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Abstract. The main object of the present paper is to investigate some radius results of the

functions f(z) = z +
∑∞

n=2 anz
n(|z| < 1) with |an| ≤ n for all n ∈ N. Some applications for

certain operator defined through convolution are also considered.

1. Introduction and definitions

Let A denote the class of functions f(z) of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. Also let
S denote the class of functions in A which are univalent in the unit disk U.

Here and in the following, let C, N and Z−0 be the sets of complex numbers,
positive integers, and non-positive integers, respectively. Further we let P(α)
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denote the subclass of S consisting of those functions satisfying

Re{f ′(z)} > α (0 ≤ α < 1). (1.2)

Here the class P(α) was introduced by Hallenbeck [6]. In particular, the
class P(0) = P was investigated by MacGregor [11]. Here we recall Noshiro-
Warschawski theorem (see, e.g., [3, Theorem 2.16]): If f is analytic in a convex
domain D and Re{f ′(z)} > 0 there, then f is univalent in D.

In view of this theorem, we find that the class of functions in A which satisfy
(1.2) become a subclass of S. In the regard, the condition “P(α) is a subclass
of S” is redundant.

Let αj (j = 1, · · · , p) and βj (j = 1, · · · , q) be complex numbers with
βj /∈ Z−0 := {0,−1,−2, · · · }. Then the generalized hypergeometric function

pFq(z) is defined by

pFq(z) ≡ pFq(α1, · · · , αp;β1, · · · , βq; z)

=
∞∑
n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!
(p ≤ q + 1), (1.3)

where (λ)n is the Pochhammer symbol defined, in terms of the Gamma func-
tion, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
(λ ∈ C \ Z−0 )

=

{
1 (ν = 0;λ ∈ C \ {0}),
λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N;λ ∈ C),

it being understood conventionally that (0)0 = 1. We note that the series

pFq(z) in (1.3) converges absolutely for |z| < ∞ if p < q + 1, and for z ∈ U
if p = q + 1. The condition p ≤ q + 1 stated with the definition (1.3) will be
assumed to hold true throughout this paper.

For functions fj(z) ∈ A, given by

fj(z) = z +
∞∑
n=2

an,j z
n (j = 1, 2),

we define the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2)(z) = z +

∞∑
n=2

an,1 an,2 z
n = (f2 ∗ f1)(z) (z ∈ U).

With a view to defining the Srivastava-Attiya transform, we recall here a
general Hurwitz-Lerch zeta function, which is defined in [15] by the following
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series:

Φ(z, λ, δ) :=
1

δλ
+

∞∑
k=1

zk

(k + δ)λ

(δ ∈ C \ Z−0 ;λ ∈ C when z ∈ U ; Re(λ) > 1 when |z| = 1).

For further interesting properties and characteristics of the Hurwitz-Lerch
Zeta function and other related special functions, see for example [4], [10] and
[16].

In the literature on special functions one often finds applications of op-
erational techniques involving various integral transforms (see [7], [13] and
[17]). Recently, Srivastava and Attiya [14] have introduced the linear operator
Lλ,δ : A → A, defined in terms of the Hadamard product by

Lλ,δf(z) = Gλ,δ(z) ∗ f(z) (δ ∈ C \ Z−0 ;λ ∈ C; z ∈ U), (1.4)

where

Gλ,δ(z) = (1 + δ)λ
[
Φ(z, λ, δ)− δ−λ

]
(z ∈ U). (1.5)

The operator Lλ,δ is now popularly known in the literature as the Srivastava-
Attiya operator. Various class-mapping properties of the operator Lλ,δ (and
its variants) are discussed in the recent works of Srivastava and Attiya [14],
Liu [9], Murugusundaramoorthy [12], Yuan and Liu [18] and others.

It is easy to observe from (1.1) and (1.4) that

Lλ,δf(z) = z +
∞∑
k=2

(
1 + δ

k + δ

)λ
akz

k. (1.6)

We note that:

(i) L0,δf(z) = f(z);

(ii) L1,0f(z) = Lf(z) =
∫ z
0
f(t)
t dt (f ∈ A) (see Alexander [1]);

(iii) Lm,1f(z) = Imf(z) (m ∈ N0 = N ∪ {0} = {0, 1, 2, 3, · · · }) (see Flett
[5]);

(iv) Lγ,1f(z) = Qγf(z) (γ > 0) (see Jung et al. [7]);
(v) Lm,0f(z) = Lmf(z) (m ∈ N0) (see Sǎlǎgean [13]).

In this article, we determine some radii for normalized analytic functions
f(z) defined by (1.1) with |an| ≤ n (n = 2, 3, 4 · · · ) in order to satisfy such
inequalities as Re{f ′(z)} > α (0 ≤ α < 1). Moreover, some interesting con-
sequences for certain operator defined through convolution are also pointed
out.
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2. Main results

We begin by proving the following theorem.

Theorem 2.1. Let the function f(z) be defined by (1.1) and suppose that
|an| ≤ n for n = 2, 3, 4, · · · . Then we have

f(z) ∈ P(α) for |z| < r0, (2.1)

where 0 ≤ α < 1 and r0 is the unique solution of the equation

(2− α)r3 − 3(2− α)r2 + (7− 3α)r − 1 + α = 0.

Furthermore, the radius r0 is sharp.

Proof. From the hypothesis, we obtain

Re
{
f ′(z)

}
≥ 1−

∞∑
n=2

n2rn−1 (|z| = r).

Since
z

(1− z)2
=

∞∑
n=1

nzn and
1 + z

(1− z)3
=

∞∑
n=1

n2zn−1, (2.2)

we readily have

Re{f ′(z)− α} ≥ 2− 1 + r

(1− r)3
− α

=
−(2− α)r3 + 3(2− α)r2 − (7− 3α)r + 1− α

(1− r)3
. (2.3)

If we put g(r) = (2−α)r3−3(2−α)r2 +(7−3α)r−1+α, it is easily seen that
there exist the unique solution r0 of the equation g(r) = 0. Since g(0) = −1+α
and g(1) = 2,

r0 ∈ (0, 1).

By applying (2.2) and (2.3), we see that

Re{f ′(z)− α} > 0 for |z| < r0,

which implies that f(z) ∈ P(α) for |z| < r0.
Also, if we take

f(z) = 2z − z

(1− z)2
(|z| < 1),

then from (2.2) we have

Re{f ′(z)− α} ≥ 0 |z| ≤ r0 < 1,

and f ′(r0) = α. Hence the radius r0 is sharp. This evidently completes the
proof of Theorem 2.1. �
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By the theorem of de Branges [2], we can restate Theorem 2.1 as follows:

Corollary 2.2. If f(z) ∈ S, then

f(z) ∈ P(α) (|z| < r0),

where 0 ≤ α < 1 and r0 is defined in Theorem 2.1.

Corollary 2.3. Let the function f(z) be defined by (1.1) and suppose that
|an| ≤ n for n = 2, 3, 4, · · · . If we put

F (z) =
1

z

∫ z

0
f(t)dt, (2.4)

then

F (z) ∈ P(α) for |z| < r1,

where 0 ≤ α < 1 and r1 is the positive root of the equation

1

(1− r)2
− 1

r(1− r)
− 1

r2
log(1− r) + α = 1.

Proof. From (2.4) we obtain

Re{F ′(z)− α} ≥ 1

2
−
∞∑
n=2

n2

n+ 1
rn−1 − α (|z| = r)

= 1− α−
∞∑
n=1

n2

n+ 1
rn−1. (2.5)

Since
∞∑
n=1

n2

n+ 1
zn−1 =

(
1

z

∫ z

0

t

(1− t)2
dt

)′
=

1

(1− z)2
− 1

z(1− z)
− 1

z2
log(1− z),

it follows from (2.5) that Re{F ′(z)− α} > 0 for |z| < r1. Hence we conclude
that F (z) ∈ P(α) for |z| < r1, which completes the proof of Corollary 2.3. �

Next, we can prove the following theorem.

Theorem 2.4. Let the function f(z) be defined by (1.1) and suppose that
|an| ≤ n for n = 2, 3, 4, · · · . Then

Lm,δf(z) ∈ P(α) for |z| < r2, (2.6)

where m ∈ N, δ > 0, 0 ≤ α < 1 and r2 is the solution of the equation

m+2Fm+1(1 + δ, · · · , 1 + δ, 2, 2; 1, 2 + δ, · · · , 2 + δ; r) + α = 2.
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Proof. From (1.6) we have

Re
{

(Lm,δf(z))′ − α
}

≥ 1−
∞∑
n=2

(
1 + δ

n+ δ

)m
n2rn−1 − α (|z| = r)

= 2−
∞∑
n=0

(
1 + δ

n+ 1 + δ

)m
(n+ 1)2rn − α

= 2− α− m+2Fm+1(1 + δ, · · · , 1 + δ, 2, 2; 1, 2 + δ, · · · , 2 + δ; r).

Hence, if |z| < r2, then we obtain (2.6). This completes the proof of Theorem
2.4. �

Taking α = 0 in Theorem 2.4, we have the following.

Corollary 2.5. Let the function f(z) be defined by (1.1) and suppose that
|an| ≤ n for n = 2, 3, 4, · · · . Then

Lm,δf(z) ∈ P for |z| < r3,

where m ∈ N, δ > 0 and r3 is the solution of the equation

m+2Fm+1(1 + δ, · · · , 1 + δ, 2, 2; 1, 2 + δ, · · · , 2 + δ; r) = 2.

Remark 2.6. If we put δ = 1 in Corollary 2.5, then it would immediately
yield the result due to Kim and Nunokawa [8, Theorem 3].
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