Nonlinear Functional Analysis and Applications Vol. 26. No. 2 (2021), pp. 331-345 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2021.26.02.07 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2021 Kyungnam University Press

SOME L^q INEQUALITIES FOR POLYNOMIAL

Barchand Chanam¹, N. Reingachan², Khangembam Babina Devi³, Maisnam Triveni Devi⁴ and Kshetrimayum Krishnadas⁵

Department of Mathematics, National Institute of Technology Manipur Imphal, 795004, India ¹e-mail: barchand_2004@yahoo.co.in ²e-mail: reinga14@gmail.com ³e-mail: khangembambabina@gmail.com ⁴e-mail: trivenimaisnam@gmail.com ⁵e-mail: kshetrimayum.krishnadas@sbs.du.ac.in

Abstract. Let p(z) be a polynomial of degree n. Then Bernstein's inequality [12,18] is

$$\max_{|z|=1} |p'(z)| \le n \max_{|z|=1} |(z)|.$$

For q > 0, we denote

$$||p||_{q} = \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |p(e^{i\theta})|^{q} d\theta \right\}^{\frac{1}{q}},$$

and a well-known fact from analysis [17] gives

$$\lim_{q \to \infty} \left\{ \frac{1}{2\pi} \int_0^{2\pi} |p(e^{i\theta})|^q d\theta \right\}^{\frac{1}{q}} = \max_{|z|=1} |p(z)|.$$

Above Bernstein's inequality was extended by Zygmund [19] into L^q norm by proving

$$||p|||_q \le n ||p||_q, \ q \ge 1.$$

Let $p(z) = a_0 + \sum_{\nu=\mu}^n a_\nu z^\nu$, $1 \le \mu \le n$, be a polynomial of degree n having no zero in $|z| < k, k \ge 1$. Then for $0 < r \le R \le k$, Aziz and Zargar [4] proved

$$\max_{|z|=R} |p'(z)| \le \frac{nR^{\mu-1}(R^{\mu} + k^{\mu})^{\frac{n}{\mu}-1}}{(r^{\mu} + k^{\mu})^{\frac{n}{\mu}}} \max_{|z|=r} |p(z)|.$$

In this paper, we obtain the L^q version of the above inequality for q > 0. Further, we extend a result of Aziz and Shah [3] into L^q analogue for q > 0. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

⁰2010 Mathematics Subject Classification: 30A10, 30C10, 30C15.

⁰Received September 25, 2020. Revised February 15, 2021. Accepted March 21, 2021.

⁰Keywords: L^q norm, inequality, polynomial, zero.

⁰Corresponding author: Barchand Chanam(barchand_2004@yahoo.co.in).

1. INTRODUCTION

Let p(z) be a polynomial of degree n. We define

$$\|p\|_{q} = \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |p(e^{i\theta})|^{q} d\theta \right\}^{\frac{1}{q}}, \quad 0 < q < \infty.$$
(1.1)

If we let $q \to \infty$ in the above equality and make use of the well-known fact from analysis [17] that

$$\lim_{q \to \infty} \left\{ \frac{1}{2\pi} \int_0^{2\pi} |p(e^{i\theta})|^q d\theta \right\}^{\frac{1}{q}} = \max_{|z|=1} |p(z)|,$$

we can suitably denote

$$||p||_{\infty} = \max_{|z|=1} |p(z)|.$$

Similarly, we can define $||p||_0 = \exp\left\{\frac{1}{2\pi}\int_0^{2\pi} \log|p(e^{i\theta})|d\theta\right\}$ and show that $\lim_{q\to 0^+} ||p||_q = ||p||_0$. It would be of further interest that by taking limits as $\lim_{q\to 0^+}$ that the stated result holding for q > 0, holds for q = 0 as well.

For r > 0, we denote by $M(p, r) = \max_{|z|=r} |p(z)|$.

A famous result due to Bernstein [12 or also see 18] states that if p(z) is a polynomial of degree n, then

$$\|p'\|_{\infty} \le n\|p\|_{\infty}.\tag{1.2}$$

Inequality (1.2) can be obtained by letting $q \to \infty$ in the inequality

$$\|p'\|_{q} \le n \|p\|_{q}, \quad q > 0.$$
(1.3)

Inequality (1.3) for $q \ge 1$ is due to Zygmund [19]. Arestov [1] proved that (1.3) remains valid for 0 < q < 1 as well. If we restrict ourselves to the class of polynomials having no zeros in |z| < 1, then inequality (1.2) and (1.3) can be respectively improved by

$$\|p'\|_{\infty} \le \frac{n}{2} \|p\|_{\infty} \tag{1.4}$$

and

$$\|p'\|_q \le \frac{n}{\|1+z\|_q} \|p\|_q, \quad q > 0.$$
(1.5)

Inequality (1.4) was conjectured by Erdös and later verified by Lax [10], whereas, inequality (1.5) was proved by de-Bruijn [6] for $q \ge 1$. Rahman and Schmeisser [15] showed that (1.5) remains true for 0 < q < 1.

As a generalization of (1.4), Malik [11] proved that if p(z) does not vanish in $|z| < k, k \ge 1$, then

$$\|p'\|_{\infty} \le \frac{n}{1+k} \|p\|_{\infty}.$$
 (1.6)

332

Under the same hypotheses of the polynomial p(z), Govil and Rahman [9] extended inequality (1.6) to L^q norm by showing that

$$\|p'\|_{q} \le \frac{n}{\|k+z\|_{q}} \|p\|_{q}, \quad q \ge 1.$$
(1.7)

It was shown by Gardner and Weems [8] and independently by Rather [16] that (1.7) also holds for 0 < q < 1. Further, as a generalization of (1.6) Bidkham and Dewan [5] proved that if $p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree *n* having no zeros in $|z| < k, k \ge 1$, then

$$\|p'(rz)\|_{\infty} \le \frac{n(r+k)^{n-1}}{(1+k)^n} \|p\|_{\infty} \quad \text{for } 1 \le r \le k.$$
(1.8)

As a generalization of (1.8), Aziz and Zargar [4] proved the following theorem.

Theorem 1.1. If
$$p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$$
, $1 \le \mu \le n$, has no zeros in $|z| < k$, $k \ge 1$, then for $0 < r \le R \le k$,

$$\|p'(Rz)\|_{\infty} \le \frac{nR^{\mu-1}(R^{\mu} + k^{\mu})^{\frac{n}{\mu}-1}}{(r^{\mu} + k^{\mu})^{\frac{n}{\mu}}} \|p(rz)\|_{\infty}.$$
 (1.9)

The result is best possible and equality in (1.9) holds for $p(z) = (z^{\mu} + k^{\mu})^{\frac{n}{\mu}}$, where *n* is a multiple of μ .

Further, as an improvement and generalization of (1.8), Aziz and Shah [3] proved the following theorem.

Theorem 1.2. If $p(z) = a_0 + \sum_{\nu=\mu}^n a_\nu z^\nu$, $1 \le \mu \le n$, is a polynomial of degree n having no zeros in the disk |z| < k, $k \ge 0$, then for $0 < r \le R \le k$,

$$\|p'(Rz)\|_{\infty} \le \frac{nR^{\mu-1}(R^{\mu}+k^{\mu})^{\frac{n}{\mu}-1}}{(r^{\mu}+k^{\mu})^{\frac{n}{\mu}}} \{\|p(rz)\|_{\infty}-m\}, \qquad (1.10)$$

where

$$m = \min_{|z|=k} |p(z)|.$$

The result is best possible and equality in (1.10) holds for the polynomial $p(z) = (z^{\mu} + k^{\mu})^{\frac{n}{\mu}}$, where n is a multiple of μ .

2. Lemmas

For the proofs of the theorems, we require the following lemmas.

Lemma 2.1. ([14]) If $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$, $1 \le \mu \le n$, having no zeros in $|z| < k, k \ge 1$, then

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k^{\mu}} \max_{|z|=1} |p(z)|.$$
(2.1)

Lemma 2.2. If $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$, $1 \le \mu \le n$, has no zeros in |z| < k, k > 0 then for $0 < r \le R \le k$,

$$|p(Re^{i\theta})| \le |p(re^{i\theta})| + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt$$
(2.2)

and

$$M(p,r) + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt \le \left(\frac{k^{\mu} + R^{\mu}}{k^{\mu} + r^{\mu}}\right)^{\frac{n}{\mu}} M(p,r).$$
(2.3)

Proof. Since $p(z) \neq 0$ for |z| < 1, $p(tz) \neq 0$ for $|z| < \frac{1}{t}$ and so by Lemma 2.1, $\max_{|z|=1} t |p'(tz)| \le \frac{n}{k^{\mu} + t^{-\mu}} \max |p(tz)|,$

this gives

$$M(p',t) \le \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t).$$
(2.4)

Now, for $0 \le r < R \le k$ and $\theta \in [0, 2\pi)$ we have,

$$|p(Re^{i\theta})| \le |p(re^{i\theta})| + \int_{r}^{R} |p'(te^{i\theta})| dt$$

which implies

$$|p(Re^{i\theta})| \le |p(re^{i\theta})| + \int_{r}^{R} M(p', t)dt.$$
(2.5)

Using (2.4) in (2.5) we obtain

$$|p(Re^{i\theta})| \le |p(re^{i\theta})| + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt.$$
(2.6)

Which completes the first inequality (2.2).

Further, taking maximum over θ in (2.6), we have

$$M(p,R) \le M(p,r) + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt.$$
(2.7)

 $\phi'(R) \le \frac{nR^{\mu-1}}{R^{\mu} + k^{\mu}}\phi(R)$

Now let us denote the right hand side of inequality (2.7) by $\phi(R)$. Then

or

$$\phi'(R) - \frac{nR^{\mu-1}}{R^{\mu} + k^{\mu}}\phi(R) \le 0.$$
 (2.8)

Multiplying both side of (2.8) by $(R^{\mu} + k^{\mu})^{\frac{-n}{\mu}}$, we obtain

$$\frac{d}{dR}(R^{\mu}+k^{\mu})^{\frac{-n}{\mu}}\phi(R) \le 0,$$

which implies that $(R^{\mu} + k^{\mu})^{\frac{-n}{\mu}} \phi(R)$ is a nonincreasing function of R in (0, k]. Thus for $0 < r \le R \le k$,

$$\phi(r) \ge \left(\frac{k^{\mu} + r^{\mu}}{k^{\mu} + R^{\mu}}\right)^{\frac{n}{\mu}} \phi(R).$$
(2.9)

Since $\phi(r) = M(p, r)$ and using the value of $\phi(R)$ in (2.9), we get

$$M(p,r) \ge \left(\frac{k^{\mu} + r^{\mu}}{k^{\mu} + R^{\mu}}\right)^{\frac{n}{\mu}} \left[M(p,r) + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt\right].$$

This completes the proof of inequality (2.3).

Lemma 2.3. ([14]) If $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$, $1 \le \mu \le n$, is a polynomial of degree n having no zeros in |z| < k, $k \ge 1$, then on |z| = 1

$$|q'(z)| \ge k^{\mu} |p'(z)|, \text{ where } q(z) = z^n \overline{p\left(\frac{1}{\overline{z}}\right)}.$$
 (2.10)

Lemma 2.4. ([2]) If p(z) is a polynomial of degree n and $q(z) = z^n \overline{p(\frac{1}{\overline{z}})}$, then for each α , $0 \le \alpha < 2\pi$ and q > 0,

$$\int_{0}^{2\pi} \int_{0}^{2\pi} |q'(e^{i\theta}) + e^{i\alpha} p'(e^{i\theta})|^{q} d\theta d\alpha \le 2\pi n^{q} \int_{0}^{2\pi} |p(e^{i\theta})|^{q} d\theta.$$
(2.11)

Lemma 2.5. ([7]) Let z be complex and independent of α , where α is real, then for q > 0,

$$\int_{0}^{2\pi} |1 + ze^{i\alpha}|^{q} d\alpha = \int_{0}^{2\pi} |e^{i\alpha} + |z||^{q} d\alpha.$$
(2.12)

Lemma 2.6. ([13]) If $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$, $1 \le \mu \le n$, is a polynomial of degree n which does not vanish in $|z| < k, k \ge 1$, then

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k^{\mu}} \left\{ \max_{|z|=1} |p(z)| - \min_{|z|=k} |p(z)| \right\}.$$
 (2.13)

Lemma 2.7. Let $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$, $1 \le \mu \le n$, be a polynomial of degree *n* having no zeros in |z| < k, k > 0, then for $0 < r \le R \le k$,

$$|p(Re^{i\theta})| \le |p(re^{i\theta})| + n \left[\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt - \int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu} + k^{\mu}} m dt \right]$$
(2.14)

and

$$M(p,r) + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt - \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} m dt$$
$$\leq \left[M(p,r) - \left\{ 1 - \left(\frac{k^{\mu} + r^{\mu}}{k^{\mu} + R^{\mu}} \right)^{\frac{n}{\mu}} \right\} m \right] \left(\frac{k^{\mu} + r^{\mu}}{k^{\mu} + R^{\mu}} \right)^{\frac{n}{\mu}}, \quad (2.15)$$
$$\min |p(z)|$$

where $m = \min_{|z|=k} |p(z)|$.

Proof. By hypotheses, p(z) has no zeros in |z| < k, therefore, the polynomial F(z) = p(tz) has no zeros in $|z| < \frac{k}{t}$, $\frac{k}{t} \ge 1$, where $0 < t \le k$. Since $\frac{k}{t} \ge 1$, by applying Lemma 2.6 to F(z), it follows that

$$\max_{|z|=1} |F'(z)| \le \frac{n}{1 + \frac{k^{\mu}}{t^{\mu}}} \left\{ \max_{|z|=1} |F(z)| - \min_{|z|=\frac{k}{t}} |F(z)| \right\},$$

this gives

$$\max_{|z|=t} |p'(z)| \le \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} \left\{ \max_{|z|=t} |p(z)| - \min_{|z|=k} |p(z)| \right\}.$$
 (2.16)

Now, for $0 < r \le R \le k$, and $0 \le \theta < 2\pi$, we have

$$|p(Re^{i\theta}) - p(re^{i\theta})| = \left| \int_r^R e^{i\theta} p'(te^{i\theta}) dt \right| \le \int_r^R |p'(te^{i\theta})| dt,$$

from which it follows

$$|p(Re^{i\theta})| \le |p(re^{i\theta})| + \int_r^R |p'(te^{i\theta})| dt$$

which implies

$$|p(Re^{i\theta})| \le |p(re^{i\theta})| + \int_{r}^{R} M(p', t)dt.$$
(2.17)

Using (2.16) in (2.17), we obtain

$$|p(Re^{i\theta})| \le |p(re^{i\theta})| + n \left[\int_r^R \frac{t^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt - \int_r^R \frac{t^{\mu-1}}{t^{\mu} + k^{\mu}} m dt \right], \quad (2.18)$$

which is the first inequality of Lemma 2.7.

Further, taking maximum over θ in (2.18), we have

$$M(p,R) \le M(p,r) + n \left[\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt - \int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu} + k^{\mu}} m dt \right].$$
(2.19)

Now let us denote the right hand side of inequality (2.19) by $\phi(R)$. Then

$$\phi'(R) = \frac{nR^{\mu-1}}{R^{\mu} + k^{\mu}}M(p,R) - \frac{nR^{\mu-1}}{R^{\mu} + k^{\mu}}m.$$
(2.20)

Using $M(p, R) \leq \phi(R)$, equality (2.20) can be written as

$$\phi'(R) - \frac{nR^{\mu-1}}{R^{\mu} + k^{\mu}} \{\phi(R) - m\} \le 0.$$
(2.21)

Multiplying both sides of (2.21) by $(R^{\mu} + k^{\mu})^{\frac{-n}{\mu}}$, we get

$$\phi'(R)(R^{\mu} + k^{\mu})^{\frac{-n}{\mu}} - n(\phi(R) - m)(R^{\mu} + k^{\mu})^{\frac{-n}{\mu} - 1}R^{\mu - 1} \le 0,$$

which implies

$$\frac{d}{dR}\left\{(\phi(R) - m)(R^{\mu} + k^{\mu})^{\frac{-n}{\mu}}\right\} \le 0.$$
(2.22)

From (2.22) we conclude that the function,

$$\{\phi(R) - m\} (R^{\mu} + k^{\mu})^{\frac{-n}{\mu}}$$

is a nonincreasing function of R in (0,k]. Hence for $0 < r \leq R \leq k,$

$$\phi(r) \ge \left(\frac{k^{\mu} + r^{\mu}}{k^{\mu} + R^{\mu}}\right)^{\frac{n}{\mu}} \phi(R) + \left\{1 - \left(\frac{k^{\mu} + r^{\mu}}{k^{\mu} + R^{\mu}}\right)^{\frac{n}{\mu}}\right\} m.$$
(2.23)

Since $\phi(r) = M(p, r)$ and using the value of $\phi(R)$ in (2.23), we get

$$M(p,r) + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt - \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} m dt$$
$$\leq \left[M(p,r) - \left\{ 1 - \left(\frac{k^{\mu} + r^{\mu}}{k^{\mu} + R^{\mu}}\right)^{\frac{n}{\mu}} \right\} m \right] \left(\frac{k^{\mu} + R^{\mu}}{k^{\mu} + r^{\mu}}\right)^{\frac{n}{\mu}}.$$

This completes the proof of inequality (2.15) of Lemma 2.7.

3. Main results

In this paper, first we extend Theorem 1.1 into L^q norm with the value of k > 0 instead of just $k \ge 1$. More precisely, we prove:

Theorem 3.1. If $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}, 1 \le \mu \le n$, has no zeros in |z| < k, k > 0, then for $0 < r \le R \le k$, and q > 0,

$$\left\{\int_{0}^{2\pi} |p'(Re^{i\theta})|^{q} d\theta\right\}^{\frac{1}{q}} \leq \frac{n}{R} T_{q} \left\{\int_{0}^{2\pi} \left||p(re^{i\theta})| + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt\right|^{q} d\theta\right\}^{\frac{1}{q}},$$
(3.1)

where

$$T_q = \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| \left(\frac{k}{R} \right)^{\mu} + e^{i\alpha} \right|^q d\alpha \right\}^{\frac{-1}{q}}.$$

Letting $q \to \infty$ on both sides of (3.1), we obtain inequality (1.9) of Theorem 1.1.

Proof. By hypothesis the polynomial $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$ has no zero in $|z| < \infty$

k, k > 0, therefore the polynomial P(z) = p(Rz) has no zero in $|z| < \frac{k}{R}, \frac{k}{R} \ge 1$. By applying Lemma 2.3 to the polynomial P(z), we have

$$A|P'(z)| \le |Q'(z)|$$
 for $|z| = 1$, where $Q(z) = z^n P(\frac{1}{z})$ (3.2)

and

$$A = \left(\frac{k}{R}\right)^{\mu} \ge 1. \tag{3.3}$$

We can easily verify that for every real number α and $R \ge r \ge 1$,

$$|R + e^{i\alpha}| \ge |r + e^{i\alpha}|.$$

This implies for each q > 0,

$$\int_0^{2\pi} |R + e^{i\alpha}|^q d\alpha \ge \int_0^{2\pi} |r + e^{i\alpha}|^q d\alpha.$$
(3.4)

For point $e^{i\theta}$, $0 \le \theta \le 2\pi$, for which $P'(e^{i\theta}) \ne 0$, we denote

$$R = \left| \frac{Q'(e^{i\theta})}{P'(e^{i\theta})} \right|,$$

and r = A, then from (3.2) and (3.3), $R \ge r \ge 1$.

Now, for each q > 0, by Lemma 2.5 and (3.4), we have

$$\int_{0}^{2\pi} |Q'(e^{i\theta}) + e^{i\alpha}P'(e^{i\theta})|^{q} d\alpha = |P'(e^{i\theta})|^{q} \int_{0}^{2\pi} \left| \frac{Q'(e^{i\theta})}{P'(e^{i\theta})} + e^{i\alpha} \right|^{q} d\alpha$$
$$= |P'(e^{i\theta})|^{q} \int_{0}^{2\pi} \left| \left| \frac{Q'(e^{i\theta})}{P'(e^{i\theta})} \right| + e^{i\alpha} \right|^{q} d\alpha$$
$$\geq |P'(e^{i\theta})|^{q} \int_{0}^{2\pi} |A + e^{i\alpha}|^{q} d\alpha.$$
(3.5)

For points $e^{i\theta}$, $0 \le \theta < 2\pi$, for which $P'(e^{i\theta}) = 0$, inequality (3.5) trivially holds.

Now using (3.5) in Lemma 2.4, we obtain for each q > 0,

$$\int_{0}^{2\pi} |A + e^{i\alpha}|^{q} d\alpha \int_{0}^{2\pi} |P'(e^{i\theta})|^{q} d\theta \le 2\pi n^{q} \int_{0}^{2\pi} |P(e^{i\theta})|^{q} d\theta.$$
(3.6)

Since P(z) = p(Rz),

$$P'(z) = Rp'(Rz).$$

Thus inequality (3.6) can be written as

$$\int_{0}^{2\pi} \left| \left(\frac{k}{R}\right)^{\mu} + e^{i\alpha} \right|^{q} d\alpha \int_{0}^{2\pi} |Rp'(Re^{i\theta})|^{q} d\theta \le 2\pi n^{q} \int_{0}^{2\pi} |p(Re^{i\theta})|^{q} d\theta. \quad (3.7)$$

Now applying inequality (2.2) of Lemma 2.2 in (3.7), we have

$$\int_{0}^{2\pi} \left| \left(\frac{k}{R} \right)^{\mu} + e^{i\alpha} \right|^{q} d\alpha \int_{0}^{2\pi} |Rp'(Re^{i\theta})|^{q} d\theta$$

$$\leq 2\pi n^{q} \int_{0}^{2\pi} \left\{ |p(re^{i\theta})| + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt \right\}^{q} d\theta$$
(3.8)

or equivalently

$$\begin{split} &\left\{\int_{0}^{2\pi} |Rp'(Re^{i\theta})|^{q} d\theta\right\}^{\frac{1}{q}} \\ &\leq \frac{nT_{q}}{R} \left[\int_{0}^{2\pi} \left\{ |p(re^{i\theta})| + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt \right\}^{q} d\theta \right]^{\frac{1}{q}}. \end{split}$$
eletes the proof of Theorem 3.1.

This completes the proof of Theorem 3.1.

Remark 3.2. Both the ordinary inequalities (1.9) and (1.10) of Theorems 1.1 and 1.2 are best possible for the polynomial $p(z) = (z^{\mu} + k^{\mu})^{\frac{n}{\mu}}$ where n is a multiple of μ . It may be expected that inequality (3.1) of Theorem 3.1 is sharp for this polynomial. We discuss it as follows:

For $p(z) = (z^{\mu} + k^{\mu})^{\frac{n}{\mu}}$, where *n* is a multiple of μ , inequality (3.1) of Theorem 3.1 equivalently takes

$$\left\{ \int_{0}^{2\pi} \left| k^{\mu} + R^{\mu} e^{i\alpha} \right|^{q} d\alpha \right\} \left\{ \int_{0}^{2\pi} \left| R^{\mu} e^{i\theta\mu} + k^{\mu} \right|^{q(\frac{n}{\mu} - 1)} d\theta \right\} \\
\leq \left[\int_{0}^{2\pi} \left\{ \left| r^{\mu} e^{i\theta\mu} + k^{\mu} \right|^{\frac{n}{\mu}} + \left(R^{\mu} + k^{\mu} \right)^{\frac{n}{\mu}} - \left(r^{\mu} + k^{\mu} \right)^{\frac{n}{\mu}} \right\}^{q} d\theta \right].$$
(3.9)

In particular, if we set k = R = r, and $\mu = 1$, then inequality (3.9) assumes

$$\left\{\int_{0}^{2\pi} \left|1+e^{i\alpha}\right|^{q} d\alpha\right\} \left\{\int_{0}^{2\pi} \left|e^{i\theta}+1\right|^{q(n-1)} d\theta\right\} \leq \left\{\int_{0}^{2\pi} \left|e^{i\theta}+1\right|^{nq} d\theta\right\}.$$
 (3.10) Now, we have for $p > -1$,

$$\int_{0}^{\frac{\pi}{2}} \cos^{p} \theta d\theta = \frac{\sqrt{\pi} \Gamma(\frac{p}{2} + \frac{1}{2})}{2\Gamma(\frac{p}{2} + 1)}.$$
(3.11)

For q > 0, by a simple calculation, we have

$$\int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^{q} d\alpha = 2^{q+2} \int_{0}^{\frac{\pi}{2}} \cos^{q} \alpha d\alpha,$$

which on using (3.11) gives

$$\int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^{q} d\alpha = 2^{q+1} \sqrt{\pi} \frac{\Gamma(\frac{q}{2} + \frac{1}{2})}{\Gamma(\frac{q}{2} + 1)}.$$
(3.12)

Applying equality (3.12) in inequality (3.10), we have

$$2^{q(n-1)+1}\sqrt{\pi}\frac{\Gamma(\frac{q(n-1)}{2}+\frac{1}{2})}{\Gamma(\frac{q(n-1)}{2}+1)} \times 2^{q+1}\sqrt{\pi}\frac{\Gamma(\frac{q}{2}+\frac{1}{2})}{\Gamma(\frac{q}{2}+1)} \le 2^{nq+1}\sqrt{\pi}\frac{\Gamma(\frac{nq}{2}+\frac{1}{2})}{\Gamma(\frac{nq}{2}+1)},$$

that is,

$$2\sqrt{\pi} \frac{\Gamma(\frac{q(n-1)}{2} + \frac{1}{2})}{\Gamma(\frac{q(n-1)}{2} + 1)} \times \frac{\Gamma(\frac{q}{2} + \frac{1}{2})}{\Gamma(\frac{q}{2} + 1)} \le \frac{\Gamma(\frac{nq}{2} + \frac{1}{2})}{\Gamma(\frac{nq}{2} + 1)}.$$
(3.13)

Further, when n = 3, q = 4, inequality (3.13) becomes

$$2\sqrt{\pi}\frac{\Gamma(4+\frac{1}{2})}{\Gamma(5)} \times \frac{\Gamma(2+\frac{1}{2})}{\Gamma(3)} \le \frac{\Gamma(6+\frac{1}{2})}{\Gamma(7)}$$

which on simplification gives

$$10\pi \le 11$$

which is absurd. This shows that inequality (3.1) of Theorem 3.1 is not sharp.

Remark 3.3. Using $|p(re^{i\theta})| \leq M(p,r)$ in Theorem 3.1, we have the following result.

Corollary 3.4. If $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$, $1 \le \mu \le n$, has no zeros in |z| < k, k > 0 then for $0 < r \le R \le k$, and q > 0,

$$\|p'(Rz)\|_{q} \leq \frac{n}{R}T_{q} \left| M(p,r) + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t)dt \right|, \qquad (3.14)$$

where T_q is as defined in Theorem 3.1.

Further, using inequality (2.3) of Lemma 2.2 in the inequality (3.11) of Corollary 3.4, we have the L^q version of Theorem 1.1, which has some interesting consequences as discussed below.

Corollary 3.5. If $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$, $1 \le \mu \le n$, has no zeros in |z| < k, k > 0 then for $0 < r \le R \le k$ and q > 0,

$$\|p'(Rz)\|_{q} \le \frac{n}{R} T_{q} \left(\frac{k^{\mu} + R^{\mu}}{k^{\mu} + r^{\mu}}\right)^{\frac{n}{\mu}} M(p, r), \qquad (3.15)$$

where T_q is as defined in Theorem 3.1.

Letting $q \to \infty$ in inequality (3.15) we get inequality (1.9) of Theorem 1.1. Further, if we let $\mu = 1$ and r = 1 in Corollary 3.5, it matches the L^q analogue of inequality (1.8) proved by Bidkham and Dewan [5].

In addition to the above, when $\mu = 1 = R = r$, Corollary 3.5 gives inequality (1.7) which is the L^q inequality of the famous inequality (1.6) due to Malik [11].

Further, we extend inequality (1.10) of Theorem 1.2 due to Aziz and Shah [3] to integral mean inequality. In fact, we obtain the following theorem.

Theorem 3.6. If $p(z) = a_0 + \sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}$, $1 \le \mu \le n$, is a polynomial of degree n having no zeros in the disk |z| < k, k > 0, then for $0 < r \le R \le k$, and q > 0,

$$\left\{\int_{0}^{2\pi} |p'(Re^{i\theta})|^{q} d\theta\right\}^{\frac{1}{q}}$$
(3.16)

$$\leq \frac{n}{R}T_{q}\left\{\int_{0}^{2\pi} \left||p(re^{i\theta})| + n\left[\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu}+k^{\mu}}M(p,t)dt - \int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu}+k^{\mu}}mdt\right] - m\right|^{q}d\theta\right\}^{\frac{1}{q}}$$

where T_q is as in Theorem 3.1 and $m = \min_{|z|=k} |p(z)|$. Letting $q \to \infty$ on both sides of (3.16), we obtain inequality (1.10) of Theorem 1.2.

Proof. Since the polynomial $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$ has no zero in |z| < k, k > 0, the polynomial p(Rz) has no zero in $|z| < \frac{k}{R}, \frac{k}{R} \ge 1$.

the polynomial p(Rz) has no zero in $|z| < \frac{k}{R}, \frac{k}{R} \ge 1$. Take $P(z) = p(Rz) + \alpha m$ where $|\alpha| < 1$ and $m = \min_{|z|=k} |p(z)|$. By applying Lemma 2.3 to the polynomial P(z), we have

$$A|P'(z)| \le |Q'(z)|$$
 for $|z| = 1$, where $Q(z) = z^n \overline{P(\frac{1}{\overline{z}})}$ (3.17)

and

$$A = \left(\frac{k}{R}\right)^{\mu} \ge 1. \tag{3.18}$$

We can easily verify that for every real number α and $R \ge r \ge 1$,

$$|R + e^{i\alpha}| \ge |r + e^{i\alpha}|.$$

This implies for each q > 0,

$$\int_0^{2\pi} |R + e^{i\alpha}|^q d\alpha \ge \int_0^{2\pi} |r + e^{i\alpha}|^q d\alpha.$$
(3.19)

For point $e^{i\theta}$, $0 \le \theta \le 2\pi$, for which $P'(e^{i\theta}) \ne 0$, we denote

$$R = \left| \frac{Q'(e^{i\theta})}{P'(e^{i\theta})} \right|$$

and r = A, then from (3.17) and (3.18), $R \ge r \ge 1$.

Now, for each q > 0, by Lemma 2.5 and (3.19), we have

$$\int_{0}^{2\pi} |Q'(e^{i\theta}) + e^{i\alpha}P'(e^{i\theta})|^{q}d\alpha = |P'(e^{i\theta})|^{q}\int_{0}^{2\pi} \left|\frac{Q'(e^{i\theta})}{P'(e^{i\theta})} + e^{i\alpha}\right|^{q}d\alpha$$
$$= |P'(e^{i\theta})|^{q}\int_{0}^{2\pi} \left|\left|\frac{Q'(e^{i\theta})}{P'(e^{i\theta})}\right| + e^{i\alpha}\right|^{q}d\alpha$$
$$\ge |P'(e^{i\theta})|^{q}\int_{0}^{2\pi} |A + e^{i\alpha}|^{q}d\alpha.$$
(3.20)

For points $e^{i\theta}$, $0 \le \theta < 2\pi$, for which $P'(e^{i\theta}) = 0$, inequality (3.20) trivially holds.

Now using (3.20) in Lemma 2.4, we obtain for each q > 0,

$$\int_{0}^{2\pi} |A + e^{i\alpha}|^{q} d\alpha \int_{0}^{2\pi} |P'(e^{i\theta})|^{q} d\theta \le 2\pi n^{q} \int_{0}^{2\pi} |P(e^{i\theta})|^{q} d\theta.$$
(3.21)

Since $P(z) = p(Rz) + \alpha m$,

$$P'(z) = R(p'(Rz)).$$

Thus inequality (3.21) can be written as

$$\int_{0}^{2\pi} \left| \left(\frac{k}{R}\right)^{\mu} + e^{i\alpha} \right|^{q} d\alpha \int_{0}^{2\pi} |Rp'(Re^{i\theta})|^{q} d\theta$$
$$\leq 2\pi n^{q} \int_{0}^{2\pi} |p(Re^{i\theta}) + \alpha m|^{q} d\theta.$$
(3.22)

Now, in $|p(Re^{i\theta}) + \alpha m|$, if we choose suitable argument of α , we have

$$|p(Re^{i\theta}) + \alpha m| = |p(Re^{i\theta})| - |\alpha|m.$$

By letting $|\alpha| \to 1$, we obtain

$$|p(Re^{i\theta}) + \alpha m| = |p(Re^{i\theta})| - m.$$
(3.23)

Using (3.23) in (3.22), we have

$$\int_{0}^{2\pi} \left| \left(\frac{k}{R}\right)^{\mu} + e^{i\alpha} \right|^{q} d\alpha \int_{0}^{2\pi} |Rp'(Re^{i\theta})|^{q} d\theta$$
$$\leq 2\pi n^{q} \int_{0}^{2\pi} ||p(Re^{i\theta})| - m|^{q} d\theta.$$
(3.24)

Now applying inequality (2.14) of Lemma 2.7 in (3.24), we have

$$\int_{0}^{2\pi} \left| \left(\frac{k}{R} \right)^{\mu} + e^{i\alpha} \right|^{q} d\alpha \int_{0}^{2\pi} |Rp'(Re^{i\theta})|^{q} d\theta$$

$$\leq 2\pi n^{q} \int_{0}^{2\pi} \left| |p(re^{i\theta})| + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt - \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} m dt - m \right|_{(3.25)}^{q} d\theta.$$

or equivalently

$$\begin{split} &\left\{\int_{0}^{2\pi} |Rp'(Re^{i\theta})|^{q} d\theta\right\}^{\frac{1}{q}} \\ &\leq \frac{nT_{q}}{R} \left\{\int_{0}^{2\pi} \left| |p(re^{i\theta})| + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt - \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} m dt - m \right|^{q} d\theta\right\}^{\frac{1}{q}}. \end{split}$$
This completes the proof of Theorem 3.6.

This completes the proof of Theorem 3.6.

Remark 3.7. As is noticed earlier that inequality (1.10) of Theorem 1.2 is sharp for $p(z) = (z^{\mu} + k^{\mu})^{\frac{n}{\mu}}$ where n is a multiple of μ , we examine the sharpness of inequality (3.16) of Theorem 3.6 for this polynomial.

It is obvious that for $p(z) = (z^{\mu} + k^{\mu})^{\frac{n}{\mu}}$ where n is a multiple of μ ,

$$m = \min_{|z|=k} |p(z)| = 0$$

and hence by Remark 3.2, inequality (3.16) of Theorem 3.6 is not sharp.

Remark 3.8. Using $|p(re^{i\theta})| \leq M(p,r)$ in Theorem 3.6, we have the following result.

Corollary 3.9. If $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$, $1 \le \mu \le n$, is a polynomial of degree n having no zeros in the disk |z| < k, k > 0, then for $0 < r \le R \le k$ and q > 0,

$$\|p'(Rz)\|_{q} \leq \frac{n}{R}T_{q}\left\{ \left| M(p,r) + \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} M(p,t) dt - \int_{r}^{R} \frac{nt^{\mu-1}}{t^{\mu} + k^{\mu}} m dt - m \right| \right\}, \quad (3.26)$$

where T_q is as in Theorem 3.1 and $m = \min_{|z|=k} |p(z)|$.

Further, using inequality (2.15) of Lemma 2.7 in the inequality (3.26) of Corollary 3.9, we have, the L^q version of Theorem 1.2:

Corollary 3.10. If $p(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$, $1 \le \mu \le n$, is a polynomial of degree n having no zeros in the disk |z| < k, k > 0, then for $0 < r \le R \le k$ and q > 0,

$$\|p'(Rz)\|_{q} \leq \frac{n}{R} T_{q} \left(\frac{k^{\mu} + R^{\mu}}{k^{\mu} + r^{\mu}}\right)^{\frac{n}{\mu}} \{M(p, r) - m\}.$$
 (3.27)

where T_q is as in Theorem 3.1 and $m = \min_{|z|=k} |p(z)|$.

Letting $q \to \infty$ in inequality (3.27), we get inequality (1.10) of Theorem 1.2. Further, if we let $\mu = 1$ and r = 1 in Corollary 3.10, we obtain an improvement in L^q version of inequality (1.8) proved by Bidkham and Dewan [5].

Also, when $\mu = 1 = R = r$ in Corollary 3.10, it gives an improvement of L^q inequality (1.7) due to Govil and Rahman [9] of the ordinary inequality (1.6) proved by Malik [11].

Acknowledgments: The authors wish to thank the referees for their valuable comments.

References

- V.V. Arestov, On inequalities for trigonometric polynomials and their derivative, IZV. Akad. Nauk. SSSR. Ser. Math., 45 (1981), 3-22.
- [2] A. Aziz and N.A. Rather, Some Zygmund type L^p inequalities for polynomials, J. Math. Anal. Appl., 289 (2004), 14-29.
- [3] A. Aziz and W.M. Shah, Inequalities for a polynomial and its derivative, Math. Ineq. Appl., 3 (2004), 379-391.
- [4] A. Aziz and B.A. Zargar, Inequalities for a polynomial and its derivative, Math. Ineq. Appl., 4 (1998), 543-550.
- [5] M. Bidkham and K.K. Dewan, Inequalities for polynomial and its derivative, J. Math. Anal. Appl., 166 (1992), 319-324.
- [6] N.G. de-Bruijn, Inequalities concerning polynomials in the complex domain, Ned-erl. Akad. Wetench. Proc. Ser. A, 50 (1947), 1265-1272; Indag. Math 9(1947), 591-598.
- [7] R.B. Gardner and N.K. Govil, An L^p inequality for a polynomial and its derivative, J. Math. Anal. Appl., **194** (1995), 720-726.
- [8] R.B. Gardner and A. Weems, A Bernstein-type of L^p inequality for a certain class of polynomials, J. Math. Anal. Appl., 219 (1998), 472-478.
- [9] N.K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517.
- [10] P.D. Lax, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
- [11] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60. https://doi.org/10.1112/jlms/s2-1.1.57
- [12] G.V. Milovanović, D.S. Mitrinović and Th. Rassias, *Topics in polynomials: External problems, Inequalities, Zeros*, World Scientific, Singapore, 1994.
- [13] M.S. Pukhta, Ph.D Thesis, Submitted to the Jamia Millia Islamia, New Delhi, 1995.
- [14] M.A. QAZI, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115 (1992), 337-343.
- [15] Q.I. Rahman and G. Schmeisser, L^p inequalities for polynomials, J. Approx. Theory, 53 (1988), 26-32.
- [16] N.A. Rather, Extremal properties and location of the zeros of polynomials, Ph.D Thesis, University of Kashmir, 1998.
- [17] W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Publishing Company(reprinted in India), 1977.
- [18] A.C. Schaeffer, Inequalities of A. Markoff and S. N. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., 47 (1941), 565-579.
- [19] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392-400.