−p)(s)

)−
and ∫ +∞

T

(
g′p/(q+1−p)(s)

)−
ds < +∞,

from (H1) or

g′p/(q+1−p)(s) ≤
(
g′p/(q+1−p)(s)

)+
and ∫ +∞

T

(
g′p/(q+1−p)(s)

)+
ds < +∞,

from (H2), we get respectively according to (3.11) that −F (t) converges or
F (t) converges, when t→ +∞. Let F = lim

t→+∞
F (t).

Since υp/(q+1−p)(t) is bounded for large t, we have two possibilities, either
υp/(q+1−p)(t) converges when t→ +∞, therefore according to Lemma 3.3,
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lim
t→+∞

υp/(q+1−p)(t) = z1 or z2 where z1 and z2 are two roots of equation

(3.5) such that 0 ≤ z1 ≤ z2 and therefore by (2.20), we have l ≤ L. Ei-
ther υp/(q+1−p)(t) oscillates, therefore h′p/(q+1−p)(ηi) = υ′′p/(q+1−p)(ηi) ≥ 0 and

h′p/(q+1−p)(ζi) = υ′′p/(q+1−p)(ζi) ≤ 0 where {ηi} and {ζi} are respectively local

minimum and local maximum of υp/(q+1−p). Therefore, by equation (3.4), we
have

0 ≤ ω′p/(q+1−p)(ηi) = φ
(
υp/(q+1−p)(ηi)

)
− gp/(q+1−p)(ηi) (3.27)

and

0 ≥ ω′p/(q+1−p)(ζi) = φ
(
υp/(q+1−p)(ζi)

)
− gp/(q+1−p)(ζi). (3.28)

On the other hand, according to Theorem 3.7,

lim
t→+∞

F (t) = F = ψ(α) = ψ(β),

which gives using expression of ψ and the fact that q = N(p−1)+p
N−p and α < β,

l =
Λq+1−p

p

βp − αp

β − α
− 1

q + 1

βq+1 − αq+1

β − α

=
1

p

(
N − p
p

)p βp − αp
β − α

− N − p
Np

βNp/(N−p) − αNp/(N−p)

β − α
.

This proves (3.24).
A simple study of the function ψ gives

ψ′(z1) = ψ′(z2) = 0,
ψ′(s) > 0 for 0 < s < z1 (if l > 0),
ψ′(s) < 0 for z1 < s < z2,
ψ′(s) > 0 for s > z2,

lim
s→+∞

ψ(s) = +∞.

(3.29)

Hence, there exists Z > z2 such that ψ(Z) = ψ(z1).
Now to prove estimate (3.22), we let i → +∞ in (3.27) and (3.28) and we

obtain

φ(β) ≤ l ≤ φ(α), (3.30)

that is, by (3.19)

ψ′(α) ≤ 0 ≤ ψ′(β). (3.31)

Combining this with (3.29) and the fact that ψ(α) = ψ(β), we deduce z1 ≤ α <
z2 < β. Moreover, we have β ≤ Z, otherwise ψ(β) > ψ(Z) = ψ(z1) ≥ ψ(α),
which contradicts ψ(α) = ψ(β). Consequently estimate (3.22) is satisfied.
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Concerning (3.25), we use the fact that l ≥ 0 and (3.24) to obtain the left
inequality. To prove the right inequality of (3.25), we begin with the case
l > 0. Then β > α > 0. Therefore, according to (3.30), we have

βφ(β) ≤ lβ = ψ(β) +
Λq+1−p

p
βp − βq+1

q + 1

and

αφ(α) ≥ lα = ψ(α) +
Λq+1−p

p
αp − αq+1

q + 1
,

which in turn implies that

βφ(β)− Λq+1−p

p
βp +

βq+1

q + 1
≤ ψ(β) = ψ(α) ≤ αφ(α)− Λq+1−p

p
αp +

αq+1

q + 1
.

Using expression of φ, we get

p− 1

p
Λq+1−pβp − q

q + 1
βq+1 ≤ p− 1

p
Λq+1−pαp − q

q + 1
αq+1.

Using q = N(p−1)+p
N−p , we obtain the right inequality of (3.25).

If l = 0, it is easy to see that

z1 = 0, z2 = Λ, Z =

(
N(N − p)p−1

pp

)(N−p)/p2

,

and

βp − αp

βNp/(N−p) − αNp/(N−p)
=

pp

N(N − p)p−1
≤ 1

p− 1

(
p

N − p

)p N(p− 1) + p

N
.

Finally (3.30) and (2.20) give l ≤ L. This completes the proof. �

Now we study the case lim
r→0

rpq/(q+1−p)f(r) = 0 and q 6= N(p−1)+p
N−p . For this,

we introduce the following condition:

(H3) rpq/(q+1−p)+1f ′(r) is bounded for small r and∫ 1

0
rpq/(q+1−p)−1f(r)dr <∞.

Theorem 3.10. Assume that N > p. Let u be a singular solution of equation
(2.1). Suppose that lim

r→0
rpq/(q+1−p)f(r) = 0 and f satisfies one of the following

conditions:

(i) (H1) and (H3), if q >
N(p− 1) + p

N − p
.

(ii) (H2) and (H3), if
N(p− 1)

N − p
< q <

N(p− 1) + p

N − p
.
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Then lim
r→0

rp/(q+1−p)u(r) = 0 or lim
r→0

rp/(q+1−p)u(r) = Λ.

Proof. According to Lemma 3.3, if υp/(q+1−p) converges, lim
t→+∞

υp/(q+1−p)(t) =

0 or Λ. Therefore, it suffices to show in the two cases that υp/(q+1−p) converges.
Note that the energy function F (t) given by (3.7) does not allow as to

prove that lim
t→+∞

υ′p/(q+1−p)(t) = 0. For this reason, we introduce another

energy function E defined as follows:

E(t) =
p− 1

p

∣∣hp/(q+1−p)(t)
∣∣p − Γωp/(q+1−p)(t)υp/(q+1−p)(t)

+
q

q + 1
AΓ1/q

∣∣ωp/(q+1−p)(t)
∣∣(q+1)/q

+
1

q + 1
υq+1
p/(q+1−p)(t),

(3.32)

where A is given by (3.8) and

Γ = Γp/(q+1−p) = N − pq

q + 1− p
. (3.33)

Therefore

E′(t) = AY (t)− gp/(q+1−p)(t)υ
′
p/(q+1−p)(t)

−Agp/(q+1−p)(t)
(

Γ1/q
∣∣ωp/(q+1−p)(t)

∣∣1/q − υp/(q+1−p)(t)
)
, (3.34)

where

Y (t) =
(
vp/(q+1−p)(t)− Γ1/q

∣∣ωp/(q+1−p)(t)
∣∣1/q)

×
(
υqp/(q+1−p)(t)− Γ

∣∣ωp/(q+1−p)(t)
∣∣) . (3.35)

Similarly to the energy function F , it is easy to see that E(t) is bounded
for large t. The rest of the proof is done in two steps.

Step 1. lim
t→+∞

ω′p/(q+1−p)(t) = 0.

In the same way as the proof of Theorem 3.7, we integrate (3.34) on (T, t)
for large T , we obtain

E(t) = C(T ) +AS(t)− gp/(q+1−p)(t)υp/(q+1−p)(t)

+

∫ t

T
g′p/(q+1−p)(s)υp/(q+1−p)(s) ds

−A
∫ t

T
gp/(q+1−p)(s)

(
Γ1/q

∣∣ωp/(q+1−p)(s)
∣∣1/q − υp/(q+1−p)(s)

)
ds,

(3.36)
where

S(t) =

∫ t

T
Y (s) ds. (3.37)

Since the function s→ sq is monotone, Y (t) ≥ 0. Therefore, the function S(t)
is positive and increasing. Using the fact that A 6= 0, we have
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S(t) =
E(t)

A
+

1

A
gp/(q+1−p)(t)υp/(q+1−p)(t)

− 1

A

∫ t

T
g′p/(q+1−p)(s)υp/(q+1−p)(s) ds

+

∫ t

T
gp/(q+1−p)(s)

(
Γ1/q

∣∣ωp/(q+1−p)(s)
∣∣1/q−υp/(q+1−p)(s)

)
ds

−C(T )

A
.

(3.38)
Since υp/(q+1−p)(t), ωp/(q+1−p)(t) and E(t) are bounded for large t, from (H3)

lim
t→+∞

gp/(q+1−p)(t) = 0,

∫ +∞

T
gp/(q+1−p)(s) ds < +∞

and

−
(
g′p/(q+1−p)(s)

)−
≤ g′p/(q+1−p)(s) ≤

(
g′p/(q+1−p)(s)

)+
,

then according to the sign of A and the fact that

∫ +∞

T

(
g′p/(q+1−p)(s)

)−
ds <

+∞ from (H1) or

∫ +∞

T

(
g′p/(q+1−p)(s)

)+
ds < +∞ from (H2), we get S(t)

is bounded for large t. Hence S(t) converges when t→ +∞. Letting t→ +∞
in (3.38), we get lim

t→+∞
E(t) exists and is finite.

Recall that for any 1 < % ≤ 2, there is a c% such that(
|a|%−2a− |b|%−2b

)
(a− b) ≥ c%(a− b)2 (|a|+ |b|)%−2 , (3.39)

for any a, b ∈ R such that |a|+ |b| > 0. In particular, we have(
υp/(q+1−p)(t)− Γ1/q

∣∣ωp/(q+1−p)(t)
∣∣1/q)

×
(
υqp/(q+1−p)(t)− Γ

∣∣ωp/(q+1−p)(t)
∣∣)

≥ cq

(
υqp/(q+1−p)(t)− Γ

∣∣ωp/(q+1−p)(t)
∣∣)2

×
(
υqp/(q+1−p)(t) + Γ

∣∣ωp/(q+1−p)(t)
∣∣)−(1−1/q) .

(3.40)

Since ωp/(q+1−p)(t) > 0 for large t, according to (3.4) and (3.35), we have for
large t

Y (t) ≥ cq

(
ω′p/(q+1−p)(t) + gp/(q+1−p)(t)

)2
×
(
υqp/(q+1−p)(t) + Γ

∣∣ωp/(q+1−p)(t)
∣∣)−(1−1/q) . (3.41)
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But υp/(q+1−p)(t) and ωp/(q+1−p)(t) are bounded for large t and 1 − 1

q
> 0,

there exists a constant C > 0 such that for large t,(
ω′p/(q+1−p)(t) + gp/(q+1−p)(t)

)2
≤ CY (t).

Which implies that∫ t

T

(
ω′p/(q+1−p)(s) + gp/(q+1−p)(s)

)2
ds ≤ CS(t).

Hence, we have∫ t

T
ω′2p/(q+1−p)(s) ds ≤ CS(t)− 2

∫ t

T
ω′p/(q+1−p)(s)gp/(q+1−p)(s) ds

−
∫ t

T
g2p/(q+1−p)(s) ds

≤ CS(t)− 2

∫ t

T
ω′p/(q+1−p)(s)gp/(q+1−p)(s) ds.

Since S(t) and ω′p/(q+1−p)(t) are bounded for large t and from (H3)∫ t

T
gp/(q+1−p)(s) ds < +∞,

∫ t

T
ω′2p/(q+1−p)(s) ds is also bounded. Moreover,∫ t

T
ω′2p/(q+1−p)(s) ds is increasing, hence necessarily we have∫ +∞

T
ω′2p/(q+1−p)(s) ds < +∞.

On the other hand, deriving equation (3.4), we obtain

ω′′p/(q+1−p)(t)−Γω′p/(q+1−p)(t)+qυq−1p/(q+1−p)(t)υ
′
p/(q+1−p)(t)+g′p/(q+1−p)(t) = 0.

(3.42)
Since ω′p/(q+1−p)(t), υp/(q+1−p)(t), υ

′
p/(q+1−p)(t) and g′p/(q+1−p)(t) are bounded

for large t, and (g′p/(q+1−p)(t) is bounded by (H3)), ω
′′
p/(q+1−p)(t) is bounded

for large t. Therefore, using Lemma 3.6, we have lim
t→+∞

ω′p/(q+1−p)(t) = 0.

Step 2. υp/(q+1−p)(t) converges when t→ +∞.
Letting t→ +∞ in equation (3.4) and taking account of lim

t→+∞
gp/(q+1−p)(t)

= 0, we obtain

lim
t→+∞

−Γωp/(q+1−p)(t) + υqp/(q+1−p)(t) = 0. (3.43)

Assume by contradiction that υp/(q+1−p)(t) oscillates for large t. Then, in-
equality (3.18) is satisfied. But, υ′p/(q+1−p)(ηi) = υ′p/(q+1−p)(ξi) = 0. Hence,

by (3.43), we have φ(α) = φ(β) = 0, where φ is given by (2.19). Since α < β,
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necessarily α = 0 and β = Λ (where Λ is given by (1.7)). But by (3.32), we
have lim

i→+∞
E(ηi) = 0 and

lim
i→+∞

E(ξi) =
−1

q + 1

(
p

q + 1− p

)p−1
Λp < 0,

which contradicts the fact that E(t) converges when t→ +∞. Consequently,
υp/(q+1−p)(t) converges when t→ +∞. The proof of theorem is complete. �

Next, we consider the case that lim
r→0

rp/(q+1−p)u(r) = 0. According to

Lemma 3.3, this can only take place in the case lim
r→0

rpq/(q+1−p)f(r) = 0.

Assume now that there exists 0 < k < pq
q+1−p such that rkf(r) is bounded

for small r. We begin with the case p ≤ k < pq
q+1−p .

Theorem 3.11. Assume that N > p and q > N(p−1)
N−p . Let u be a singular

solution of equation (2.1) such that lim
r→0

rp/(q+1−p)u(r) = 0. Suppose that there

exists a constant p ≤ k < pq
q+1−p such that rkf(r) is bounded for small r. Then

u has the following asymptotic behavior near 0

(i) r(k−p)/(p−1)u(r) is bounded, if p < k < pq
q+1−p .

(ii) u(r)
|ln r| is bounded, k = p.

Proof. (i) Let σ = k−p
p−1 . Using the change (2.5) (for c = σ), we claim that

υσ(t) is bounded for large t. For contradiction, we distinguish two cases.

Case 1. lim
t→+∞

υσ(t) = +∞.

Since 0 < σ <
p

q + 1− p
and rσ(p−1)+pf(r) is bounded for small r, according

to Proposition 2.10, we have Ep/(q+1−p)(r) > 0 and Eσ(r) < 0, for small r.
Hence using the fact that u′(r) < 0 for small r,

σ <
r|u′|
u

<
p

q + 1− p
. (3.44)

That is, using the change (2.5), we have for large t,

σp−1 < ωσ(t)υ1−pσ (t) <

(
p

q + 1− p

)p−1
. (3.45)

Multiplying equation (2.6) (for c = σ) by υ1−pσ (t), we obtain(
ωσ(t)υ1−pσ (t)

)′
+ (p− 1) |hσ(t)|p υ−pσ (t)− (N − p)ωσ(t)υ1−pσ (t) +Gσ(t) = 0,

(3.46)
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where

Gσ(t) = e(σ(q+1−p)−p)tυq+1−p
σ (t) + gσ(t)υ1−pσ (t) = 0. (3.47)

Since lim
t→+∞

e(σ(q+1−p)−p)tυq+1−p
σ (t) = 0 (because lim

r→0
rp/(q+1−p)u(r) = 0), gσ(t)

is bounded for large t and lim
t→+∞

υp−1σ (t) = +∞, we have lim
t→+∞

Gσ(t) = 0.

Let

ϕσ(t) = ωσ(t)υ1−pσ (t). (3.48)

Then estimation (3.45) implies that for large t

σp−1 < ϕσ(t) <

(
p

q + 1− p

)p−1
(3.49)

and moreover by (3.46), we have

−ϕ′σ(t) = (p− 1) |ϕσ(t)|p/(p−1) − (N − p)ϕσ(t) +Gσ(t). (3.50)

Let

µ(s) = sp/(p−1) − N − p
p− 1

s, s ≥ 0. (3.51)

Using the fact that ϕσ(t) > 0 for large t, we get for large t

−ϕ′σ(t) = (p− 1)µ (ϕσ(t)) +Gσ(t). (3.52)

A simple study of the function µ gives the existence of a constant K > 0

such that µ(s) < −K for σp−1 < s <
(

p
q+1−p

)p−1
<
(
N−p
p−1

)p−1
. Since

ϕσ(t) satisfies (3.49) for large t and lim
t→+∞

Gσ(t) = 0, by (3.52), there exists a

constant K1 > 0 such that for large t

ϕ′σ(t) > K1.

Integrating this last inequality on (T, t) for large T , we obtain lim
t→+∞

ϕσ(t) =

+∞, which contradicts the fact ϕσ(t) is bounded for large t by (3.49).

Case 2. Suppose that there exist two sequences {si} and {ti} going to +∞
as i→ +∞ such that {si} and {ti} are local minimum and local maximum of
υσ, respectively, satisfying si < ti < si+1 and lim

t→+∞
υσ(ti) = +∞.

Taking t = ti in equation (2.6), we obtain

ω′σ(ti) = Γσ ωσ(ti)− e−(p−σ(q+1−p))tiυqσ(ti)− gσ(ti) = 0. (3.53)

Since υ′σ(ti) = 0, by (2.9) and (2.8), we have

υp−1σ (ti)

ωσ(ti)
= σ1−p.
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Hence, equation (3.53) can be written as

ω′σ(ti) = ωσ(ti)

[
Γσ − σ1−pe−(p−σ(q+1−p))tiυq+1−p

σ (ti)−
gσ(ti)

ωσ(ti)

]
. (3.54)

According to our hypothesis, we have lim
i→+∞

ω′σ(ti)

ωσ(ti)
= Γσ, hence ω′σ(ti) > 0 for

large i. But h′σ(ti) = v′′σ(ti) ≤ 0, which implies that ω′σ(ti) ≤ 0. This is a
contradiction. Consequently, υσ(t) is bounded for large t.

(ii) According to Proposition 2.7, we have lim
r→0

r(N−1)/(p−1)u′(r) = 0. Hence,

integrating equation (2.1) on (0, r) for small r and using the fact that u′(r) < 0
near 0, we obtain

rN−1|u′|p−1 =

∫ r

0
sN−1uq(s) ds+

∫ r

0
sN−1f(s) ds. (3.55)

According to (i), if there exists 0 < % <
p

q + 1− p
such that rp+%(p−1)f(r) is

bounded for small r, then r%u(r) is bounded also for small r. In particular for

% =
k

q
, we have rp+k(p−1)/qf(r) is bounded for small r (because p+

k(p− 1)

q
>

k and rkf(r) is bounded for small r) and therefore rk/qu(r) is bounded for

small r. hence, by (3.55) and the fact that N >
pq

q + 1− p
> k, there exists a

constant C > 0 such that for small r, we have

|u′|p−1 ≤ Cr1−k. (3.56)

Since k = p, the last inequality becomes for small r,

|u′| ≤ Cr−1. (3.57)

Therefore, integrating (3.57) on (r, r0) for r0 < 1 and using the fact that u′ < 0
near 0, we obtain

u(r) ≤ C(r0) + C |ln r| .

Which implies that
u(r)

|ln r|
is bounded for small r. �

Lemma 3.12. Under hypotheses of Theorem 3.11 for p < k < pq
q+1−p , we have

lim inf
r→0

rkf(r) ≤ (N − k)

(
k − p
p− 1

)p−1
lim sup
r→0

rk−pup−1(r) (3.58)

and

lim sup
r→0

rkf(r) ≥ (N − k)

(
k − p
p− 1

)p−1
lim inf
r→0

rk−pup−1(r). (3.59)
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Proof. To show estimate (3.58), we assume by contradiction that

lim inf
r→0

rkf(r) > (N − k)

(
k − p
p− 1

)p−1
lim sup
r→0

rk−pup−1(r).

Hence, using the change (2.5) and taking c = σ =
k − p
p− 1

in (2.5), there exists

b1 > 0 such that for large t,

gσ(t) = e−ktf(e−t) ≥ (N − k)σp−1υp−1σ (t) + b1. (3.60)

We claim that υσ(t) is strictly monotone for large t. For this, using (2.14),
it suffices to show that Eσ(r) 6= 0 for small r. Suppose by contradiction that
there exists a small r such that Eσ(r) = 0. Then, according to (2.16), we have

(p− 1)rk−1|u′|p−2E′σ(r) = (N − k)σp−1υp−1σ (t) (3.61)

−e−((pq−k(q+1−p))/(p−1))tυqσ(t)− gσ(t).

Using (3.60), we get for small r,

(p− 1)rk−1|u′|p−2E′σ(r) < (N − k)σp−1υp−1σ (t)− gσ(t) ≤ −b1 < 0. (3.62)

Hence, Eσ(r) 6= 0 for small r. Consequently υσ(t) is strictly monotone for
large t.

Moreover, since υσ(t) is bounded for large t by Theorem 3.11, υσ(t) con-
verges when t→ +∞. Let lim

t→+∞
υσ(t) = d1 ≥ 0. We distinguish two cases.

Case 1. υ′σ(t) is monotone for large t.
Since υ′σ(t) 6= 0 and υσ(t) is bounded, for large t, necessarily lim

t→+∞
υ′σ(t) = 0,

which implies by (2.9) that lim
t→+∞

hσ(t) = σd1 and therefore lim
t→+∞

ωσ(t) =

σp−1dp−11 .
On the other hand, according to (2.6), we have

ω′σ(t) = (N − k)ωσ(t)− e−((pq−k(q+1−p))/(p−1))tυqσ(t)− gσ(t). (3.63)

Therefore, according to (3.60), we have for large t,

ω′σ(t) ≤ χ(t)− b1, (3.64)

where

χ(t) = (N − k)ωσ(t)− e−((pq−k(q+1−p))/(p−1))tυqσ(t)

−(N − k)σp−1υp−1σ (t). (3.65)

From k < pq
q+1−p , lim

t→+∞
υσ(t) = d1 and lim

t→+∞
ωσ(t) = σp−1dp−11 , we have

lim
t→+∞

χ(t) = 0. Ḣence, there exists a constant C > 0 such that ω′σ(t) ≤ −C
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for large t. Integrating this last inequality on (T, t) for large T , we obtain
lim

t→+∞
ωσ(t) = −∞. This is a contradiction.

Case 2. υ′σ(t) is not monotone for large t.
Since υ′σ(t) 6= 0 and υσ(t) is bounded, for large t, we have two possibilities,

lim inf
t→+∞

υ′σ(t) = 0 if υ′σ(t) > 0 for large t or lim sup
t→+∞

υ′σ(t) = 0 if υ′σ(t) < 0 for

large t. Therefore, there exists a sequence {γi} going to +∞ as i → +∞
such that {γi} is a local extrema of υ′σ satisfying lim

i→+∞
υ′σ(γi) = 0. Therefore,

lim
i→+∞

ωσ(γi) = σp−1dp−11 and lim
i→+∞

ω′σ(γi) = 0 (because υ′′σ(γi) = 0 and there-

fore lim
i→+∞

h′σ(γi) = 0). Taking t = γi in equation (3.63) and letting i→ +∞,

we obtain
lim

i→+∞
gσ(γi) = (N − k)σp−1dp−11 .

This is impossible according to (3.60) because b1 > 0. Consequently, estimate
(3.58) is satisfied.

Now, we show estimate (3.59). Suppose by contradiction that

lim sup
r→0

rkf(r) < (N − k)

(
k − p
p− 1

)p−1
lim inf
r→0

rk−pup−1(r).

Taking σ = k−p
p−1 , there exists b2 > 0 such that for large t

gσ(t) ≤ (N − k)σp−1υp−1σ (t)− b2. (3.66)

In the same way, we show that the last inequality implies that υσ(t) is
strictly monotone for large t. Suppose by contradiction that there exists a
small r such that Eσ(r) = 0. Then, according to (3.61) and (3.66), we have
for small r,

(p− 1)rk−1|u′|p−2E′σ(r) ≥ b2 − e−((pq−k(q+1−p))/(p−1))tυqσ(t). (3.67)

Since lim
t→+∞

e−((pq−k(q+1−p))/(p−1))tυqσ(t) = 0 because k < pq
q+1−p and υσ(t) is

bounded for large t by Theorem 3.11, for small r, we have

(p− 1)rk−1|u′|p−2E′σ(r) ≥ b

2
> 0.

Hence, Eσ(r) 6= 0 for small r and therefore υσ(t) is strictly monotone for large
t.

Now, it is enough to repeat the same reasoning as the first case using equa-
tion (3.63) and estimate (3.66) to obtain the contradiction. Consequently,
estimate (3.59) is satisfied. This completes the proof. �

Now, the following result proves that if f(r) ∼
0
l r−k for p ≤ k < pq

q+1−p ,

then the singular solution u has also an equivalent near 0.
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Theorem 3.13. Assume that N > p and q > N(p−1)
N−p . Let u be a singu-

lar solution of equation (2.1) such that lim
r→0

rp/(q+1−p)u(r) = 0. Suppose that

lim
r→0

rkf(r) = l > 0 for p ≤ k < pq
q+1−p . Then

(i) lim
r→0

r(k−p)/(p−1)u(r) =
p− 1

k − p

(
l

N − k

)1/(p−1)
, if p < k <

pq

q + 1− p
.

(ii) lim
r→0

u(r)

|ln r|
=

(
l

N − p

)1/(p−1)
, if k = p.

Proof. (i) Let σ = k−p
p−1 . We know by Theorem 3.11 that υσ(t) is bounded

for large t. Assume that υσ(t) oscillates for large t. Then there exist two
sequences {ηi} and {ξi} going to +∞ as i→ +∞ such that {ηi} and {ξi} are
local minimum and local maximum of υσ, respectively, satisfying ηi < ξi < ηi+1

and

0 ≤ lim inf
t→+∞

υσ(t) = lim
i→+∞

υσ(ηi) = α

< lim sup
t→+∞

υσ(t) = lim
i→+∞

υσ(ξi) = β < +∞. (3.68)

Since υ′σ(ηi) = υ′σ(ξi) = 0, υ′′σ(ηi) ≥ 0 and υ′′σ(ξi) ≤ 0, using (2.8) and (2.9),
we have

lim
i→+∞

ωσ(ηi) = σp−1αp−1,

lim
i→+∞

ωσ(ξi) = σp−1βp−1,

ω′σ(ηi) ≥ 0 and ω′σ(ξi) ≤ 0.

Therefore according to (3.63), we have

(N − k)ωσ(ηi)− e−((pq−k(q+1−p))/(p−1))ηiυqσ(ηi)− gσ(ηi) ≥ 0 (3.69)

and

(N − k)ωσ(ξi)− e−((pq−k(q+1−p))/(p−1))ξiυqσ(ξi)− gσ(ξi) ≤ 0. (3.70)

Letting i → +∞ in the two previous inequalities and using the fact that
lim

t→+∞
gσ(t) = l, we obtain

βp−1 ≤ l

(N − k)σp−1
≤ αp−1.

But this contradicts (3.68). Therefore, υσ(t) converges when t→ +∞.
On the other hand, we have by Lemma 3.12,

lim inf
t→+∞

υp−1σ (t) ≤ l

(N − k)σp−1
≤ lim sup

t→+∞
υp−1σ (t).
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Hence, lim
t→+∞

υσ(t) =
1

σ

(
l

N − k

)1/(p−1)
=
p− 1

k − p

(
l

N − k

)1/(p−1)
.

(ii) Multiplying equation (2.2) by rp+1−N , we obtain

rp+1−N
(
rN−1

∣∣u′∣∣p−2 u′)′ + rpuq(r) + rpf(r) = 0. (3.71)

Since u(r)
|ln r| is bounded for small r, lim

r→0
rp/qu(r) = 0. therefore, by (3.71),

lim
r→0

rp+1−N
(
rN−1

∣∣u′∣∣p−2 u′)′ = −l.
Hence, since lim

r→0
rN−1

∣∣u′∣∣p−2 u′(r) = 0 (by Proposition 2.7) and N > p, we

obtain using Hopital’s rule,

lim
r→0

rp−1
∣∣u′∣∣p−2 u′(r) =

−l
N − p

.

Taking into account the fact that u′ < 0 near 0, we have

lim
r→0

r
∣∣u′(r)∣∣ =

(
l

N − p

)1(p−1)
.

Since lim
r→0

u(r) = +∞ and lim
r→0

ln r = −∞, using again Hopital’s rule, we obtain

lim
r→0

u(r)

|ln r|
= − lim

r→0

u(r)

ln r
= − lim

r→0
ru′(r) =

(
l

N − p

)1(p−1)
.

The proof is complete. �

The following result gives an equivalent of u′ near the origin.

Theorem 3.14. Assume that N > p and q > N(p−1)
N−p . Let u be a singu-

lar solution of equation (2.1) such that lim
r→0

rp/(q+1−p)u(r) = 0. Suppose that

lim
r→0

rkf(r) = l > 0 for p ≤ k < pq
q+1−p . Then we have

(i) lim
r→0

r(k−1)/(p−1)u′(r) = −
(

l

N − k

)1/(p−1)
, if p < k <

pq

q + 1− p
.

(ii) lim
r→0

ru′(r) = −
(

l

N − p

)1/(p−1)
, if k = p.

Proof. (i) Let σ = k−p
p−1 . Then, by the change (2.5) and Theorem 3.13, we have

lim
t→+∞

υσ(t)= p−1
k−p

(
l

N−k

)1/(p−1)
.



Singular solutions of an inhomogeneous elliptic equation 267

Now, we show that lim
t→+∞

hσ(t)=
(

l
N−k

)1/(p−1)
. Since E(N−p)/(p−1)(r) > 0

for small r by Proposition 2.9, hσ(t) is bounded for large t. Suppose by
contradiction that hσ(t) oscillates for large t. Then there exist two sequences
{si} and {ki} going to +∞ as i → +∞ such that {si} and {ki} are local
minimum and local maximum of hσ, respectively, satisfying si < ki < si+1

and

lim inf
t→+∞

hσ(t) = lim
i→+∞

hσ(si) = m1 < lim sup
t→+∞

hσ(t) = lim
i→+∞

hσ(ki) = M1.

(3.72)
Therefore ω′σ(si) = ω′σ(ki) = 0 (because h′σ(si) = h′σ(ki) = 0), lim

i→+∞
ωσ(si) =

|m1|p−2m1 and lim
i→+∞

ωσ(ki) = |M1|p−2M1. Since k < pq
q+1−p , υσ converges

and lim
t→+∞

e−ktf(e−t) = l, we deduce, by taking respectively t = si and t = ki

in equation (2.6) and letting i→ +∞, that

−(N − k) |m1|p−2m1 = −l = −(N − k) |M1|p−2M1.

Since N > pq
q+1−p > k and l > 0, we have

|m1|p−2m1 = |M1|p−2M1 > 0.

That is, m1 = M1. Which contradicts (3.72). Therefore, hσ(t) converges when
t → +∞, hence by (2.9), we have lim

t→+∞
υ′σ(t) = 0 (because υσ converges).

Consequently, lim
t→+∞

hσ(t)=
(

l
N−k

)1/(p−1)
, which is equivalent by (2.11) to

lim
r→0

r(k−1)/(p−1)u′(r)= −
(

l
N−k

)1/(p−1)
.

(ii) It can be easily deduced from (ii) of Theorem 3.13 by using Hopital’s
rule. The proof is complete. �

Finally concerning the case 0 < k < p, we will show under some assumptions
that the solution u of equation (2.1) can be extended by continuity at 0.

Theorem 3.15. Assume that N > p and q > N(p−1)
N−p . Let u be a solution of

equation (2.1) such that lim
r→0

rp/(q+1−p)u(r) = 0. Suppose that there exists a

constant 0 < k < p such that rkf(r) is bounded for small r. Then lim
r→0

u(r) is

finite and strictly positive.

Proof. According to Proposition 2.1, we have u is strictly decreasing near 0 and
lim
r→0

u(r) ∈]0,+∞]. Assume that u is singular, that is lim
r→0

u(r) = +∞. Then,

since 0 < k < p < pq
q+1−p , according to Theorem 3.11, rk/qu(r) is bounded for
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small r. Therefore, inequality (3.56) is satisfied for small r. Integrating this
last inequality on (r, r0) for small r0 and using the fact that p > k, we obtain

u(r) ≤ C(r0)− Cr(p−k)/(p−1).

That is, u(r) is bounded for small r. But this contradicts the fact that u is
singular. Consequently, lim

r→0
u(r) ∈]0,+∞[. The proof is complete. �

4. Existence of a singular solution

In this section, we establish the existence of singular solutions of equation
(2.1) under some assumptions on f . We use the technical results introduced
by [15].

In view of the first section, if u is a singular solution of (2.1), then

lim
r→0

r(N−1)/(p−1)u′(r) = 0

when N > p and q > N(p−1)
N−p . Hence a natural problem arises:

Find a function u defined on ]0, rmax[ such that u ∈ C0(]0,rmax[)∩C1(]0,rmax[)
and |u′|p−2u′ ∈ C1(]0, rmax[), where 0 < rmax ≤ +∞ and satisfying

(P)


(|u′|p−2u′)′(r) +

N − 1

r
|u′|p−2u′(r) + uq(r) + f(r), r > 0,

lim
r→0

u(r) = +∞, lim
r→0

r(N−1)/(p−1)u′(r) = 0,

where p > 2, q > 1, N ≥ 1 and f is a continuous radial function and strictly
positive on ]0,+∞[.

Theorem 4.1. Assume that N > p and q > N(p−1)
N−p . Suppose that there

exists a constant 0 < k < p such that rkf(r) is bounded for small r. Then
problem (P ) has a unique solution defined on a maximal interval ]0, rmax[,
where 0 < rmax ≤ +∞.

Proof. Recall by Remark 2.2 that if u is a solution of (2.1) such that lim
r→0

u(r) =

γ > 0, then necessarily lim
r→0

r(N−1)/(p−1)u′(r) = 0. Hence, for any γ > 0, we

consider the problem

(Q)


(|u′|p−2u′)′(r) +

N − 1

r
|u′|p−2u′(r) + uq(r) + f(r), r > 0,

u(0) = γ, lim
r→0

r(N−1)/(p−1)u′(r) = 0.

First, we show that for any γ > 0, problem (Q) has a unique solution
u defined on a maximal interval [0, rmax[. To establish local existence and
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uniqueness, we use a method introduced in [5] and we will try to convert the
problem (Q) into a fixed point problem of some operator.

Note that the difficulty lies in the fact that there was no initial data, but
has only a limited condition.

Let u be a solution of problem (Q) on [0, rmax[. Then, integrating equation

(2.2) on (0, r) for any r ∈ [0, rmax[ and using the fact that lim
r→0

r(N−1)/(p−1)u′(r)

= 0, we obtain

u(r) = γ −
∫ r

0
G(F [u](s))ds, (4.1)

where
G(s) = |s|(2−p)/(p−1)s, s ∈ R (4.2)

and the nonlinear mapping F is given by

F [ϕ](s) = s1−N
∫ s

0
σN−1

[
ϕq(σ) + f(σ)

]
dσ. (4.3)

Let R > 0, γ > M > 0 and consider the following complete metric space:

Eγ,M,R = {ϕ ∈ C([0, R]) : ‖ϕ− γ‖0 ≤M} , (4.4)

where C ([0, R]) is the Banach space of real continuous functions on [0, R]
with the uniform norm, denoted by ‖ · ‖0.

Next we define the mapping T on Eγ,M,R by

T [ϕ](r) = γ −
∫ r

0
G(F [ϕ](s))ds. (4.5)

The idea is to show that T is a contraction from Eγ,M,R into itself for small
R. We will do it in two steps.

Step 1. T maps Eγ,M,R into itself for small M and R.

Since ϕ(r) ∈ [γ −M,γ + M ] and 0 ≤ f(r) ≤ Cr−k near the origin with
k < p < N , for small R

(γ −M)q

N
s ≤ F [ϕ](s) ≤ (γ +M)q

N
s+

C

N − k
s1−k for s ∈]0, R]. (4.6)

Therefore for sufficiently small R, we have

C1s ≤ F [ϕ](s) ≤ C2s
1−k. (4.7)

On the other hand, we have by (4.5)

|T [ϕ](r)− γ| ≤
∫ r

0
|F [ϕ](s)|1/(p−1) ds for any r ∈ [0, R]. (4.8)

Hence, owing to (4.5) and (4.2), we obtain for any r ∈ [0, R]

|T [ϕ](r)− γ| ≤ C
1/(p−1)
2 (p− 1)

p− k
R(p−k)/(p−1). (4.9)
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So we can choose R sufficiently small such that

|T [ϕ](r)− γ| ≤M, for ϕ ∈ Eγ,M,R. (4.10)

That is, T [ϕ] ∈ Eγ,M,R.

Step 2. T is a contraction from Eγ,M,R into itself for small R.
For any r ∈ [0, R] and any ϕ,ψ ∈ Eγ,M,R, we have

|T [ϕ](r)− |T ψ](r)| ≤
∫ r

0
|G(F [ϕ](s))−G(F [ψ](s))|ds, (4.11)

where F [ϕ] is given by (4.3). Next, let

Φ(s) = min(|F [ϕ](s)|, |F [ψ](s)|).
Then

|T [ϕ](r)− T [ψ](r)| ≤
∫ r

0
(Φ(s))(2−p)/(p−1)|F [ϕ](s)− F [ψ](s)|ds. (4.12)

Using (4.7), we have
Φ(s) ≥ C1s. (4.13)

And according to (4.3) and (4.4), we have

|F [ϕ](s)− F [ψ](s)| ≤ q(M + γ)q−1

N
s ‖ϕ− ψ‖0 . (4.14)

Therefore for any r ∈ [0, R]

|T [ϕ](r)− T [ψ](r)| ≤ q(p− 1)C
(2−p)/(p−1)
1 (M + γ)q−1

Np
Rp/(p−1) ‖ϕ− ψ‖0 .

(4.15)
So we can choose R small enough such that T is a contraction. Consequently,
the Banach Fixed Point Theorem implies the existence of unique fixed point
u = uγ of T which is a solution of (4.1), that is solution of problem (Q). This
solution can be extended to a maximal interval [0, rmax[, 0 < rmax ≤ +∞.

Now, we have by the maximum principle γ 7→ uγ is increasing and by

Proposition 2.4, uγ(r) ≤ C(N, p, q) r−p/(q+1−p), where C(N, p, q) is explicitly
given by (2.4). Therefore uγ converges when γ → +∞ to u which is a solution
of problem (P ) on a maximal interval ]0, rmax[, 0 < rmax ≤ +∞. The proof
is complete. �

5. Nonexistence result

In this section, we present a nonexistence result concerning singular solu-
tions of equation (2.1). Note that the comparison near the origin between

the functions f and Lr−pq/(q+1−p) where L is given by (2.20), will play an
important role in proving this result.
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Theorem 5.1. Let N > p and q > N(p−1)
N−p . If lim inf

r→0
rpq/(q+1−p)f(r) > L,

then equation (2.1) does not possess any singular solutions.

Proof. Suppose that lim inf
r→0

rpq/(q+1−p)f(r) > L. Let u be a singular solution

of equation (2.1). According to Proposition 2.9, we have Ep/(q+1−p)(r) 6= 0 for
small r, that is, by (2.14), υp/(q+1−p)(t) is strictly monotone for large t.

Moreover υp/(q+1−p) is bounded by Proposition 2.4 and Remark 2.5, hence
it converges. Let lim

t→+∞
υp/(q+1−p)(t) = d ≥ 0. This being said, we have then

two possibilities, lim inf
t→+∞

υ′p/(q+1−p)(t) = 0 if υ′p/(q+1−p)(t) > 0 for large t or

lim sup
t→+∞

υ′p/(q+1−p)(t) = 0 if υ′p/(q+1−p)(t) < 0 for large t. Therefore, there

exists a sequence {γi} going to +∞ as i → +∞ such that {γi} is a local
extrema of υ′p/(q+1−p) satisfying lim

i→+∞
υ′p/(q+1−p)(γi) = 0. Therefore, we have

lim
i→+∞

ωp/(q+1−p)(γi) =

(
p

q + 1− p

)p−1
dp−1.

Moreover, by deriving equation (2.9) and using the fact that υ′′p/(q+1−p)(γi) = 0,

we obtain lim
i→+∞

h′p/(q+1−p)(γi) = 0. Hence, lim
i→+∞

ω′p/(q+1−p)(γi) = 0. Taking

t = γi in equation (3.4) and letting i→ +∞, we obtain

lim
i→+∞

gp/(q+1−p)(γi) = φ(d) ≤ L,

where φ and L are given respectively by (2.19) and (2.20). But this contradicts
the fact that lim inf

t→+∞
gp/(q+1−p)(t) > L. The proof is complete. �
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