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Abstract. In this research, we interpret the notion of a b-cyclic (®,C, D)—contraction for
the pair (g, S) of self-mappings on the set Y. We employ our definition to introduce some
common fixed point theorems for the two mappings g and S under a set of conditions. Also

we introduce an example to support our results.

1. INTRODUCTION

Many years ago, different results were obtained in fixed point theory in b-
metric spaces. A main topic in the fixed point theory is the cyclic contraction.
Kirk et al. [15] established the first result in this interesting field.
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Now a days, others attained important outcomes in this dominant field see
[20, 21, 29, 30]

We start with the definition of a cyclic map.

Definition 1.1. ([29]) Let C and D be non-empty subsets of a metric space
(Y,d) and S: CUD — CUD. Then S is called a cyclic map if S(C) C D
and S (D) C C.

In 2003, Kirk et al. [15] gave the following interesting theorem in fixed point
theory for a cyclic map.

Theorem 1.2. ([15]) Let C and D be nonempty closed subsets of a complete
metric space (Y,d). Suppose that S : CUD — CUD is a cyclic map such that

d(Sz,Sy) < kd(z,y), Va,y € D.
If k €[0,1), then S has a unique fized point in C N D.

Some of contractive conditions are based on functions called control function
which alter the distance between two points in a metric space. Such functions
were inaugurated by Khan et al. [17]

Definition 1.3. ([17]) The function ® : [0,00) — [0,00) is called an altering
distance function if the following properties are satisfied:

(1) ® is continuous and nondecreasing,
(2) ®(¢) =0 if and only if ( = 0.

Definition 1.4. ([6, 11]) Let Y be a nonempty set and b > 1 be a given real
number. A function d: ¥ x Y — [0,00) is called b-metric. If it satisfies the
following properties for each y1,y2,y3 € Y,

(1) d(yl,yg) = 0 if and only if y; = ya,
(2) d(y1,92) = d(y2,y1)
(3) d(y1,y3) < b[d(y1,y2) + d (y2, y3)] -
The pair (Y,d) is called a b-metric space.

Example 1.5. Let Y = [p (R) with 0 < p < 1, where [, (R) = {y, C R :
Yozt lynl” < oo}
Define d:Y xY — R* by:
1
d(y, 2) = (X% lyn — 2al")7,

where y = {yn}, 2 = {2, }. Then d is a b-metric space (see [12]) with coefficient
b=1
p
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Example 1.6. Let Y = L, [0, 1] be the space of all real function z () ,¢ € [0, 1]

such that for 0 < p < 1,
1

[wr <.

0
Define d:Y xY — RT by:

1
d(z,y) = / ly(t) — = (&) dt
0

Then d is a b-metric space (see [12]) with coefficient b = 2%

The above examples show that class of b-metric space is larger than the
class of metric spaces. When b = 1, the concept of b-metric coincides with the
concept of metric spaces. Many authors introduce many fixed point theorems
in the notion of metric spaces, for more details see [1, 2, 3, 5, 7, 8, 9, 16, 22,
24, 25, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Also, for some work on b-metric, we
refer the reader to [4, 10, 13, 18, 19, 23, 26, 27, 28, 31, 32, 33].

Definition 1.7. ([13]) Let (Y, d) be a b- metric space.

(1) A sequence {y,} in Y is said to be Cauchy, if d (yn, ym) — 0 asn,m —
00.

(2) A sequence {y,} in Y is said to be convergent, if there exists y € Y
such that d(yn,y) = 0 as n — 0o and we write limy, o0 yp = ¥.

(3) The b-metric space (Y,d) is said to be complete if every Cauchy se-
quence in Y is convergent.

Theorem 1.8. ([14]) Let (Y,d) be a complete b-metric space with constant
b > 1, such that b-metric is a continuous functional. Let S :' Y — Y be a
contraction with constant k € [0,1) such that kb < 1. Then S has a unique
fixed point.

The justification of this paper is to acquire common fixed point results for
mapping satisfying nonlinear contractive conditions of a cyclic form based on
the notion of an altering distance function.

2. THE MAIN RESULTS
We begin with the following definition.

Definition 2.1. Let (Y, d) be a b-metric space and C, D be nonempty closed
subsets of Y. Let ¢,5 : Y — Y be two mappings. The pair (g, S) is called a
b-cyclic (@, C, D)-contraction, if the following conditions are satisfied:
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(1) ® is an altering distance function,

(2) C'UD has a cyclic representation w.r.t. the pair (g, S); that is g(C) C
D,S(D)CCandY =CUD,

(3) there exists § > 0 with 42§ < 1 such that for all z,y € Y with x € C
and y € D, we have

® (bd (g9, Sy))

<o <5 max {d(x,y) ,d(z,gx),d(y,Sy), %bd(x, Sy), QLbd (9z,9) }) . (2.1)

From this point till the end of the paper, by ® we mean altering distance
function unless otherwise stated and Y stands for a complete b-metric space. In
the rest of this paper, we also mean by IV set of non negative integer numbers.

Theorem 2.2. Let (Y,d) be a b-complete metric space and C, D be nonempty
closed subsets of Y. Let g, S : Y — Y be two mapping. Assume the following:
(1) the pair (g,S)is a b-cyclic (®,C, D) contraction,
(2) g or S is continuous.
Then g and S have a common fized point.
Proof. Choose yg € C, let y1 = gyo. Since gC C D, we have y; € D. Also,
let yo» = Syi. Since SD C C, we have yo € C. Continuing this process, we

can construct a sequence {y,} in Y such that yo,+1 = gyon, Yon+2 = SYon+1,
yon € C and y2,, 41 € D.

We divide our proof into the following steps:

Step 1. We will show that {y,} is a Cauchy sequence in (Y, d).
Subcase 1: Suppose that yo, = yony1 for some n € N. Since y2, and yo,41
are elements in Y with yo, € C' and yo,+1 € D, we have

® (bd (yan+1, Y2n+2))
=9 (d (gy2na Sy2n+1))

<o (5 max {d (Y2n, Yont1) » d (Y2n, 9Y2n) » d (Y2n+1, SY2n+41)

1 1
%d (y2n7 Sy2n+l) y %d (93/27“ y2n+l) })

= <5 max {d (Y2n, Y2n+1) > d (Y2ns Y2nt1) » d (Y2nt1, Yont2)

1

1
?bd (Y2n, Y2n+2) 5 ?bd (Y2n+1-Y2n+1) })
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® (0d (y2n+1, Y2n+2))
P(6bd (y2n+1, Y2n+2))-

By properties of ¢, we have bd(y2n+1, Y2n+2) < 0bd(Y2n+1, Yon+2). Since db < 1,
we have bd (Yan+1, Yon+2) = 0 and hence yo, 42 = Yont1-

Similarly, we may show that yo,+3 = yant2. Hence {y,} is a constant se-
quence in Y, so it is a Cauchy sequence in (Y, d).
Subcase 2: y2, # yon+1 for all n € N. Given n € N. If n is even, then n = 2¢q
for some q € N.

Since Y24 € C, Y2g+1 € D and yaq, y24+1 are elements in Y, we have

P (bd (yn+17 yn+2)) =9 (bd (y2q+17 y?q-i—?))
=9 (bd (gy2q7 Squ—l—l))

<o (5 max {d (Y29: Y2q+1) > d (Y2q, 9Y24) » d (Y2g+15 SY29+1) 5

<
<

1 1
?bd (Y24, SY2q+1) 5 %d (9Y2¢> Y2q+1) })

= <5 max {d (quv y2q+1) ,d (quJrla Z/2q+2) )

1 1
%d (Y29, Y2g+2) » %d (Y2q+1, Y2g+2) })

< (5 max {d (ygq, y2q+1) yd (?JQqa y2q+2) })

<o <5bmax {d (Y2q> Y2¢+1) > d (Y245 Y2q+2) }) :
If

max{d (y2q, Y2q+1) > d (Y2g+1, Y2g+2) } = d (Y2941, Y2q+2) »

then

o

(6d (y2g+1, Y2q+2))
©(5bd (Y2g+1, Y24+2))
D(d (y2g+1, Y2q+2))

O(bd (y2g+1, Y2¢+2))5

® (bd (Y2941, Y2q+2))

IN A CIA A

which is a contradiction. Thus

max{d (y2¢, Y2q+1) » d (Y2q+1, Y2¢+2)} = d (Y2q, Y2¢+1) - (2.2)
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Therefore

< @ (d (y2q, y2g+1))
< ©(0bd (y2q: Y2q+1)) - (2.3)

If nis odd, then n = 2¢+1 for some ¢ € N. Since Y2442 and yoq+1 are elements
in Y with yoq42 € C and y2441 € D, we have

P (bd (yn+2; Yn+1))

= & (bd (y2q+37 y2q+2))
= ®(bd(g9y2q+2, SY2q+1))
< P(

max 0{d (y2q+2, Y2q+1) » d (Y2q+2-9Y2¢+2) » d (Y2q+2, SY2¢+1) ,

1 1
%d (Y20+2,5y2011) » %d (9Y2q+2, Y29+1) })

® (bd (Y2941, Y2q+2))

<o (5 max {d (Y2q+2, Y2q+1) > d (Y2q+2, Y2¢+3) 5

1

1
?bd (y2q+2, y2q+2) ) 27)61 (y2q+37 y2q+1) })

<® <5 max {d (V29425 Y2q+1) » d (Y2g+25 Y2¢+3) })

<o <5b max {d (Y2q+2, Y2q+1) > d (Y2g+25 Y24+3) }) :
If

max{d (y2q+2, Y2q+1) » d (Y2q+2: Y2q+3) = d (Y2q+2, Y2¢+3) »
then

® (bd (y2g+2,Y2g+3)) < P (0bd (Y2g+2; Y2q+3)) -
Properties of ¢ implies that

bd (y2q+2, Y2¢+3) < 0bd (y2q+2,Y2¢+3) < bd (Y242, Y24+3)

which is a contradiction. Therefore

max{d (y2q+2, Y2q+1) » d (Y2q+2, Y24+3) } = d (Y2442, Y2q+1) , (2.4)
and hence
® (bd (y2q+3, Y2q+2)) < D (9bd (y2g+2, Y2q+1)) - (2.5)
From (2.3) and (2.5), we have
(I) (bd (3/n+17 yn+2)) < @ (6bd (yna yn-‘rl)) < @ (bd (ynu yn—l—l)) . (2'6)

Since ® is an altering distance function, we have {d (Yn4+1,Yn+2) : n € NU{0}}
is a bounded nonincreasing sequence. Thus there exists ¢ > 0 such that
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Jim d (yn, Y1) = €.
On letting n — oo in (2.6), we have
B (b0) < B (66C)

Claim: ¢ = 0. Suppose to the contrary, that is, ( # 0. By properties of ¢,
we have

b¢ < 0b¢ < ¢,

which is a contradiction. Therefore ¢ = 0. Thus

lim d(yn, Yn+1) = 0. (2.7)
n—oo

Next, we show that {y,} is a Cauchy sequence in b-metric space (Y, d). It is
sufficient to show that {y2,} is a Cauchy sequence in (Y, d). Suppose to the
contrary, that is, {yo2,, } is not a Cauchy sequence in (Y,d). Then there exists
€ > 0 for which we can find two subsequences {Ya;,;)} and {ya,z:)} of {y2n}
such that n(i) is the smallest index for which

n(i) > m(i) > i,  d(Yom() Yon@p) = € (2.8)

This means that
d (y2m(i), y2n(i)—2) < €. (2.9)

From (2.8), (2.9) and the definition of the b-metric space, we get
e < d (y2m(i)7 y2n(i))
< bd (Yam(s)> Yoni)—2) + bd (Yan(i)—2, Yon(s))
< bd (me(i)a y2n(i)72) +bd (y2n(i)727 y2n(i)71) +bd (y2n(i)717 y2n(i))
< eb+bd (Yon(i)—2> Yan(i)—1) + b*d (Yan(i)—1> Yan(i)) -
By taking the sup limit of above inequalities using (2.7), we have

e < Timsup d (Yam(i)s Yon(i)) < €b. (2.10)

1——400
Again, from (2.8) and the definition of the b-metric space, we get
€ d (me(i)a y2n(i))
b((d (me(i)a y2m(i)+1) +d (me(i)+7 y2n(i))) .

On taking the limsup in above inequalities and using (2.7), we get

<
<

e < limsup bd (me(i)+la an(i)) . (2.11)

i—+00

Again, from the definition of the b-metric space, we get

d (yzm(i)ayzn(i)q) < b((d (me(i)a an(i)) +d (yZn(i)Jrv y2n(i)fl)) .
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On taking the limsup in above inequalities and using (2.7) and (2.10), we get

lim sup bd (Yam (i) Yon(i)—1) < eb’. (2.12)

i——+00

Again, from the definition of the b-metric space, we get that

d (y2n(i)+1a an(i)fl) <d (an(i)Jrl? y2n(i)) +d (y2n(i)ay2n(i)fl) .
On taking the limsup in above inequalities and using the properties of ® , we

get
lim sup bd (Yo (i)+1, Yon(i)—1) = 0. (2.13)

1——+00

Since Yo ;) € C and Yo, (5—1 € D, we have

o (bd (me(i)Jrh y2n(i))) = (bd (ngm(i)v Syzn(i)q))
<o ( max 5{d (Y2m(i)> Yon(i)-1) » & (Yom(i) Yom(s) )

d (?/Qn(z‘)—l, San(i)—l) )

1 1
%d (y2m(i)) gy2n(z’)—1) ) %d (ngm(i)7y2n(i)—1) })

=9 (5 max {d (me(i)v y2n(i)71) yd (y2m(i)7 y2m(i)+1) )

d (?/Qn(z‘)—l, y2n(7j)) )

1 1
%d (y2m(i)) y2n(i)) ) *bd (y2n(i)+la y2n(i)—1) })

Taking the limsup in above inequalities, and using the properties of ® and
(2.7), (2.10), (2.11), (2.12) and (2.13), we get

D (€) < P (edb?).

Again, properties of ® implies that ¢ < efb?. Since b?§ < 1, we have € = 0, a
contradiction. Thus {y,} is a Cauchy sequence in (Y,d).

Step 2: Existence of a common fixed point.

Since (Y,d) is a complete b-metric space and {y,} is a Cauchy sequence
in Y we have {y,} converges to some v € Y, that is, lim, o d(ypn,v) = 0.
Therefore,

lim y, = lim yop,_1 = lim %9, = v. (2.14)
n—o0 n—o00 n—-+oo
Since {ya2n} is a sequence in C. C'is closed and y2, — v, we have v € C. Also,
since {yan+1} is a sequence in D, D is closed and y2,+1 — v, we have v € D.



Common fixed point results under contraction of cyclic form in b-metric spaces 297

Now, we show that v is a fixed point of g and S. Without loss of generality,
we may assume that g is continuous, since y2, — v, we get Yon+1 = gY2n — gv.
By the uniqueness of limit, we have v = gv.

Now, we show that v = Sv. Since v € C' and v € D, we have
® (bd (v, Sv)) = ® (bd (gv, Sv))
< (@ max{d (gv, Sv) ,d (v, gv) d (v, Sv)
1 1
%d (Uv SU) ) %d (g?), ’U)})
= @ (6d (v, Sv)).
Properties of ® implies that
bd(v, Sv) < dd(v, Sv),
the last inequality only if d(v, Sv) = 0, and hence v = Sv. O

If we take ® = I[0,+o0] is the identity function in Theorem 2.2 we have
the following result.

Corollary 2.3. Let (Y,d) be a b-metric space and C,D be nonempty closed
subsets of Y. Let g,S : Y — Y be two mappings and C U D has a b-cyclic
representation with respect to the pair (g,S). Suppose there exists 6 > 0 with
b25 < 1 such that for all z,y € Y with x € C and y €Y, we have

1 1
b (g2 5y) < dmac{d o.1) . (5,2) . 0 50) 5 0 30) 3 () |-

If g or S is continuous, then g and S have a common fized point.
By taking g = S in Theorem 2.2, we have the following result.

Corollary 2.4. Let (Y,d) be a b- metric space and C, D be nonempty closed
subsets of Y with Y = CUD. Let g,S:Y — Y be two mappings. Suppose
there exists § > 0 with b*6 < 1 such that for all z,y € Y with x € C and
y €Y, we have

@ (bd (g9, gy))

<o <5max {d(% y),d(z,gz),d(y,gy), %bd(x,gy) ; ;)d(gm,y)b -

Assume that g is a continuous and cyclic map, Then g has a fized point.

By taking C = D =Y in Theorem 2.2, we have the following result.



298 A. Rabaiah, A. Tallatha and W. Shatanawi

Corollary 2.5. Let (Y,d) be a b- metric space. Let g,S :' Y — Y be two
mappings. Suppose there exists § > 0 with b6 < 1 such that for all x,y € Y,
we have

® (bd (g9, Sy))

§<I><5ma><{d(w7y),d(w,gw) d(y,Sy), 21b (z, Sy), 21b (g:r,y)}>-

If g or S is continuous, then g and S have a common fixed point.

Example 2.6. Let Y = {1,2,3,4,5}. Define d:Y xY — [0,400) by
d($ x)=0if z € {1,2,3,4,5};

d(z,y)=1ifz,y € {1,2 34}and1:7§y,

d(z,y) =20if x € {1,2 3}andy—5
d(z, )—201f:c—5andy€{1 2,3}
d(z,y) =12 if z,y € {4,5} and = # y.

Define g : Y — Y by g(x) = 1if v € {1,2,3,4} and g (5) = 4. Also,
define S: Y — Y by S(z) =1if z € {1,2,3,4} and S (5) = 3. Also, define
® : [0,+00) = [0,+00) via @ (¢) = +. Let C = {1,3,5} and D = {1,2,4}.
Then

(1) (Y,d) is a complete b-metric space,
(2) C'U D has cyclic representation with respect to the pair (g, .5),
(3) for every two elements z,y € Y with z € C and y € D, we have

® (2d (g, Sy))

<o <;ma:v {d(w,y) yd(x,gx),d(y, Sy) %d(w, Sy) ., 1d(gx,y)}> :

The proof of (1) is obvious with b = 2. To prove part (2), since gC = {1,4} C
D and SD = {1} C C, we can say that C'UD has b-cyclic representation with
respect to the pair (g,5). To prove part (3), we have the following two cases:

Case I: Let = 1,3 and y € D. Then g(z) = 1 and S (y) = 1 and hence
® (d (g, Sy)) = 0. Thus we have

® (2d (g, Sy))

<o (gmar {a(e.0).d(.g0), 0.5, @ 50) gz }).

Case II: Let z = 5 and y € D{1,2}. Then ¢g(z) = 4 and S (y) = 1. Hence

® (2d (gz, Sy)) = ® (2d (4,1)) = ®(2) = 5 and d (z,y) = 10. Thus,
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® (2d (gx, Sy)) = % < g = ¢<;d($ay)>

<o (émaz {d(wvy) yd(z,92) ,d(y, Sy) %d(m,Sy) ; id(gw,y)}>

()

Similarly, we can deal with the case x = 5 and y = 4. Thus g and S satisfy
all the hypothesis of Theorem 2.2. Hence g and S have a common fixed point.
Here 1 is the common fixed point of g and S.
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