Nonlinear Functional Analysis and Applications Vol. 26, No. 2 (2021), pp. 323-329 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2021.26.02.06 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2021 Kyungnam University Press

SOME RADIUS RESULTS OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE SRIVASTAVA-ATTIYA OPERATOR

Yong Chan Kim^1 and Jae Ho Choi²

¹Department of Mathematics Education, Yeungnam University Gyongsan 38541, Korea e-mail: kimyc@ynu.ac.kr

²Department of Mathematics Education, Daegu National University of Education 219 Jungangdaero, Namgu, Daegu 42411, Korea e-mail: choijh@dnue.ac.kr

Abstract. The main object of the present paper is to investigate some radius results of the functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n (|z| < 1)$ with $|a_n| \le n$ for all $n \in \mathbb{N}$. Some applications for certain operator defined through convolution are also considered.

1. INTRODUCTION AND DEFINITIONS

Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Also let S denote the class of functions in \mathcal{A} which are univalent in the unit disk \mathbb{U} .

Here and in the following, let \mathbb{C} , \mathbb{N} and \mathbb{Z}_0^- be the sets of complex numbers, positive integers, and non-positive integers, respectively. Further we let $\mathcal{P}(\alpha)$

⁰Received September 24, 2020. Revised February 8, 2021. Accepted February 10, 2021. ⁰2010 Mathematics Subject Classification: 30C45, 33C20.

⁰Keywords: Analytic function, hypergeometric function, Hadamard product (convolu-

tion), Hurwitz-Lerch zeta function, Srivastava-Attiya operator.

⁰Corresponding author: Jae Ho Choi(choijh@dnue.ac.kr).

Y. C. Kim and J. H. Choi

denote the subclass of \mathcal{S} consisting of those functions satisfying

$$\operatorname{Re}\{f'(z)\} > \alpha \qquad (0 \le \alpha < 1). \tag{1.2}$$

Here the class $\mathcal{P}(\alpha)$ was introduced by Hallenbeck [6]. In particular, the class $\mathcal{P}(0) = \mathcal{P}$ was investigated by MacGregor [11]. Here we recall Noshiro-Warschawski theorem (see, e.g., [3, Theorem 2.16]): If f is analytic in a convex domain D and $\operatorname{Re}\{f'(z)\} > 0$ there, then f is univalent in D.

In view of this theorem, we find that the class of functions in \mathcal{A} which satisfy (1.2) become a subclass of \mathcal{S} . In the regard, the condition " $\mathcal{P}(\alpha)$ is a subclass of \mathcal{S} " is redundant.

Let α_j $(j = 1, \dots, p)$ and β_j $(j = 1, \dots, q)$ be complex numbers with $\beta_j \notin \mathbb{Z}_0^- := \{0, -1, -2, \dots\}$. Then the generalized hypergeometric function ${}_pF_q(z)$ is defined by

$${}_{p}F_{q}(z) \equiv {}_{p}F_{q}(\alpha_{1}, \cdots, \alpha_{p}; \beta_{1}, \cdots, \beta_{q}; z)$$
$$= \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n} \cdots (\alpha_{p})_{n}}{(\beta_{1})_{n} \cdots (\beta_{q})_{n}} \frac{z^{n}}{n!} \quad (p \le q+1),$$
(1.3)

where $(\lambda)_n$ is the Pochhammer symbol defined, in terms of the Gamma function, by

$$\begin{aligned} (\lambda)_{\nu} &:= \frac{\Gamma(\lambda+\nu)}{\Gamma(\lambda)} & (\lambda \in \mathbb{C} \setminus \mathbb{Z}_{0}^{-}) \\ &= \begin{cases} 1 & (\nu=0; \lambda \in \mathbb{C} \setminus \{0\}), \\ \lambda(\lambda+1)\cdots(\lambda+n-1) & (\nu=n \in \mathbb{N}; \lambda \in \mathbb{C}), \end{cases} \end{aligned}$$

it being understood conventionally that $(0)_0 = 1$. We note that the series ${}_pF_q(z)$ in (1.3) converges absolutely for $|z| < \infty$ if p < q + 1, and for $z \in \mathbb{U}$ if p = q + 1. The condition $p \le q + 1$ stated with the definition (1.3) will be assumed to hold true throughout this paper.

For functions $f_j(z) \in \mathcal{A}$, given by

$$f_j(z) = z + \sum_{n=2}^{\infty} a_{n,j} z^n \qquad (j = 1, 2),$$

we define the Hadamard product (or convolution) of $f_1(z)$ and $f_2(z)$ by

$$(f_1 * f_2)(z) = z + \sum_{n=2}^{\infty} a_{n,1} a_{n,2} z^n = (f_2 * f_1)(z) \qquad (z \in \mathbb{U}).$$

With a view to defining the Srivastava-Attiya transform, we recall here a general Hurwitz-Lerch zeta function, which is defined in [15] by the following

324

series:

$$\Phi(z,\lambda,\delta) := \frac{1}{\delta^{\lambda}} + \sum_{k=1}^{\infty} \frac{z^k}{(k+\delta)^{\lambda}}$$
$$(\delta \in \mathbb{C} \setminus \mathbb{Z}_0^-; \lambda \in \mathbb{C} \text{ when } z \in \mathcal{U}; \operatorname{Re}(\lambda) > 1 \text{ when } |z| = 1).$$

For further interesting properties and characteristics of the Hurwitz-Lerch Zeta function and other related special functions, see for example [4], [10] and [16].

In the literature on special functions one often finds applications of operational techniques involving various integral transforms (see [7], [13] and [17]). Recently, Srivastava and Attiya [14] have introduced the linear operator $\mathcal{L}_{\lambda,\delta}: \mathcal{A} \to \mathcal{A}$, defined in terms of the Hadamard product by

$$\mathcal{L}_{\lambda,\delta}f(z) = \mathcal{G}_{\lambda,\delta}(z) * f(z) \qquad (\delta \in \mathbb{C} \setminus \mathbb{Z}_0^-; \lambda \in \mathbb{C}; z \in \mathbb{U}),$$
(1.4)

where

$$\mathcal{G}_{\lambda,\delta}(z) = (1+\delta)^{\lambda} \left[\Phi(z,\lambda,\delta) - \delta^{-\lambda} \right] \qquad (z \in \mathbb{U}).$$
(1.5)

The operator $\mathcal{L}_{\lambda,\delta}$ is now popularly known in the literature as the Srivastava-Attiya operator. Various class-mapping properties of the operator $\mathcal{L}_{\lambda,\delta}$ (and its variants) are discussed in the recent works of Srivastava and Attiya [14], Liu [9], Murugusundaramoorthy [12], Yuan and Liu [18] and others.

It is easy to observe from (1.1) and (1.4) that

$$\mathcal{L}_{\lambda,\delta}f(z) = z + \sum_{k=2}^{\infty} \left(\frac{1+\delta}{k+\delta}\right)^{\lambda} a_k z^k.$$
 (1.6)

We note that:

- (i) $\mathcal{L}_{0,\delta}f(z) = f(z);$
- (ii) $\mathcal{L}_{1,0}f(z) = \mathcal{L}f(z) = \int_0^z \frac{f(t)}{t} dt$ $(f \in \mathcal{A})$ (see Alexander [1]); (iii) $\mathcal{L}_{m,1}f(z) = \mathcal{I}^m f(z)$ $(m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, \cdots\})$ (see Flett [5]);
- (iv) $\mathcal{L}_{\gamma,1}f(z) = \mathcal{Q}^{\gamma}f(z)$ ($\gamma > 0$) (see Jung et al. [7]); (v) $\mathcal{L}_{m,0}f(z) = \mathcal{L}^m f(z)$ ($m \in \mathbb{N}_0$) (see Sălăgean [13]).

In this article, we determine some radii for normalized analytic functions f(z) defined by (1.1) with $|a_n| \leq n$ $(n = 2, 3, 4 \cdots)$ in order to satisfy such inequalities as $\operatorname{Re}\{f'(z)\} > \alpha \ (0 \le \alpha < 1)$. Moreover, some interesting consequences for certain operator defined through convolution are also pointed out.

Y. C. Kim and J. H. Choi

2. Main results

We begin by proving the following theorem.

Theorem 2.1. Let the function f(z) be defined by (1.1) and suppose that $|a_n| \leq n$ for $n = 2, 3, 4, \cdots$. Then we have

$$f(z) \in \mathcal{P}(\alpha) \quad for \ |z| < r_0, \tag{2.1}$$

where $0 \leq \alpha < 1$ and r_0 is the unique solution of the equation

$$(2-\alpha)r^3 - 3(2-\alpha)r^2 + (7-3\alpha)r - 1 + \alpha = 0$$

Furthermore, the radius r_0 is sharp.

Proof. From the hypothesis, we obtain

$$\operatorname{Re}\left\{f'(z)\right\} \ge 1 - \sum_{n=2}^{\infty} n^2 r^{n-1} \qquad (|z|=r)$$

Since

$$\frac{z}{(1-z)^2} = \sum_{n=1}^{\infty} nz^n \quad \text{and} \quad \frac{1+z}{(1-z)^3} = \sum_{n=1}^{\infty} n^2 z^{n-1}, \tag{2.2}$$

we readily have

$$\operatorname{Re}\{f'(z) - \alpha\} \geq 2 - \frac{1+r}{(1-r)^3} - \alpha$$

= $\frac{-(2-\alpha)r^3 + 3(2-\alpha)r^2 - (7-3\alpha)r + 1 - \alpha}{(1-r)^3}$. (2.3)

If we put $g(r) = (2-\alpha)r^3 - 3(2-\alpha)r^2 + (7-3\alpha)r - 1 + \alpha$, it is easily seen that there exist the unique solution r_0 of the equation g(r) = 0. Since $g(0) = -1 + \alpha$ and g(1) = 2,

$$r_0 \in (0, 1).$$

By applying (2.2) and (2.3), we see that

$$\operatorname{Re}\{f'(z) - \alpha\} > 0 \quad \text{for } |z| < r_0,$$

which implies that $f(z) \in \mathcal{P}(\alpha)$ for $|z| < r_0$.

Also, if we take

$$f(z) = 2z - \frac{z}{(1-z)^2}$$
 (|z| < 1),

then from (2.2) we have

$$\operatorname{Re}\{f'(z) - \alpha\} \ge 0 \qquad |z| \le r_0 < 1,$$

and $f'(r_0) = \alpha$. Hence the radius r_0 is sharp. This evidently completes the proof of Theorem 2.1.

326

By the theorem of de Branges [2], we can restate Theorem 2.1 as follows: Corollary 2.2. If $f(z) \in S$, then

 $f(z) \in \mathcal{P}(\alpha) \qquad (|z| < r_0),$

where $0 \leq \alpha < 1$ and r_0 is defined in Theorem 2.1.

Corollary 2.3. Let the function f(z) be defined by (1.1) and suppose that $|a_n| \leq n$ for $n = 2, 3, 4, \cdots$. If we put

$$F(z) = \frac{1}{z} \int_0^z f(t) dt,$$
 (2.4)

then

$$F(z) \in \mathcal{P}(\alpha) \quad for \ |z| < r_1,$$

where $0 \leq \alpha < 1$ and r_1 is the positive root of the equation

$$\frac{1}{(1-r)^2} - \frac{1}{r(1-r)} - \frac{1}{r^2}\log(1-r) + \alpha = 1.$$

Proof. From (2.4) we obtain

$$\operatorname{Re}\{F'(z) - \alpha\} \geq \frac{1}{2} - \sum_{n=2}^{\infty} \frac{n^2}{n+1} r^{n-1} - \alpha \quad (|z| = r)$$
$$= 1 - \alpha - \sum_{n=1}^{\infty} \frac{n^2}{n+1} r^{n-1}.$$
(2.5)

Since

$$\sum_{n=1}^{\infty} \frac{n^2}{n+1} z^{n-1} = \left(\frac{1}{z} \int_0^z \frac{t}{(1-t)^2} dt\right)'$$
$$= \frac{1}{(1-z)^2} - \frac{1}{z(1-z)} - \frac{1}{z^2} \log(1-z),$$

it follows from (2.5) that $\operatorname{Re}\{F'(z) - \alpha\} > 0$ for $|z| < r_1$. Hence we conclude that $F(z) \in \mathcal{P}(\alpha)$ for $|z| < r_1$, which completes the proof of Corollary 2.3. \Box

Next, we can prove the following theorem.

Theorem 2.4. Let the function f(z) be defined by (1.1) and suppose that $|a_n| \leq n$ for $n = 2, 3, 4, \cdots$. Then

$$\mathcal{L}_{m,\delta} f(z) \in \mathcal{P}(\alpha) \quad for \ |z| < r_2, \tag{2.6}$$

where $m \in \mathbb{N}$, $\delta > 0$, $0 \le \alpha < 1$ and r_2 is the solution of the equation

 $_{m+2}F_{m+1}(1+\delta,\cdots,1+\delta,2,2;1,2+\delta,\cdots,2+\delta;r)+\alpha=2.$

Proof. From (1.6) we have

$$\operatorname{Re}\left\{\left(\mathcal{L}_{m,\delta}f(z)\right)'-\alpha\right\}$$

$$\geq 1-\sum_{n=2}^{\infty}\left(\frac{1+\delta}{n+\delta}\right)^{m}n^{2}r^{n-1}-\alpha \quad (|z|=r)$$

$$= 2-\sum_{n=0}^{\infty}\left(\frac{1+\delta}{n+1+\delta}\right)^{m}(n+1)^{2}r^{n}-\alpha$$

$$= 2-\alpha-m+2F_{m+1}(1+\delta,\cdots,1+\delta,2,2;1,2+\delta,\cdots,2+\delta;r).$$

Hence, if $|z| < r_2$, then we obtain (2.6). This completes the proof of Theorem 2.4.

Taking $\alpha = 0$ in Theorem 2.4, we have the following.

Corollary 2.5. Let the function f(z) be defined by (1.1) and suppose that $|a_n| \leq n$ for $n = 2, 3, 4, \cdots$. Then

$$\mathcal{L}_{m,\delta} f(z) \in \mathcal{P} \quad for \ |z| < r_3,$$

where $m \in \mathbb{N}$, $\delta > 0$ and r_3 is the solution of the equation

$$_{m+2}F_{m+1}(1+\delta,\cdots,1+\delta,2,2;1,2+\delta,\cdots,2+\delta;r)=2$$

Remark 2.6. If we put $\delta = 1$ in Corollary 2.5, then it would immediately yield the result due to Kim and Nunokawa [8, Theorem 3].

Acknowledgments The authors would like to express their sincere thanks to the referee for his insightful suggestions to improve the paper in current form.

References

- J.W. Alexander, Functions which map the interior of the unit corcle upon simple regions, Ann. Math. Ser., 2(17) (1915), 12–22.
- [2] L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152.
- [3] P.L. Duren, Univalent Function, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
- [4] C. Ferreira and J.L. Lopez, Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl., 298 (2004), 210–224.
- [5] T.M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequaities, J. Math. Anal. Appl., 38 (1972), 746–765.
- [6] D.J. Hallenbeck, Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc., 192 (1974), 285–292.
- [7] I.B. Jung, Y.C. Kim and H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138–147.
- [8] Y.C. Kim and M. Nunokawa, On some radius results for certain analytic functions, Kyungpook Math. J., 37 (1997), 61–65.

328

- [9] J.L. Liu, Sufficient conditions for strongly starlike functions involving the generalized Srivastava-Attiya operator, Intergal Transforms Spec. Funct., 22 (2011), 79–90.
- [10] S.D. Lin, H.M. Srivastava and P.Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Intergal Transforms Spec. Funct., 17 (2006), 817–827.
- [11] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532–537.
- [12] G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator, Intergal Transforms Spec. Funct., 23 (2012), 97– 103.
- [13] G.S. Sălăgean, Subclasses of Univalent Functions, Lecture Notes in Mathematics, Vol. 1013, Springer, Berlin, 1983, pp. 362–372.
- [14] H.M. Srivastava and A.A. Attiya, An integral operator associated with thw Hurwitz-Lerch Zeta function and differential subordination, Intergal Transforms Spec. Funct., 18 (2007), 207–216.
- [15] H.M. Srivastava and J. Choi, Series Associated with the Zeta and Related Function, Kluwer Academic Publishers, Dordrecht, 2001.
- [16] H.M. Srivastava, D. Jankov, T.K. Pogány and R.K. Saxena, Two-side inequalities for the extended Hurwitz-Lerch Zeta function, Comput. Math. Appl., 62 (2011), 516–522.
- [17] A.K. Wanas, J. Choi and N.E. Cho, Geometric properties for a family of holomorpic functions associated with Wanas operator defined on complex Hilbert space, Asian-European J. Math., (2020), doi:10.1142/s1793557121501229.
- [18] S.M. Yuan and Z.M. Liu, Some properties of two subclasses of k-fold symmetric functions associated with Srivastava-Attiya operator, Appl. Math. Comput., 218 (2011), 1136– 1141.