# SOME RADIUS RESULTS OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE SRIVASTAVA-ATTIYA OPERATOR 

Yong Chan Kim ${ }^{1}$ and Jae Ho Choi ${ }^{2}$<br>${ }^{1}$ Department of Mathematics Education, Yeungnam University Gyongsan 38541, Korea<br>e-mail: kimyc@ynu.ac.kr<br>${ }^{2}$ Department of Mathematics Education, Daegu National University of Education<br>219 Jungangdaero, Namgu, Daegu 42411, Korea<br>e-mail: choijh@dnue.ac.kr


#### Abstract

The main object of the present paper is to investigate some radius results of the functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}(|z|<1)$ with $\left|a_{n}\right| \leq n$ for all $n \in \mathbb{N}$. Some applications for certain operator defined through convolution are also considered.


## 1. Introduction and definitions

Let $\mathcal{A}$ denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Also let $\mathcal{S}$ denote the class of functions in $\mathcal{A}$ which are univalent in the unit disk $\mathbb{U}$.

Here and in the following, let $\mathbb{C}, \mathbb{N}$ and $\mathbb{Z}_{0}^{-}$be the sets of complex numbers, positive integers, and non-positive integers, respectively. Further we let $\mathcal{P}(\alpha)$

[^0]denote the subclass of $\mathcal{S}$ consisting of those functions satisfying
\[

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha \quad(0 \leq \alpha<1) . \tag{1.2}
\end{equation*}
$$

\]

Here the class $\mathcal{P}(\alpha)$ was introduced by Hallenbeck [6]. In particular, the class $\mathcal{P}(0)=\mathcal{P}$ was investigated by MacGregor [11]. Here we recall NoshiroWarschawski theorem (see, e.g., [3, Theorem 2.16]): If $f$ is analytic in a convex domain $D$ and $\operatorname{Re}\left\{f^{\prime}(z)\right\}>0$ there, then $f$ is univalent in $D$.

In view of this theorem, we find that the class of functions in $\mathcal{A}$ which satisfy (1.2) become a subclass of $\mathcal{S}$. In the regard, the condition " $\mathcal{P}(\alpha)$ is a subclass of $\mathcal{S}$ " is redundant.

Let $\alpha_{j}(j=1, \cdots, p)$ and $\beta_{j}(j=1, \cdots, q)$ be complex numbers with $\beta_{j} \notin \mathbb{Z}_{0}^{-}:=\{0,-1,-2, \cdots\}$. Then the generalized hypergeometric function ${ }_{p} F_{q}(z)$ is defined by

$$
\begin{align*}
{ }_{p} F_{q}(z) & \equiv{ }_{p} F_{q}\left(\alpha_{1}, \cdots, \alpha_{p} ; \beta_{1}, \cdots, \beta_{q} ; z\right) \\
& =\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{p}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{q}\right)_{n}} \frac{z^{n}}{n!} \quad(p \leq q+1), \tag{1.3}
\end{align*}
$$

where $(\lambda)_{n}$ is the Pochhammer symbol defined, in terms of the Gamma function, by

$$
\begin{aligned}
(\lambda)_{\nu}: & : \frac{\Gamma(\lambda+\nu)}{\Gamma(\lambda)} \quad\left(\lambda \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right) \\
& = \begin{cases}1 & (\nu=0 ; \lambda \in \mathbb{C} \backslash\{0\}), \\
\lambda(\lambda+1) \cdots(\lambda+n-1) & (\nu=n \in \mathbb{N} ; \lambda \in \mathbb{C}),\end{cases}
\end{aligned}
$$

it being understood conventionally that $(0)_{0}=1$. We note that the series ${ }_{p} F_{q}(z)$ in (1.3) converges absolutely for $|z|<\infty$ if $p<q+1$, and for $z \in \mathbb{U}$ if $p=q+1$. The condition $p \leq q+1$ stated with the definition (1.3) will be assumed to hold true throughout this paper.

For functions $f_{j}(z) \in \mathcal{A}$, given by

$$
f_{j}(z)=z+\sum_{n=2}^{\infty} a_{n, j} z^{n} \quad(j=1,2)
$$

we define the Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ by

$$
\left(f_{1} * f_{2}\right)(z)=z+\sum_{n=2}^{\infty} a_{n, 1} a_{n, 2} z^{n}=\left(f_{2} * f_{1}\right)(z) \quad(z \in \mathbb{U}) .
$$

With a view to defining the Srivastava-Attiya transform, we recall here a general Hurwitz-Lerch zeta function, which is defined in [15] by the following
series:

$$
\begin{gathered}
\Phi(z, \lambda, \delta):=\frac{1}{\delta^{\lambda}}+\sum_{k=1}^{\infty} \frac{z^{k}}{(k+\delta)^{\lambda}} \\
\left(\delta \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; \lambda \in \mathbb{C} \text { when } z \in \mathcal{U} ; \operatorname{Re}(\lambda)>1 \text { when }|z|=1\right) .
\end{gathered}
$$

For further interesting properties and characteristics of the Hurwitz-Lerch Zeta function and other related special functions, see for example [4], [10] and [16].

In the literature on special functions one often finds applications of operational techniques involving various integral transforms (see [7], [13] and [17]). Recently, Srivastava and Attiya [14] have introduced the linear operator $\mathcal{L}_{\lambda, \delta}: \mathcal{A} \rightarrow \mathcal{A}$, defined in terms of the Hadamard product by

$$
\begin{equation*}
\mathcal{L}_{\lambda, \delta} f(z)=\mathcal{G}_{\lambda, \delta}(z) * f(z) \quad\left(\delta \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; \lambda \in \mathbb{C} ; z \in \mathbb{U}\right) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{G}_{\lambda, \delta}(z)=(1+\delta)^{\lambda}\left[\Phi(z, \lambda, \delta)-\delta^{-\lambda}\right] \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

The operator $\mathcal{L}_{\lambda, \delta}$ is now popularly known in the literature as the SrivastavaAttiya operator. Various class-mapping properties of the operator $\mathcal{L}_{\lambda, \delta}$ (and its variants) are discussed in the recent works of Srivastava and Attiya [14], Liu [9], Murugusundaramoorthy [12], Yuan and Liu [18] and others.

It is easy to observe from (1.1) and (1.4) that

$$
\begin{equation*}
\mathcal{L}_{\lambda, \delta} f(z)=z+\sum_{k=2}^{\infty}\left(\frac{1+\delta}{k+\delta}\right)^{\lambda} a_{k} z^{k} \tag{1.6}
\end{equation*}
$$

We note that:
(i) $\mathcal{L}_{0, \delta} f(z)=f(z)$;
(ii) $\mathcal{L}_{1,0} f(z)=\mathcal{L} f(z)=\int_{0}^{z} \frac{f(t)}{t} d t \quad(f \in \mathcal{A})$ (see Alexander [1]);
(iii) $\mathcal{L}_{m, 1} f(z)=\mathcal{I}^{m} f(z) \quad\left(m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}=\{0,1,2,3, \cdots\}\right)$ (see Flett [5]);
(iv) $\mathcal{L}_{\gamma, 1} f(z)=\mathcal{Q}^{\gamma} f(z) \quad(\gamma>0)$ (see Jung et al. [7]);
(v) $\mathcal{L}_{m, 0} f(z)=\mathcal{L}^{m} f(z) \quad\left(m \in \mathbb{N}_{0}\right)$ (see Sălăgean [13]).

In this article, we determine some radii for normalized analytic functions $f(z)$ defined by (1.1) with $\left|a_{n}\right| \leq n(n=2,3,4 \cdots)$ in order to satisfy such inequalities as $\operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha(0 \leq \alpha<1)$. Moreover, some interesting consequences for certain operator defined through convolution are also pointed out.

## 2. Main Results

We begin by proving the following theorem.
Theorem 2.1. Let the function $f(z)$ be defined by (1.1) and suppose that $\left|a_{n}\right| \leq n$ for $n=2,3,4, \cdots$. Then we have

$$
\begin{equation*}
f(z) \in \mathcal{P}(\alpha) \quad \text { for }|z|<r_{0} \tag{2.1}
\end{equation*}
$$

where $0 \leq \alpha<1$ and $r_{0}$ is the unique solution of the equation

$$
(2-\alpha) r^{3}-3(2-\alpha) r^{2}+(7-3 \alpha) r-1+\alpha=0
$$

Furthermore, the radius $r_{0}$ is sharp.
Proof. From the hypothesis, we obtain

$$
\operatorname{Re}\left\{f^{\prime}(z)\right\} \geq 1-\sum_{n=2}^{\infty} n^{2} r^{n-1} \quad(|z|=r)
$$

Since

$$
\begin{equation*}
\frac{z}{(1-z)^{2}}=\sum_{n=1}^{\infty} n z^{n} \quad \text { and } \quad \frac{1+z}{(1-z)^{3}}=\sum_{n=1}^{\infty} n^{2} z^{n-1} \tag{2.2}
\end{equation*}
$$

we readily have

$$
\begin{align*}
\operatorname{Re}\left\{f^{\prime}(z)-\alpha\right\} & \geq 2-\frac{1+r}{(1-r)^{3}}-\alpha \\
& =\frac{-(2-\alpha) r^{3}+3(2-\alpha) r^{2}-(7-3 \alpha) r+1-\alpha}{(1-r)^{3}} . \tag{2.3}
\end{align*}
$$

If we put $g(r)=(2-\alpha) r^{3}-3(2-\alpha) r^{2}+(7-3 \alpha) r-1+\alpha$, it is easily seen that there exist the unique solution $r_{0}$ of the equation $g(r)=0$. Since $g(0)=-1+\alpha$ and $g(1)=2$,

$$
r_{0} \in(0,1) .
$$

By applying (2.2) and (2.3), we see that

$$
\operatorname{Re}\left\{f^{\prime}(z)-\alpha\right\}>0 \quad \text { for }|z|<r_{0},
$$

which implies that $f(z) \in \mathcal{P}(\alpha)$ for $|z|<r_{0}$.
Also, if we take

$$
f(z)=2 z-\frac{z}{(1-z)^{2}} \quad(|z|<1)
$$

then from (2.2) we have

$$
\operatorname{Re}\left\{f^{\prime}(z)-\alpha\right\} \geq 0 \quad|z| \leq r_{0}<1,
$$

and $f^{\prime}\left(r_{0}\right)=\alpha$. Hence the radius $r_{0}$ is sharp. This evidently completes the proof of Theorem 2.1.

By the theorem of de Branges [2], we can restate Theorem 2.1 as follows:
Corollary 2.2. If $f(z) \in \mathcal{S}$, then

$$
f(z) \in \mathcal{P}(\alpha) \quad\left(|z|<r_{0}\right),
$$

where $0 \leq \alpha<1$ and $r_{0}$ is defined in Theorem 2.1.
Corollary 2.3. Let the function $f(z)$ be defined by (1.1) and suppose that $\left|a_{n}\right| \leq n$ for $n=2,3,4, \cdots$. If we put

$$
\begin{equation*}
F(z)=\frac{1}{z} \int_{0}^{z} f(t) d t \tag{2.4}
\end{equation*}
$$

then

$$
F(z) \in \mathcal{P}(\alpha) \quad \text { for } \quad|z|<r_{1}
$$

where $0 \leq \alpha<1$ and $r_{1}$ is the positive root of the equation

$$
\frac{1}{(1-r)^{2}}-\frac{1}{r(1-r)}-\frac{1}{r^{2}} \log (1-r)+\alpha=1 .
$$

Proof. From (2.4) we obtain

$$
\begin{align*}
\operatorname{Re}\left\{F^{\prime}(z)-\alpha\right\} & \geq \frac{1}{2}-\sum_{n=2}^{\infty} \frac{n^{2}}{n+1} r^{n-1}-\alpha \quad(|z|=r) \\
& =1-\alpha-\sum_{n=1}^{\infty} \frac{n^{2}}{n+1} r^{n-1} \tag{2.5}
\end{align*}
$$

Since

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n^{2}}{n+1} z^{n-1} & =\left(\frac{1}{z} \int_{0}^{z} \frac{t}{(1-t)^{2}} d t\right)^{\prime} \\
& =\frac{1}{(1-z)^{2}}-\frac{1}{z(1-z)}-\frac{1}{z^{2}} \log (1-z)
\end{aligned}
$$

it follows from (2.5) that $\operatorname{Re}\left\{F^{\prime}(z)-\alpha\right\}>0$ for $|z|<r_{1}$. Hence we conclude that $F(z) \in \mathcal{P}(\alpha)$ for $|z|<r_{1}$, which completes the proof of Corollary 2.3.

Next, we can prove the following theorem.
Theorem 2.4. Let the function $f(z)$ be defined by (1.1) and suppose that $\left|a_{n}\right| \leq n$ for $n=2,3,4, \cdots$. Then

$$
\begin{equation*}
\mathcal{L}_{m, \delta} f(z) \in \mathcal{P}(\alpha) \quad \text { for }|z|<r_{2} \tag{2.6}
\end{equation*}
$$

where $m \in \mathbb{N}, \delta>0,0 \leq \alpha<1$ and $r_{2}$ is the solution of the equation

$$
{ }_{m+2} F_{m+1}(1+\delta, \cdots, 1+\delta, 2,2 ; 1,2+\delta, \cdots, 2+\delta ; r)+\alpha=2 .
$$

Proof. From (1.6) we have

$$
\begin{aligned}
& \operatorname{Re}\left\{\left(\mathcal{L}_{m, \delta} f(z)\right)^{\prime}-\alpha\right\} \\
& \geq 1-\sum_{n=2}^{\infty}\left(\frac{1+\delta}{n+\delta}\right)^{m} n^{2} r^{n-1}-\alpha \quad(|z|=r) \\
& =2-\sum_{n=0}^{\infty}\left(\frac{1+\delta}{n+1+\delta}\right)^{m}(n+1)^{2} r^{n}-\alpha \\
& =2-\alpha-{ }_{m+2} F_{m+1}(1+\delta, \cdots, 1+\delta, 2,2 ; 1,2+\delta, \cdots, 2+\delta ; r) .
\end{aligned}
$$

Hence, if $|z|<r_{2}$, then we obtain (2.6). This completes the proof of Theorem 2.4 .

Taking $\alpha=0$ in Theorem 2.4, we have the following.
Corollary 2.5. Let the function $f(z)$ be defined by (1.1) and suppose that $\left|a_{n}\right| \leq n$ for $n=2,3,4, \cdots$. Then

$$
\mathcal{L}_{m, \delta} f(z) \in \mathcal{P} \quad \text { for }|z|<r_{3},
$$

where $m \in \mathbb{N}, \delta>0$ and $r_{3}$ is the solution of the equation

$$
{ }_{m+2} F_{m+1}(1+\delta, \cdots, 1+\delta, 2,2 ; 1,2+\delta, \cdots, 2+\delta ; r)=2
$$

Remark 2.6. If we put $\delta=1$ in Corollary 2.5 , then it would immediately yield the result due to Kim and Nunokawa [8, Theorem 3].

Acknowledgments The authors would like to express their sincere thanks to the referee for his insightful suggestions to improve the paper in current form.

## References

[1] J.W. Alexander, Functions which map the interior of the unit corcle upon simple regions, Ann. Math. Ser., 2(17) (1915), 12-22.
[2] L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137-152.
[3] P.L. Duren, Univalent Function, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[4] C. Ferreira and J.L. Lopez, Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl., 298 (2004), 210-224.
[5] T.M. Flett, The dual of an inequality of Hardy and Littlewood and some related ineqalities, J. Math. Anal. Appl., 38 (1972), 746-765.
[6] D.J. Hallenbeck, Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc., 192 (1974), 285-292.
[7] I.B. Jung, Y.C. Kim and H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147.
[8] Y.C. Kim and M. Nunokawa, On some radius results for certain analytic functions, Kyungpook Math. J., 37 (1997), 61-65.
[9] J.L. Liu, Sufficient conditions for strongly starlike functions involving the generalized Srivastava-Attiya operator, Intergal Transforms Spec. Funct., 22 (2011), 79-90.
[10] S.D. Lin, H.M. Srivastava and P.Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Intergal Transforms Spec. Funct., 17 (2006), 817-827.
[11] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
[12] G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator, Intergal Transforms Spec. Funct., 23 (2012), 97103.
[13] G.S. Sălăgean, Subclasses of Univalent Functions, Lecture Notes in Mathematics, Vol. 1013, Springer, Berlin, 1983, pp. 362-372.
[14] H.M. Srivastava and A.A. Attiya, An integral operator associated with thw HurwitzLerch Zeta function and differential subordination, Intergal Transforms Spec. Funct., 18 (2007), 207-216.
[15] H.M. Srivastava and J. Choi, Series Associated with the Zeta and Related Function, Kluwer Academic Publishers, Dordrecht, 2001.
[16] H.M. Srivastava, D. Jankov, T.K. Pogány and R.K. Saxena, Two-side inequalities for the extended Hurwitz-Lerch Zeta function, Comput. Math. Appl., 62 (2011), 516-522.
[17] A.K. Wanas, J. Choi and N.E. Cho, Geometric properties for a family of holomorpic functions associated with Wanas operator defined on complex Hilbert space, AsianEuropean J. Math., (2020), doi:10.1142/s1793557121501229.
[18] S.M. Yuan and Z.M. Liu, Some properties of two subclasses of $k$-fold symmetric functions associated with Srivastava-Attiya operator, Appl. Math. Comput., 218 (2011), 11361141.


[^0]:    ${ }^{0}$ Received September 24, 2020. Revised February 8, 2021. Accepted February 10, 2021.
    ${ }^{0} 2010$ Mathematics Subject Classification: 30C45, 33C20.
    ${ }^{0}$ Keywords: Analytic function, hypergeometric function, Hadamard product (convolution), Hurwitz-Lerch zeta function, Srivastava-Attiya operator.
    ${ }^{0}$ Corresponding author: Jae Ho Choi(choijh@dnue.ac.kr).

