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Abstract. Let p(z)be a polynomial of degree n. Then Bernstein’s inequality [12,18] is

max
|z|=1

|p
′
(z)| ≤ nmax

|z|=1
|(z)|.

For q > 0, we denote

‖p‖q =

{
1

2π

∫ 2π

0

|p(eiθ)|qdθ
} 1
q

,

and a well-known fact from analysis [17] gives

lim
q→∞

{
1

2π

∫ 2π

0

|p(eiθ)|qdθ
} 1
q

= max
|z|=1

|p(z)|.

Above Bernstein’s inequality was extended by Zygmund [19] into Lq norm by proving

‖p
′
‖q ≤ n‖p‖q, q ≥ 1.

Let p(z) = a0 +
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, be a polynomial of degree n having no zero in

|z| < k, k ≥ 1. Then for 0 < r ≤ R ≤ k, Aziz and Zargar [4] proved

max
|z|=R

|p
′
(z)| ≤ nRµ−1(Rµ + kµ)

n
µ
−1

(rµ + kµ)
n
µ

max
|z|=r

|p(z)|.

In this paper, we obtain the Lq version of the above inequality for q > 0. Further, we

extend a result of Aziz and Shah [3] into Lq analogue for q > 0. Our results not only extend

some known polynomial inequalities, but also reduce to some interesting results as particular

cases.
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1. Introduction

Let p(z) be a polynomial of degree n. We define

‖p‖q =

{
1

2π

∫ 2π

0
|p(eiθ)|qdθ

} 1
q

, 0 < q <∞. (1.1)

If we let q → ∞ in the above equality and make use of the well-known fact
from analysis [17] that

lim
q→∞

{
1

2π

∫ 2π

0
|p(eiθ)|qdθ

} 1
q

= max
|z|=1

|p(z)|,

we can suitably denote

‖p‖∞ = max
|z|=1

|p(z)|.

Similarly, we can define ‖p‖0 = exp
{

1
2π

∫ 2π
0 log|p(eiθ)|dθ

}
and show that

lim
q→0+

‖p‖q = ‖p‖0. It would be of further interest that by taking limits as lim
q→0+

that the stated result holding for q > 0, holds for q = 0 as well.
For r > 0, we denote by M(p, r) = max

|z|=r
|p(z)|.

A famous result due to Bernstein [12 or also see 18] states that if p(z) is a
polynomial of degree n, then

‖p′‖∞ ≤ n‖p‖∞. (1.2)

Inequality (1.2) can be obtained by letting q →∞ in the inequality

‖p′‖q ≤ n‖p‖q, q > 0. (1.3)

Inequality (1.3) for q ≥ 1 is due to Zygmund [19]. Arestov [1] proved that
(1.3) remains valid for 0 < q < 1 as well. If we restrict ourselves to the class
of polynomials having no zeros in |z| < 1, then inequality (1.2) and (1.3) can
be respectively improved by

‖p′‖∞ ≤
n

2
‖p‖∞ (1.4)

and

‖p′‖q ≤
n

‖1 + z‖q
‖p‖q, q > 0. (1.5)

Inequality (1.4) was conjectured by Erdös and later verified by Lax [10],
whereas, inequality (1.5) was proved by de-Bruijn [6] for q ≥ 1. Rahman
and Schmeisser [15] showed that (1.5) remains true for 0 < q < 1.

As a generalization of (1.4), Malik [11] proved that if p(z) does not vanish
in |z| < k, k ≥ 1, then

‖p′‖∞ ≤
n

1 + k
‖p‖∞. (1.6)
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Under the same hypotheses of the polynomial p(z), Govil and Rahman [9]
extended inequality (1.6) to Lq norm by showing that

‖p′‖q ≤
n

‖k + z‖q
‖p‖q, q ≥ 1. (1.7)

It was shown by Gardner and Weems [8] and independently by Rather [16]
that (1.7) also holds for 0 < q < 1. Further, as a generalization of (1.6)

Bidkham and Dewan [5] proved that if p(z) =

n∑
ν=0

aνz
ν is a polynomial of

degree n having no zeros in |z| < k, k ≥ 1, then

‖p′(rz)‖∞ ≤
n(r + k)n−1

(1 + k)n
‖p‖∞ for 1 ≤ r ≤ k. (1.8)

As a generalization of (1.8), Aziz and Zargar [4] proved the following theo-
rem.

Theorem 1.1. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, has no zeros in |z| < k,

k ≥ 1, then for 0 < r ≤ R ≤ k,

‖p′(Rz)‖∞ ≤
nRµ−1(Rµ + kµ)

n
µ
−1

(rµ + kµ)
n
µ

‖p(rz)‖∞. (1.9)

The result is best possible and equality in (1.9) holds for p(z) = (zµ + kµ)
n
µ ,

where n is a multiple of µ.

Further, as an improvement and generalization of (1.8), Aziz and Shah [3]
proved the following theorem.

Theorem 1.2. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having no zeros in the disk |z| < k, k ≥ 0, then for 0 < r ≤ R ≤ k,

‖p′(Rz)‖∞ ≤
nRµ−1(Rµ + kµ)

n
µ
−1

(rµ + kµ)
n
µ

{‖p(rz)‖∞ −m} , (1.10)

where

m = min
|z|=k

|p(z)|.

The result is best possible and equality in (1.10) holds for the polynomial p(z) =

(zµ + kµ)
n
µ , where n is a multiple of µ.
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2. Lemmas

For the proofs of the theorems, we require the following lemmas.

Lemma 2.1. ([14]) If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, having no zeros in

|z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kµ
max
|z|=1

|p(z)|. (2.1)

Lemma 2.2. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, has no zeros in |z| < k,

k > 0 then for 0 < r ≤ R ≤ k,

|p(Reiθ)| ≤ |p(reiθ)|+
∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt (2.2)

and

M(p, r) +

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt ≤

(
kµ +Rµ

kµ + rµ

)n
µ

M(p, r). (2.3)

Proof. Since p(z) 6= 0 for |z| < 1, p(tz) 6= 0 for |z| < 1
t and so by Lemma 2.1,

max
|z|=1

t|p′(tz)| ≤ n

kµ + t−µ
max |p(tz)|,

this gives

M(p
′
, t) ≤ ntµ−1

tµ + kµ
M(p, t). (2.4)

Now, for 0 ≤ r < R ≤ k and θ ∈ [0, 2π) we have,

|p(Reiθ)| ≤ |p(reiθ)|+
∫ R

r
|p′(teiθ)|dt,

which implies

|p(Reiθ)| ≤ |p(reiθ)|+
∫ R

r
M(p

′
, t)dt. (2.5)

Using (2.4) in (2.5) we obtain

|p(Reiθ)| ≤ |p(reiθ)|+
∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt. (2.6)

Which completes the first inequality (2.2).
Further, taking maximum over θ in (2.6), we have

M(p,R) ≤M(p, r) +

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt. (2.7)
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Now let us denote the right hand side of inequality (2.7) by φ(R). Then

φ
′
(R) ≤ nRµ−1

Rµ + kµ
φ(R)

or

φ
′
(R)− nRµ−1

Rµ + kµ
φ(R) ≤ 0. (2.8)

Multiplying both side of (2.8) by (Rµ + kµ)
−n
µ , we obtain

d

dR
(Rµ + kµ)

−n
µ φ(R) ≤ 0,

which implies that (Rµ +kµ)
−n
µ φ(R) is a nonincreasing function of R in (0, k].

Thus for 0 < r ≤ R ≤ k,

φ(r) ≥
(
kµ + rµ

kµ +Rµ

)n
µ

φ(R). (2.9)

Since φ(r) = M(p, r) and using the value of φ(R) in (2.9), we get

M(p, r) ≥
(
kµ + rµ

kµ +Rµ

)n
µ
[
M(p, r) +

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt

]
.

This completes the proof of inequality (2.3). �

Lemma 2.3. ([14]) If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zeros in |z| < k, k ≥ 1, then on |z| = 1

|q′(z)| ≥ kµ|p′(z)|, where q(z) = znp

(
1

z

)
. (2.10)

Lemma 2.4. ([2]) If p(z) is a polynomial of degree n and q(z) = znp(1z ), then
for each α, 0 ≤ α < 2π and q > 0,∫ 2π

0

∫ 2π

0
|q′(eiθ) + eiαp

′
(eiθ)|qdθdα ≤ 2πnq

∫ 2π

0
|p(eiθ)|qdθ. (2.11)

Lemma 2.5. ([7]) Let z be complex and independent of α, where α is real,
then for q > 0, ∫ 2π

0
|1 + zeiα|qdα =

∫ 2π

0
|eiα + |z‖qdα. (2.12)
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Lemma 2.6. ([13]) If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n which does not vanish in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kµ

{
max
|z|=1

|p(z)| − min
|z|=k

|p(z)|
}
. (2.13)

Lemma 2.7. Let p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree

n having no zeros in |z| < k, k > 0, then for 0 < r ≤ R ≤ k,

|p(Reiθ)| ≤ |p(reiθ)|+ n

[∫ R

r

tµ−1

tµ + kµ
M(p, t)dt−

∫ R

r

tµ−1

tµ + kµ
mdt

]
(2.14)

and

M(p, r) +

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt−

∫ R

r

ntµ−1

tµ + kµ
mdt

≤

[
M(p, r)−

{
1−

(
kµ + rµ

kµ +Rµ

)n
µ

}
m

](
kµ + rµ

kµ +Rµ

)n
µ

, (2.15)

where m = min
|z|=k

|p(z)|.

Proof. By hypotheses, p(z) has no zeros in |z| < k, therefore, the polynomial
F (z) = p(tz) has no zeros in |z| < k

t ,
k
t ≥ 1, where 0 < t ≤ k. Since k

t ≥ 1, by
applying Lemma 2.6 to F (z), it follows that

max
|z|=1

|F ′(z)| ≤ n

1 + kµ

tµ

{
max
|z|=1

|F (z)| − min
|z|= k

t

|F (z)|

}
,

this gives

max
|z|=t
|p′(z)| ≤ ntµ−1

tµ + kµ

{
max
|z|=t
|p(z)| − min

|z|=k
|p(z)|

}
. (2.16)

Now, for 0 < r ≤ R ≤ k, and 0 ≤ θ < 2π, we have

|p(Reiθ)− p(reiθ)| =
∣∣∣∣∫ R

r
eiθp

′
(teiθ)dt

∣∣∣∣ ≤ ∫ R

r
|p′(teiθ)|dt,

from which it follows

|p(Reiθ)| ≤ |p(reiθ)|+
∫ R

r
|p′(teiθ)|dt,

which implies

|p(Reiθ)| ≤ |p(reiθ)|+
∫ R

r
M(p

′
, t)dt. (2.17)
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Using (2.16) in (2.17), we obtain

|p(Reiθ)| ≤ |p(reiθ)|+ n

[∫ R

r

tµ−1

tµ + kµ
M(p, t)dt−

∫ R

r

tµ−1

tµ + kµ
mdt

]
, (2.18)

which is the first inequality of Lemma 2.7.
Further, taking maximum over θ in (2.18), we have

M(p,R) ≤M(p, r) + n

[∫ R

r

tµ−1

tµ + kµ
M(p, t)dt−

∫ R

r

tµ−1

tµ + kµ
mdt

]
. (2.19)

Now let us denote the right hand side of inequality (2.19) by φ(R). Then

φ
′
(R) =

nRµ−1

Rµ + kµ
M(p,R)− nRµ−1

Rµ + kµ
m. (2.20)

Using M(p,R) ≤ φ(R), equality (2.20) can be written as

φ
′
(R)− nRµ−1

Rµ + kµ
{φ(R)−m} ≤ 0. (2.21)

Multiplying both sides of (2.21) by (Rµ + kµ)
−n
µ , we get

φ
′
(R)(Rµ + kµ)

−n
µ − n(φ(R)−m)(Rµ + kµ)

−n
µ
−1
Rµ−1 ≤ 0,

which implies
d

dR

{
(φ(R)−m)(Rµ + kµ)

−n
µ

}
≤ 0. (2.22)

From (2.22) we conclude that the function,

{φ(R)−m} (Rµ + kµ)
−n
µ

is a nonincreasing function of R in (0, k]. Hence for 0 < r ≤ R ≤ k,

φ(r) ≥
(
kµ + rµ

kµ +Rµ

)n
µ

φ(R) +

{
1−

(
kµ + rµ

kµ +Rµ

)n
µ

}
m. (2.23)

Since φ(r) = M(p, r) and using the value of φ(R) in (2.23), we get

M(p, r) +

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt−

∫ R

r

ntµ−1

tµ + kµ
mdt

≤

[
M(p, r)−

{
1−

(
kµ + rµ

kµ +Rµ

)n
µ

}
m

](
kµ +Rµ

kµ + rµ

)n
µ

.

This completes the proof of inequality (2.15) of Lemma 2.7. �
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3. Main results

In this paper, first we extend Theorem 1.1 into Lq norm with the value of
k > 0 instead of just k ≥ 1. More precisely, we prove:

Theorem 3.1. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, has no zeros in |z| < k,

k > 0, then for 0 < r ≤ R ≤ k, and q > 0,{∫ 2π

0
|p′(Reiθ)|qdθ

} 1
q

≤ n

R
Tq

{∫ 2π

0

∣∣∣∣|p(reiθ)|+ ∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt

∣∣∣∣q dθ
} 1

q

,

(3.1)
where

Tq =

{
1

2π

∫ 2π

0

∣∣∣∣( kR
)µ

+ eiα
∣∣∣∣q dα}

−1
q

.

Letting q → ∞ on both sides of (3.1), we obtain inequality (1.9) of Theorem
1.1.

Proof. By hypothesis the polynomial p(z) = a0 +

n∑
ν=µ

aνz
ν has no zero in |z| <

k, k > 0, therefore the polynomial P (z) = p(Rz) has no zero in |z| < k
R ,

k
R ≥ 1.

By applying Lemma 2.3 to the polynomial P (z), we have

A|P ′(z)| ≤ |Q′(z)| for |z| = 1, where Q(z) = znP (
1

z
) (3.2)

and

A =

(
k

R

)µ
≥ 1. (3.3)

We can easily verify that for every real number α and R ≥ r ≥ 1,

|R+ eiα| ≥ |r + eiα|.

This implies for each q > 0,∫ 2π

0
|R+ eiα|qdα ≥

∫ 2π

0
|r + eiα|qdα. (3.4)

For point eiθ, 0 ≤ θ ≤ 2π, for which P
′
(eiθ) 6= 0, we denote

R =

∣∣∣∣∣Q
′
(eiθ)

P ′(eiθ)

∣∣∣∣∣ ,
and r = A, then from (3.2) and (3.3), R ≥ r ≥ 1.
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Now, for each q > 0, by Lemma 2.5 and (3.4), we have∫ 2π

0
|Q′(eiθ) + eiαP

′
(eiθ)|qdα = |P ′(eiθ)|q

∫ 2π

0

∣∣∣∣∣Q
′
(eiθ)

P ′(eiθ)
+ eiα

∣∣∣∣∣
q

dα

= |P ′(eiθ)|q
∫ 2π

0

∣∣∣∣∣
∣∣∣∣∣Q
′
(eiθ)

P ′(eiθ)

∣∣∣∣∣+ eiα

∣∣∣∣∣
q

dα

≥ |P ′(eiθ)|q
∫ 2π

0
|A+ eiα|qdα. (3.5)

For points eiθ, 0 ≤ θ < 2π, for which P
′
(eiθ) = 0, inequality (3.5) trivially

holds.
Now using (3.5) in Lemma 2.4, we obtain for each q > 0,∫ 2π

0
|A+ eiα|qdα

∫ 2π

0
|P ′(eiθ)|qdθ ≤ 2πnq

∫ 2π

0
|P (eiθ)|qdθ. (3.6)

Since P (z) = p(Rz),

P
′
(z) = Rp

′
(Rz).

Thus inequality (3.6) can be written as∫ 2π

0

∣∣∣∣( kR
)µ

+ eiα
∣∣∣∣q dα ∫ 2π

0
|Rp′(Reiθ)|qdθ ≤ 2πnq

∫ 2π

0
|p(Reiθ)|qdθ. (3.7)

Now applying inequality (2.2) of Lemma 2.2 in (3.7), we have∫ 2π

0

∣∣∣∣( kR
)µ

+ eiα
∣∣∣∣q dα ∫ 2π

0
|Rp′(Reiθ)|qdθ

≤ 2πnq
∫ 2π

0

{
|p(reiθ)|+

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt

}q
dθ (3.8)

or equivalently{∫ 2π

0
|Rp′(Reiθ)|qdθ

} 1
q

≤ nTq
R

[∫ 2π

0

{
|p(reiθ)|+

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt

}q
dθ

] 1
q

.

This completes the proof of Theorem 3.1. �

Remark 3.2. Both the ordinary inequalities (1.9) and (1.10) of Theorems 1.1

and 1.2 are best possible for the polynomial p(z) = (zµ + kµ)
n
µ where n is

a multiple of µ. It may be expected that inequality (3.1) of Theorem 3.1 is
sharp for this polynomial. We discuss it as follows:
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For p(z) = (zµ+kµ)
n
µ , where n is a multiple of µ, inequality (3.1) of Theorem

3.1 equivalently takes{∫ 2π

0

∣∣kµ +Rµeiα
∣∣q dα}{∫ 2π

0

∣∣∣Rµeiθµ + kµ
∣∣∣q(nµ−1) dθ}

≤
[∫ 2π

0

{∣∣∣rµeiθµ + kµ
∣∣∣nµ + (Rµ + kµ)

n
µ − (rµ + kµ)

n
µ

}q
dθ

]
. (3.9)

In particular, if we set k = R = r, and µ = 1, then inequality (3.9) assumes{∫ 2π

0

∣∣1 + eiα
∣∣q dα}{∫ 2π

0

∣∣∣eiθ + 1
∣∣∣q(n−1) dθ}≤{∫ 2π

0

∣∣∣eiθ + 1
∣∣∣nq dθ} . (3.10)

Now, we have for p > −1,∫ π
2

0
cosp θdθ =

√
πΓ(p2 + 1

2)

2Γ(p2 + 1)
. (3.11)

For q > 0, by a simple calculation, we have∫ 2π

0

∣∣1 + eiα
∣∣q dα = 2q+2

∫ π
2

0
cosq αdα,

which on using (3.11) gives∫ 2π

0

∣∣1 + eiα
∣∣q dα = 2q+1√π

Γ( q2 + 1
2)

Γ( q2 + 1)
. (3.12)

Applying equality (3.12) in inequality (3.10), we have

2q(n−1)+1√π
Γ( q(n−1)2 + 1

2)

Γ( q(n−1)2 + 1)
× 2q+1√π

Γ( q2 + 1
2)

Γ( q2 + 1)
≤ 2nq+1√π

Γ(nq2 + 1
2)

Γ(nq2 + 1)
,

that is,

2
√
π

Γ( q(n−1)2 + 1
2)

Γ( q(n−1)2 + 1)
×

Γ( q2 + 1
2)

Γ( q2 + 1)
≤

Γ(nq2 + 1
2)

Γ(nq2 + 1)
. (3.13)

Further, when n = 3, q = 4, inequality (3.13) becomes

2
√
π

Γ(4 + 1
2)

Γ(5)
×

Γ(2 + 1
2)

Γ(3)
≤

Γ(6 + 1
2)

Γ(7)

which on simplification gives

10π ≤ 11,

which is absurd. This shows that inequality (3.1) of Theorem 3.1 is not sharp.

Remark 3.3. Using |p(reiθ)| ≤M(p, r) in Theorem 3.1, we have the following
result.
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Corollary 3.4. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, has no zeros in |z| < k,

k > 0 then for 0 < r ≤ R ≤ k, and q > 0,

‖p′(Rz)‖q ≤
n

R
Tq

∣∣∣∣M(p, r) +

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt

∣∣∣∣ , (3.14)

where Tq is as defined in Theorem 3.1.

Further, using inequality (2.3) of Lemma 2.2 in the inequality (3.11) of
Corollary 3.4, we have the Lq version of Theorem 1.1, which has some inter-
esting consequences as discussed below.

Corollary 3.5. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, has no zeros in |z| < k,

k > 0 then for 0 < r ≤ R ≤ k and q > 0,

‖p′(Rz)‖q ≤
n

R
Tq

(
kµ +Rµ

kµ + rµ

)n
µ

M(p, r), (3.15)

where Tq is as defined in Theorem 3.1.

Letting q →∞ in inequality (3.15) we get inequality (1.9) of Theorem 1.1.
Further, if we let µ = 1 and r = 1 in Corollary 3.5, it matches the Lq analogue
of inequality (1.8) proved by Bidkham and Dewan [5].

In addition to the above, when µ = 1 = R = r, Corollary 3.5 gives inequality
(1.7) which is the Lq inequality of the famous inequality (1.6) due to Malik
[11].

Further, we extend inequality (1.10) of Theorem 1.2 due to Aziz and Shah
[3] to integral mean inequality. In fact, we obtain the following theorem.

Theorem 3.6. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having no zeros in the disk |z| < k, k > 0, then for 0 < r ≤ R ≤ k, and q > 0,

{∫ 2π

0
|p′(Reiθ)|qdθ

} 1
q

(3.16)

≤ n

R
Tq

{∫ 2π

0

∣∣∣∣|p(reiθ)|+n[∫ R

r

tµ−1

tµ + kµ
M(p, t)dt−

∫ R

r

tµ−1

tµ + kµ
mdt

]
−m

∣∣∣∣qdθ
} 1

q

,

where Tq is as in Theorem 3.1 and m = min
|z|=k

|p(z)|. Letting q → ∞ on both

sides of (3.16), we obtain inequality (1.10) of Theorem 1.2.
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Proof. Since the polynomial p(z) = a0 +

n∑
ν=µ

aνz
ν has no zero in |z| < k, k > 0,

the polynomial p(Rz) has no zero in |z| < k
R ,

k
R ≥ 1.

Take P (z) = p(Rz) + αm where |α| < 1 and m = min
|z|=k

|p(z). By applying

Lemma 2.3 to the polynomial P (z), we have

A|P ′(z)| ≤ |Q′(z)| for |z| = 1, where Q(z) = znP (
1

z
) (3.17)

and

A =

(
k

R

)µ
≥ 1. (3.18)

We can easily verify that for every real number α and R ≥ r ≥ 1,

|R+ eiα| ≥ |r + eiα|.
This implies for each q > 0,∫ 2π

0
|R+ eiα|qdα ≥

∫ 2π

0
|r + eiα|qdα. (3.19)

For point eiθ, 0 ≤ θ ≤ 2π, for which P
′
(eiθ) 6= 0, we denote

R =

∣∣∣∣∣Q
′
(eiθ)

P ′(eiθ)

∣∣∣∣∣
and r = A, then from (3.17) and (3.18), R ≥ r ≥ 1.

Now, for each q > 0, by Lemma 2.5 and (3.19), we have∫ 2π

0
|Q′(eiθ) + eiαP

′
(eiθ)|qdα = |P ′(eiθ)|q

∫ 2π

0

∣∣∣∣∣Q
′
(eiθ)

P ′(eiθ)
+ eiα

∣∣∣∣∣
q

dα

= |P ′(eiθ)|q
∫ 2π

0

∣∣∣∣∣
∣∣∣∣∣Q
′
(eiθ)

P ′(eiθ)

∣∣∣∣∣+ eiα

∣∣∣∣∣
q

dα

≥ |P ′(eiθ)|q
∫ 2π

0
|A+ eiα|qdα. (3.20)

For points eiθ, 0 ≤ θ < 2π, for which P
′
(eiθ) = 0, inequality (3.20) trivially

holds.
Now using (3.20) in Lemma 2.4, we obtain for each q > 0,∫ 2π

0
|A+ eiα|qdα

∫ 2π

0
|P ′(eiθ)|qdθ ≤ 2πnq

∫ 2π

0
|P (eiθ)|qdθ. (3.21)

Since P (z) = p(Rz) + αm,

P
′
(z) = R(p

′
(Rz)).
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Thus inequality (3.21) can be written as∫ 2π

0

∣∣∣∣( kR
)µ

+ eiα
∣∣∣∣q dα ∫ 2π

0
|Rp′(Reiθ)|qdθ

≤ 2πnq
∫ 2π

0
|p(Reiθ) + αm|qdθ. (3.22)

Now, in |p(Reiθ) + αm|, if we choose suitable argument of α, we have

|p(Reiθ) + αm| = |p(Reiθ)| − |α|m.

By letting |α| → 1, we obtain

|p(Reiθ) + αm| = |p(Reiθ)| −m. (3.23)

Using (3.23) in (3.22), we have∫ 2π

0

∣∣∣∣( kR
)µ

+ eiα
∣∣∣∣q dα ∫ 2π

0
|Rp′(Reiθ)|qdθ

≤ 2πnq
∫ 2π

0
||p(Reiθ)| −m|qdθ. (3.24)

Now applying inequality (2.14) of Lemma 2.7 in (3.24), we have∫ 2π

0

∣∣∣∣( kR
)µ

+ eiα
∣∣∣∣q dα ∫ 2π

0
|Rp′(Reiθ)|qdθ

≤ 2πnq
∫ 2π

0

∣∣∣∣|p(reiθ)|+ ∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt−

∫ R

r

ntµ−1

tµ + kµ
mdt−m

∣∣∣∣q dθ.
(3.25)

or equivalently{∫ 2π

0
|Rp′(Reiθ)|qdθ

} 1
q

≤ nTq
R

{∫ 2π

0

∣∣∣∣|p(reiθ)|+∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt−

∫ R

r

ntµ−1

tµ + kµ
mdt−m

∣∣∣∣q dθ
} 1

q

.

This completes the proof of Theorem 3.6. �

Remark 3.7. As is noticed earlier that inequality (1.10) of Theorem 1.2 is

sharp for p(z) = (zµ + kµ)
n
µ where n is a multiple of µ, we examine the

sharpness of inequality (3.16) of Theorem 3.6 for this polynomial.
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It is obvious that for p(z) = (zµ + kµ)
n
µ where n is a multiple of µ,

m = min
|z|=k

|p(z)| = 0

and hence by Remark 3.2, inequality (3.16) of Theorem 3.6 is not sharp.

Remark 3.8. Using |p(reiθ)| ≤M(p, r) in Theorem 3.6, we have the following
result.

Corollary 3.9. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having no zeros in the disk |z| < k, k > 0, then for 0 < r ≤ R ≤ k and
q > 0,

‖p′(Rz)‖q

≤ n

R
Tq

{∣∣∣∣M(p, r) +

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt−

∫ R

r

ntµ−1

tµ + kµ
mdt−m

∣∣∣∣} , (3.26)

where Tq is as in Theorem 3.1 and m = min
|z|=k

|p(z)|.

Further, using inequality (2.15) of Lemma 2.7 in the inequality (3.26) of
Corollary 3.9, we have, the Lq version of Theorem 1.2:

Corollary 3.10. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having no zeros in the disk |z| < k, k > 0, then for 0 < r ≤ R ≤ k and
q > 0,

‖p′(Rz)‖q ≤
n

R
Tq

(
kµ +Rµ

kµ + rµ

)n
µ

{M(p, r)−m} . (3.27)

where Tq is as in Theorem 3.1 and m = min
|z|=k

|p(z)|.

Letting q →∞ in inequality (3.27), we get inequality (1.10) of Theorem 1.2.
Further, if we let µ = 1 and r = 1 in Corollary 3.10, we obtain an improvement
in Lq version of inequality (1.8) proved by Bidkham and Dewan [5].

Also, when µ = 1 = R = r in Corollary 3.10, it gives an improvement of Lq

inequality (1.7) due to Govil and Rahman [9] of the ordinary inequality (1.6)
proved by Malik [11].

Acknowledgments: The authors wish to thank the referees for their valuable
comments.



Some Lq inequalities for polynomial 345

References

[1] V.V. Arestov, On inequalities for trigonometric polynomials and their derivative, IZV.
Akad. Nauk. SSSR. Ser. Math., 45 (1981), 3-22.

[2] A. Aziz and N.A. Rather, Some Zygmund type Lp inequalities for polynomials, J. Math.
Anal. Appl., 289 (2004), 14-29.

[3] A. Aziz and W.M. Shah, Inequalities for a polynomial and its derivative, Math. Ineq.
Appl., 3 (2004), 379-391.

[4] A. Aziz and B.A. Zargar, Inequalities for a polynomial and its derivative, Math. Ineq.
Appl., 4 (1998), 543-550.

[5] M. Bidkham and K.K. Dewan, Inequalities for polynomial and its derivative, J. Math.
Anal. Appl., 166 (1992), 319-324.

[6] N.G. de-Bruijn, Inequalities concerning polynomials in the complex domain, Ned-erl.
Akad. Wetench. Proc. Ser. A, 50 (1947), 1265-1272; Indag. Math 9(1947), 591-598.

[7] R.B. Gardner and N.K. Govil, An Lp inequality for a polynomial and its derivative, J.
Math. Anal. Appl., 194 (1995), 720-726.

[8] R.B. Gardner and A. Weems, A Bernstein-type of Lp inequality for a certain class of
polynomials, J. Math. Anal. Appl., 219 (1998), 472-478.

[9] N.K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a half-plane
and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517.

[10] P.D. Lax, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer.
Math. Soc., 50 (1944), 509-513.

[11] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.
https://doi.org/10.1112/jlms/s2-1.1.57
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