Nonlinear Functional Analysis and Applications
Vol. 26. No. 2 (2021), pp. 331-345
ISSN: 1229-1595(print), 2466-0973(online)
https://doi.org/10.22771/nfaa.2021.26.02.07
http://nfaa.kyungnam.ac.kr/journal-nfaa
Kupress
Copyright © 2021 Kyungnam University Press

SOME L^{q} INEQUALITIES FOR POLYNOMIAL

Barchand Chanam ${ }^{1}$, N. Reingachan ${ }^{2}$, Khangembam Babina Devi ${ }^{3}$, Maisnam Triveni Devi ${ }^{4}$ and Kshetrimayum Krishnadas ${ }^{5}$

Department of Mathematics, National Institute of Technology Manipur Imphal, 795004, India
${ }^{1}$ e-mail: barchand_2004@yahoo.co.in
${ }^{2}$ e-mail: reinga14@gmail.com
${ }^{3}$ e-mail: khangembambabina@gmail.com
${ }^{4}$ e-mail: trivenimaisnam@gmail.com
${ }^{5}$ e-mail: kshetrimayum.krishnadas@sbs.du.ac.in
Abstract. Let $p(z)$ be a polynomial of degree n . Then Bernstein's inequality $[12,18]$ is

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|(z)| .
$$

For $q>0$, we denote

$$
\|p\|_{q}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}
$$

and a well-known fact from analysis [17] gives

$$
\lim _{q \rightarrow \infty}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}=\max _{|z|=1}|p(z)| .
$$

Above Bernstein's inequality was extended by Zygmund [19] into L^{q} norm by proving

$$
\left\|p^{\prime}\right\|_{q} \leq n\|p\|_{q}, \quad q \geq 1
$$

Let $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, be a polynomial of degree n having no zero in $|z|<k, k \geq 1$. Then for $0<r \leq R \leq k$, Aziz and Zargar [4] proved

$$
\max _{|z|=R}\left|p^{\prime}(z)\right| \leq \frac{n R^{\mu-1}\left(R^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}-1}}{\left(r^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}} \max _{|z|=r}|p(z)| .
$$

In this paper, we obtain the L^{q} version of the above inequality for $q>0$. Further, we extend a result of Aziz and Shah [3] into L^{q} analogue for $q>0$. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

[^0]
1. Introduction

Let $p(z)$ be a polynomial of degree n . We define

$$
\begin{equation*}
\|p\|_{q}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}, \quad 0<q<\infty \tag{1.1}
\end{equation*}
$$

If we let $q \rightarrow \infty$ in the above equality and make use of the well-known fact from analysis [17] that

$$
\lim _{q \rightarrow \infty}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}=\max _{|z|=1}|p(z)|,
$$

we can suitably denote

$$
\|p\|_{\infty}=\max _{|z|=1}|p(z)| .
$$

Similarly, we can define $\|p\|_{0}=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|p\left(e^{i \theta}\right)\right| d \theta\right\}$ and show that $\lim _{q \rightarrow 0^{+}}\|p\|_{q}=\|p\|_{0}$. It would be of further interest that by taking limits as $\lim _{q \rightarrow 0^{+}}$ that the stated result holding for $q>0$, holds for $q=0$ as well.

For $r>0$, we denote by $M(p, r)=\max _{|z|=r}|p(z)|$.
A famous result due to Bernstein [12 or also see 18] states that if $p(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq n\|p\|_{\infty} \tag{1.2}
\end{equation*}
$$

Inequality (1.2) can be obtained by letting $q \rightarrow \infty$ in the inequality

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{q} \leq n\|p\|_{q}, \quad q>0 \tag{1.3}
\end{equation*}
$$

Inequality (1.3) for $q \geq 1$ is due to Zygmund [19]. Arestov [1] proved that (1.3) remains valid for $0<q<1$ as well. If we restrict ourselves to the class of polynomials having no zeros in $|z|<1$, then inequality (1.2) and (1.3) can be respectively improved by

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{2}\|p\|_{\infty} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{q} \leq \frac{n}{\|1+z\|_{q}}\|p\|_{q}, \quad q>0 \tag{1.5}
\end{equation*}
$$

Inequality (1.4) was conjectured by Erdös and later verified by Lax [10], whereas, inequality (1.5) was proved by de-Bruijn [6] for $q \geq 1$. Rahman and Schmeisser [15] showed that (1.5) remains true for $0<q<1$.

As a generalization of (1.4), Malik [11] proved that if $p(z)$ does not vanish in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{1+k}\|p\|_{\infty} \tag{1.6}
\end{equation*}
$$

Under the same hypotheses of the polynomial $p(z)$, Govil and Rahman [9] extended inequality (1.6) to L^{q} norm by showing that

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{q} \leq \frac{n}{\|k+z\|_{q}}\|p\|_{q}, \quad q \geq 1 \tag{1.7}
\end{equation*}
$$

It was shown by Gardner and Weems [8] and independently by Rather [16] that (1.7) also holds for $0<q<1$. Further, as a generalization of (1.6) Bidkham and Dewan [5] proved that if $p(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having no zeros in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\left\|p^{\prime}(r z)\right\|_{\infty} \leq \frac{n(r+k)^{n-1}}{(1+k)^{n}}\|p\|_{\infty} \quad \text { for } 1 \leq r \leq k \tag{1.8}
\end{equation*}
$$

As a generalization of (1.8), Aziz and Zargar [4] proved the following theorem.
Theorem 1.1. If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, has no zeros in $|z|<k$, $k \geq 1$, then for $0<r \leq R \leq k$,

$$
\begin{equation*}
\left\|p^{\prime}(R z)\right\|_{\infty} \leq \frac{n R^{\mu-1}\left(R^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}-1}}{\left(r^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}}\|p(r z)\|_{\infty} \tag{1.9}
\end{equation*}
$$

The result is best possible and equality in (1.9) holds for $p(z)=\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$, where n is a multiple of μ.

Further, as an improvement and generalization of (1.8), Aziz and Shah [3] proved the following theorem.
Theorem 1.2. If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having no zeros in the disk $|z|<k, k \geq 0$, then for $0<r \leq R \leq k$,

$$
\begin{equation*}
\left\|p^{\prime}(R z)\right\|_{\infty} \leq \frac{n R^{\mu-1}\left(R^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}-1}}{\left(r^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}}\left\{\|p(r z)\|_{\infty}-m\right\} \tag{1.10}
\end{equation*}
$$

where

$$
m=\min _{|z|=k}|p(z)| .
$$

The result is best possible and equality in (1.10) holds for the polynomial $p(z)=$ $\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$, where n is a multiple of μ.

2. Lemmas

For the proofs of the theorems, we require the following lemmas.
Lemma 2.1. ([14]) If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, having no zeros in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{\mu}} \max _{|z|=1}|p(z)| . \tag{2.1}
\end{equation*}
$$

Lemma 2.2. If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, has no zeros in $|z|<k$, $k>0$ then for $0<r \leq R \leq k$,

$$
\begin{equation*}
\left|p\left(R e^{i \theta}\right)\right| \leq\left|p\left(r e^{i \theta}\right)\right|+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
M(p, r)+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t \leq\left(\frac{k^{\mu}+R^{\mu}}{k^{\mu}+r^{\mu}}\right)^{\frac{n}{\mu}} M(p, r) . \tag{2.3}
\end{equation*}
$$

Proof. Since $p(z) \neq 0$ for $|z|<1, p(t z) \neq 0$ for $|z|<\frac{1}{t}$ and so by Lemma 2.1,

$$
\max _{|z|=1} t\left|p^{\prime}(t z)\right| \leq \frac{n}{k^{\mu}+t^{-\mu}} \max |p(t z)|,
$$

this gives

$$
\begin{equation*}
M\left(p^{\prime}, t\right) \leq \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) . \tag{2.4}
\end{equation*}
$$

Now, for $0 \leq r<R \leq k$ and $\theta \in[0,2 \pi)$ we have,

$$
\left|p\left(R e^{i \theta}\right)\right| \leq\left|p\left(r e^{i \theta}\right)\right|+\int_{r}^{R}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which implies

$$
\begin{equation*}
\left|p\left(R e^{i \theta}\right)\right| \leq\left|p\left(r e^{i \theta}\right)\right|+\int_{r}^{R} M\left(p^{\prime}, t\right) d t \tag{2.5}
\end{equation*}
$$

Using (2.4) in (2.5) we obtain

$$
\begin{equation*}
\left|p\left(R e^{i \theta}\right)\right| \leq\left|p\left(r e^{i \theta}\right)\right|+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t \tag{2.6}
\end{equation*}
$$

Which completes the first inequality (2.2).
Further, taking maximum over θ in (2.6), we have

$$
\begin{equation*}
M(p, R) \leq M(p, r)+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t \tag{2.7}
\end{equation*}
$$

Now let us denote the right hand side of inequality (2.7) by $\phi(R)$. Then

$$
\phi^{\prime}(R) \leq \frac{n R^{\mu-1}}{R^{\mu}+k^{\mu}} \phi(R)
$$

or

$$
\begin{equation*}
\phi^{\prime}(R)-\frac{n R^{\mu-1}}{R^{\mu}+k^{\mu}} \phi(R) \leq 0 \tag{2.8}
\end{equation*}
$$

Multiplying both side of (2.8) by $\left(R^{\mu}+k^{\mu}\right)^{\frac{-n}{\mu}}$, we obtain

$$
\frac{d}{d R}\left(R^{\mu}+k^{\mu}\right)^{\frac{-n}{\mu}} \phi(R) \leq 0
$$

which implies that $\left(R^{\mu}+k^{\mu}\right)^{\frac{-n}{\mu}} \phi(R)$ is a nonincreasing function of R in $(0, k]$. Thus for $0<r \leq R \leq k$,

$$
\begin{equation*}
\phi(r) \geq\left(\frac{k^{\mu}+r^{\mu}}{k^{\mu}+R^{\mu}}\right)^{\frac{n}{\mu}} \phi(R) . \tag{2.9}
\end{equation*}
$$

Since $\phi(r)=M(p, r)$ and using the value of $\phi(R)$ in (2.9), we get

$$
M(p, r) \geq\left(\frac{k^{\mu}+r^{\mu}}{k^{\mu}+R^{\mu}}\right)^{\frac{n}{\mu}}\left[M(p, r)+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t\right] .
$$

This completes the proof of inequality (2.3).
Lemma 2.3. ([14]) If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having no zeros in $|z|<k, k \geq 1$, then on $|z|=1$

$$
\begin{equation*}
\left|q^{\prime}(z)\right| \geq k^{\mu}\left|p^{\prime}(z)\right|, \text { where } q(z)=z^{n} p\left(\frac{1}{\bar{z}}\right) \tag{2.10}
\end{equation*}
$$

Lemma 2.4. ([2]) If $p(z)$ is a polynomial of degree n and $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$, then for each $\alpha, 0 \leq \alpha<2 \pi$ and $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|q^{\prime}\left(e^{i \theta}\right)+e^{i \alpha} p^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta d \alpha \leq 2 \pi n^{q} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{q} d \theta \tag{2.11}
\end{equation*}
$$

Lemma 2.5. ([7]) Let z be complex and independent of α, where α is real, then for $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+z e^{i \alpha}\right|^{q} d \alpha=\int_{0}^{2 \pi}\left|e^{i \alpha}+|z|^{q} d \alpha\right. \tag{2.12}
\end{equation*}
$$

Lemma 2.6. ([13]) If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n which does not vanish in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{\mu}}\left\{\max _{|z|=1}|p(z)|-\min _{|z|=k}|p(z)|\right\} . \tag{2.13}
\end{equation*}
$$

Lemma 2.7. Let $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, be a polynomial of degree n having no zeros in $|z|<k, k>0$, then for $0<r \leq R \leq k$,

$$
\begin{equation*}
\left|p\left(R e^{i \theta}\right)\right| \leq\left|p\left(r e^{i \theta}\right)\right|+n\left[\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t-\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu}+k^{\mu}} m d t\right] \tag{2.14}
\end{equation*}
$$

and

$$
\begin{align*}
& M(p, r)+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t-\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} m d t \\
& \leq\left[M(p, r)-\left\{1-\left(\frac{k^{\mu}+r^{\mu}}{k^{\mu}+R^{\mu}}\right)^{\frac{n}{\mu}}\right\} m\right]\left(\frac{k^{\mu}+r^{\mu}}{k^{\mu}+R^{\mu}}\right)^{\frac{n}{\mu}} \tag{2.15}
\end{align*}
$$

where $m=\min _{|z|=k}|p(z)|$.
Proof. By hypotheses, $p(z)$ has no zeros in $|z|<k$, therefore, the polynomial $F(z)=p(t z)$ has no zeros in $|z|<\frac{k}{t}, \frac{k}{t} \geq 1$, where $0<t \leq k$. Since $\frac{k}{t} \geq 1$, by applying Lemma 2.6 to $F(z)$, it follows that

$$
\max _{|z|=1}\left|F^{\prime}(z)\right| \leq \frac{n}{1+\frac{k^{\mu}}{t^{\mu}}}\left\{\max _{|z|=1}|F(z)|-\min _{|z|=\frac{k}{t}}|F(z)|\right\},
$$

this gives

$$
\begin{equation*}
\max _{|z|=t}\left|p^{\prime}(z)\right| \leq \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}}\left\{\max _{|z|=t}|p(z)|-\min _{|z|=k}|p(z)|\right\} . \tag{2.16}
\end{equation*}
$$

Now, for $0<r \leq R \leq k$, and $0 \leq \theta<2 \pi$, we have

$$
\left|p\left(R e^{i \theta}\right)-p\left(r e^{i \theta}\right)\right|=\left|\int_{r}^{R} e^{i \theta} p^{\prime}\left(t e^{i \theta}\right) d t\right| \leq \int_{r}^{R}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t,
$$

from which it follows

$$
\left|p\left(R e^{i \theta}\right)\right| \leq\left|p\left(r e^{i \theta}\right)\right|+\int_{r}^{R}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which implies

$$
\begin{equation*}
\left|p\left(R e^{i \theta}\right)\right| \leq\left|p\left(r e^{i \theta}\right)\right|+\int_{r}^{R} M\left(p^{\prime}, t\right) d t \tag{2.17}
\end{equation*}
$$

Using (2.16) in (2.17), we obtain

$$
\begin{equation*}
\left|p\left(R e^{i \theta}\right)\right| \leq\left|p\left(r e^{i \theta}\right)\right|+n\left[\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t-\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu}+k^{\mu}} m d t\right], \tag{2.18}
\end{equation*}
$$

which is the first inequality of Lemma 2.7.
Further, taking maximum over θ in (2.18), we have

$$
\begin{equation*}
M(p, R) \leq M(p, r)+n\left[\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t-\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu}+k^{\mu}} m d t\right] \tag{2.19}
\end{equation*}
$$

Now let us denote the right hand side of inequality (2.19) by $\phi(R)$. Then

$$
\begin{equation*}
\phi^{\prime}(R)=\frac{n R^{\mu-1}}{R^{\mu}+k^{\mu}} M(p, R)-\frac{n R^{\mu-1}}{R^{\mu}+k^{\mu}} m \tag{2.20}
\end{equation*}
$$

Using $M(p, R) \leq \phi(R)$, equality (2.20) can be written as

$$
\begin{equation*}
\phi^{\prime}(R)-\frac{n R^{\mu-1}}{R^{\mu}+k^{\mu}}\{\phi(R)-m\} \leq 0 \tag{2.21}
\end{equation*}
$$

Multiplying both sides of (2.21) by $\left(R^{\mu}+k^{\mu}\right)^{\frac{-n}{\mu}}$, we get

$$
\phi^{\prime}(R)\left(R^{\mu}+k^{\mu}\right)^{\frac{-n}{\mu}}-n(\phi(R)-m)\left(R^{\mu}+k^{\mu}\right)^{\frac{-n}{\mu}-1} R^{\mu-1} \leq 0,
$$

which implies

$$
\begin{equation*}
\frac{d}{d R}\left\{(\phi(R)-m)\left(R^{\mu}+k^{\mu}\right)^{\frac{-n}{\mu}}\right\} \leq 0 . \tag{2.22}
\end{equation*}
$$

From (2.22) we conclude that the function,

$$
\{\phi(R)-m\}\left(R^{\mu}+k^{\mu}\right)^{\frac{-n}{\mu}}
$$

is a nonincreasing function of R in $(0, k]$. Hence for $0<r \leq R \leq k$,

$$
\begin{equation*}
\phi(r) \geq\left(\frac{k^{\mu}+r^{\mu}}{k^{\mu}+R^{\mu}}\right)^{\frac{n}{\mu}} \phi(R)+\left\{1-\left(\frac{k^{\mu}+r^{\mu}}{k^{\mu}+R^{\mu}}\right)^{\frac{n}{\mu}}\right\} m \tag{2.23}
\end{equation*}
$$

Since $\phi(r)=M(p, r)$ and using the value of $\phi(R)$ in (2.23), we get

$$
\begin{aligned}
& M(p, r)+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t-\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} m d t \\
& \leq\left[M(p, r)-\left\{1-\left(\frac{k^{\mu}+r^{\mu}}{k^{\mu}+R^{\mu}}\right)^{\frac{n}{\mu}}\right\} m\right]\left(\frac{k^{\mu}+R^{\mu}}{k^{\mu}+r^{\mu}}\right)^{\frac{n}{\mu}}
\end{aligned}
$$

This completes the proof of inequality (2.15) of Lemma 2.7.

3. Main results

In this paper, first we extend Theorem 1.1 into L^{q} norm with the value of $k>0$ instead of just $k \geq 1$. More precisely, we prove:

Theorem 3.1. If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, has no zeros in $|z|<k$, $k>0$, then for $0<r \leq R \leq k$, and $q>0$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq \frac{n}{R} T_{q}\left\{\int_{0}^{2 \pi}| | p\left(r e^{i \theta}\right)\left|+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t\right|^{q} d \theta\right\}^{\frac{1}{q}}, \tag{3.1}
\end{equation*}
$$

where

$$
T_{q}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left(\frac{k}{R}\right)^{\mu}+e^{i \alpha}\right|^{q} d \alpha\right\}^{\frac{-1}{q}}
$$

Letting $q \rightarrow \infty$ on both sides of (3.1), we obtain inequality (1.9) of Theorem 1.1.

Proof. By hypothesis the polynomial $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}$ has no zero in $|z|<$ $k, k>0$, therefore the polynomial $P(z)=p(R z)$ has no zero in $|z|<\frac{k}{R}, \frac{k}{R} \geq 1$. By applying Lemma 2.3 to the polynomial $P(z)$, we have

$$
\begin{equation*}
A\left|P^{\prime}(z)\right| \leq\left|Q^{\prime}(z)\right| \text { for }|z|=1, \text { where } Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
A=\left(\frac{k}{R}\right)^{\mu} \geq 1 \tag{3.3}
\end{equation*}
$$

We can easily verify that for every real number α and $R \geq r \geq 1$,

$$
\left|R+e^{i \alpha}\right| \geq\left|r+e^{i \alpha}\right|
$$

This implies for each $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|R+e^{i \alpha}\right|^{q} d \alpha \geq \int_{0}^{2 \pi}\left|r+e^{i \alpha}\right|^{q} d \alpha \tag{3.4}
\end{equation*}
$$

For point $e^{i \theta}, 0 \leq \theta \leq 2 \pi$, for which $P^{\prime}\left(e^{i \theta}\right) \neq 0$, we denote

$$
R=\left|\frac{Q^{\prime}\left(e^{i \theta}\right)}{P^{\prime}\left(e^{i \theta}\right)}\right|
$$

and $r=A$, then from (3.2) and (3.3), $R \geq r \geq 1$.

Now, for each $q>0$, by Lemma 2.5 and (3.4), we have

$$
\begin{align*}
\int_{0}^{2 \pi}\left|Q^{\prime}\left(e^{i \theta}\right)+e^{i \alpha} P^{\prime}\left(e^{i \theta}\right)\right|^{q} d \alpha & =\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} \int_{0}^{2 \pi}\left|\frac{Q^{\prime}\left(e^{i \theta}\right)}{P^{\prime}\left(e^{i \theta}\right)}+e^{i \alpha}\right|^{q} d \alpha \\
& =\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} \int_{0}^{2 \pi}| | \frac{Q^{\prime}\left(e^{i \theta}\right)}{P^{\prime}\left(e^{i \theta}\right)}\left|+e^{i \alpha}\right|^{q} d \alpha \\
& \geq\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} \int_{0}^{2 \pi}\left|A+e^{i \alpha}\right|^{q} d \alpha \tag{3.5}
\end{align*}
$$

For points $e^{i \theta}, 0 \leq \theta<2 \pi$, for which $P^{\prime}\left(e^{i \theta}\right)=0$, inequality (3.5) trivially holds.

Now using (3.5) in Lemma 2.4, we obtain for each $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|A+e^{i \alpha}\right|^{q} d \alpha \int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta \leq 2 \pi n^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \tag{3.6}
\end{equation*}
$$

Since $P(z)=p(R z)$,

$$
P^{\prime}(z)=R p^{\prime}(R z)
$$

Thus inequality (3.6) can be written as

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\left(\frac{k}{R}\right)^{\mu}+e^{i \alpha}\right|^{q} d \alpha \int_{0}^{2 \pi}\left|R p^{\prime}\left(R e^{i \theta}\right)\right|^{q} d \theta \leq 2 \pi n^{q} \int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{q} d \theta \tag{3.7}
\end{equation*}
$$

Now applying inequality (2.2) of Lemma 2.2 in (3.7), we have

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|\left(\frac{k}{R}\right)^{\mu}+e^{i \alpha}\right|^{q} d \alpha \int_{0}^{2 \pi}\left|R p^{\prime}\left(R e^{i \theta}\right)\right|^{q} d \theta \\
& \leq 2 \pi n^{q} \int_{0}^{2 \pi}\left\{\left|p\left(r e^{i \theta}\right)\right|+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t\right\}^{q} d \theta \tag{3.8}
\end{align*}
$$

or equivalently

$$
\begin{aligned}
& \left\{\int_{0}^{2 \pi}\left|R p^{\prime}\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \\
& \leq \frac{n T_{q}}{R}\left[\int_{0}^{2 \pi}\left\{\left|p\left(r e^{i \theta}\right)\right|+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t\right\}^{q} d \theta\right]^{\frac{1}{q}}
\end{aligned}
$$

This completes the proof of Theorem 3.1.
Remark 3.2. Both the ordinary inequalities (1.9) and (1.10) of Theorems 1.1 and 1.2 are best possible for the polynomial $p(z)=\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$ where n is a multiple of μ. It may be expected that inequality (3.1) of Theorem 3.1 is sharp for this polynomial. We discuss it as follows:

For $p(z)=\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$, where n is a multiple of μ, inequality (3.1) of Theorem 3.1 equivalently takes

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi}\left|k^{\mu}+R^{\mu} e^{i \alpha}\right|^{q} d \alpha\right\}\left\{\int_{0}^{2 \pi}\left|R^{\mu} e^{i \theta \mu}+k^{\mu}\right|^{q\left(\frac{n}{\mu}-1\right)} d \theta\right\} \\
& \leq\left[\int_{0}^{2 \pi}\left\{\left|r^{\mu} e^{i \theta \mu}+k^{\mu}\right|^{\frac{n}{\mu}}+\left(R^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}-\left(r^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}\right\}^{q} d \theta\right] . \tag{3.9}
\end{align*}
$$

In particular, if we set $k=R=r$, and $\mu=1$, then inequality (3.9) assumes

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{q} d \alpha\right\}\left\{\int_{0}^{2 \pi}\left|e^{i \theta}+1\right|^{q(n-1)} d \theta\right\} \leq\left\{\int_{0}^{2 \pi}\left|e^{i \theta}+1\right|^{n q} d \theta\right\} . \tag{3.10}
\end{equation*}
$$

Now, we have for $p>-1$,

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \cos ^{p} \theta d \theta=\frac{\sqrt{\pi} \Gamma\left(\frac{p}{2}+\frac{1}{2}\right)}{2 \Gamma\left(\frac{p}{2}+1\right)} . \tag{3.11}
\end{equation*}
$$

For $q>0$, by a simple calculation, we have

$$
\int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{q} d \alpha=2^{q+2} \int_{0}^{\frac{\pi}{2}} \cos ^{q} \alpha d \alpha
$$

which on using (3.11) gives

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{q} d \alpha=2^{q+1} \sqrt{\pi} \frac{\Gamma\left(\frac{q}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{q}{2}+1\right)} \tag{3.12}
\end{equation*}
$$

Applying equality (3.12) in inequality (3.10), we have

$$
2^{q(n-1)+1} \sqrt{\pi} \frac{\Gamma\left(\frac{q(n-1)}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{q(n-1)}{2}+1\right)} \times 2^{q+1} \sqrt{\pi} \frac{\Gamma\left(\frac{q}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{q}{2}+1\right)} \leq 2^{n q+1} \sqrt{\pi} \frac{\Gamma\left(\frac{n q}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{n q}{2}+1\right)},
$$

that is,

$$
\begin{equation*}
2 \sqrt{\pi} \frac{\Gamma\left(\frac{q(n-1)}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{q(n-1)}{2}+1\right)} \times \frac{\Gamma\left(\frac{q}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{q}{2}+1\right)} \leq \frac{\Gamma\left(\frac{n q}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{n q}{2}+1\right)} . \tag{3.13}
\end{equation*}
$$

Further, when $n=3, q=4$, inequality (3.13) becomes

$$
2 \sqrt{\pi} \frac{\Gamma\left(4+\frac{1}{2}\right)}{\Gamma(5)} \times \frac{\Gamma\left(2+\frac{1}{2}\right)}{\Gamma(3)} \leq \frac{\Gamma\left(6+\frac{1}{2}\right)}{\Gamma(7)}
$$

which on simplification gives

$$
10 \pi \leq 11
$$

which is absurd. This shows that inequality (3.1) of Theorem 3.1 is not sharp.
Remark 3.3. Using $\left|p\left(r e^{i \theta}\right)\right| \leq M(p, r)$ in Theorem 3.1, we have the following result.

Corollary 3.4. If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, has no zeros in $|z|<k$, $k>0$ then for $0<r \leq R \leq k$, and $q>0$,

$$
\begin{equation*}
\left\|p^{\prime}(R z)\right\|_{q} \leq \frac{n}{R} T_{q}\left|M(p, r)+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t\right|, \tag{3.14}
\end{equation*}
$$

where T_{q} is as defined in Theorem 3.1.
Further, using inequality (2.3) of Lemma 2.2 in the inequality (3.11) of Corollary 3.4, we have the L^{q} version of Theorem 1.1, which has some interesting consequences as discussed below.

Corollary 3.5. If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, has no zeros in $|z|<k$, $k>0$ then for $0<r \leq R \leq k$ and $q>0$,

$$
\begin{equation*}
\left\|p^{\prime}(R z)\right\|_{q} \leq \frac{n}{R} T_{q}\left(\frac{k^{\mu}+R^{\mu}}{k^{\mu}+r^{\mu}}\right)^{\frac{n}{\mu}} M(p, r), \tag{3.15}
\end{equation*}
$$

where T_{q} is as defined in Theorem 3.1.
Letting $q \rightarrow \infty$ in inequality (3.15) we get inequality (1.9) of Theorem 1.1. Further, if we let $\mu=1$ and $r=1$ in Corollary 3.5, it matches the L^{q} analogue of inequality (1.8) proved by Bidkham and Dewan [5].

In addition to the above, when $\mu=1=R=r$, Corollary 3.5 gives inequality (1.7) which is the L^{q} inequality of the famous inequality (1.6) due to Malik [11].

Further, we extend inequality (1.10) of Theorem 1.2 due to Aziz and Shah [3] to integral mean inequality. In fact, we obtain the following theorem.
Theorem 3.6. If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having no zeros in the disk $|z|<k, k>0$, then for $0<r \leq R \leq k$, and $q>0$,

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{3.16}\\
& \leq \frac{n}{R} T_{q}\left\{\int_{0}^{2 \pi}| | p\left(r e^{i \theta}\right)\left|+n\left[\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t-\int_{r}^{R} \frac{t^{\mu-1}}{t^{\mu}+k^{\mu}} m d t\right]-m\right|^{q} d \theta\right\}^{\frac{1}{q}}
\end{align*}
$$

where T_{q} is as in Theorem 3.1 and $m=\min _{|z|=k}|p(z)|$. Letting $q \rightarrow \infty$ on both sides of (3.16), we obtain inequality (1.10) of Theorem 1.2.

Proof. Since the polynomial $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}$ has no zero in $|z|<k, k>0$, the polynomial $p(R z)$ has no zero in $|z|<\frac{k}{R}, \frac{k}{R} \geq 1$.

Take $P(z)=p(R z)+\alpha m$ where $|\alpha|<1$ and $m=\min _{|z|=k} \mid p(z)$. By applying Lemma 2.3 to the polynomial $P(z)$, we have

$$
\begin{equation*}
A\left|P^{\prime}(z)\right| \leq\left|Q^{\prime}(z)\right| \text { for }|z|=1, \text { where } Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)} \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
A=\left(\frac{k}{R}\right)^{\mu} \geq 1 \tag{3.18}
\end{equation*}
$$

We can easily verify that for every real number α and $R \geq r \geq 1$,

$$
\left|R+e^{i \alpha}\right| \geq\left|r+e^{i \alpha}\right|
$$

This implies for each $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|R+e^{i \alpha}\right|^{q} d \alpha \geq \int_{0}^{2 \pi}\left|r+e^{i \alpha}\right|^{q} d \alpha \tag{3.19}
\end{equation*}
$$

For point $e^{i \theta}, 0 \leq \theta \leq 2 \pi$, for which $P^{\prime}\left(e^{i \theta}\right) \neq 0$, we denote

$$
R=\left|\frac{Q^{\prime}\left(e^{i \theta}\right)}{P^{\prime}\left(e^{i \theta}\right)}\right|
$$

and $r=A$, then from (3.17) and (3.18), $R \geq r \geq 1$.
Now, for each $q>0$, by Lemma 2.5 and (3.19), we have

$$
\begin{align*}
\int_{0}^{2 \pi}\left|Q^{\prime}\left(e^{i \theta}\right)+e^{i \alpha} P^{\prime}\left(e^{i \theta}\right)\right|^{q} d \alpha & =\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} \int_{0}^{2 \pi}\left|\frac{Q^{\prime}\left(e^{i \theta}\right)}{P^{\prime}\left(e^{i \theta}\right)}+e^{i \alpha}\right|^{q} d \alpha \\
& =\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} \int_{0}^{2 \pi}| | \frac{Q^{\prime}\left(e^{i \theta}\right)}{P^{\prime}\left(e^{i \theta}\right)}\left|+e^{i \alpha}\right|^{q} d \alpha \\
& \geq\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} \int_{0}^{2 \pi}\left|A+e^{i \alpha}\right|^{q} d \alpha . \tag{3.20}
\end{align*}
$$

For points $e^{i \theta}, 0 \leq \theta<2 \pi$, for which $P^{\prime}\left(e^{i \theta}\right)=0$, inequality (3.20) trivially holds.

Now using (3.20) in Lemma 2.4, we obtain for each $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|A+e^{i \alpha}\right|^{q} d \alpha \int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta \leq 2 \pi n^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \tag{3.21}
\end{equation*}
$$

Since $P(z)=p(R z)+\alpha m$,

$$
P^{\prime}(z)=R\left(p^{\prime}(R z)\right)
$$

Thus inequality (3.21) can be written as

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|\left(\frac{k}{R}\right)^{\mu}+e^{i \alpha}\right|^{q} d \alpha \int_{0}^{2 \pi}\left|R p^{\prime}\left(R e^{i \theta}\right)\right|^{q} d \theta \\
& \leq 2 \pi n^{q} \int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)+\alpha m\right|^{q} d \theta \tag{3.22}
\end{align*}
$$

Now, in $\left|p\left(R e^{i \theta}\right)+\alpha m\right|$, if we choose suitable argument of α, we have

$$
\left|p\left(R^{i \theta}\right)+\alpha m\right|=\left|p\left(R e^{i \theta}\right)\right|-|\alpha| m
$$

By letting $|\alpha| \rightarrow 1$, we obtain

$$
\begin{equation*}
\left|p\left(R^{i \theta}\right)+\alpha m\right|=\left|p\left(R e^{i \theta}\right)\right|-m \tag{3.23}
\end{equation*}
$$

Using (3.23) in (3.22), we have

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|\left(\frac{k}{R}\right)^{\mu}+e^{i \alpha}\right|^{q} d \alpha \int_{0}^{2 \pi}\left|R p^{\prime}\left(R e^{i \theta}\right)\right|^{q} d \theta \\
& \leq 2 \pi n^{q} \int_{0}^{2 \pi}| | p\left(R e^{i \theta}\right)|-m|^{q} d \theta \tag{3.24}
\end{align*}
$$

Now applying inequality (2.14) of Lemma 2.7 in (3.24), we have

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|\left(\frac{k}{R}\right)^{\mu}+e^{i \alpha}\right|^{q} d \alpha \int_{0}^{2 \pi}\left|R p^{\prime}\left(R e^{i \theta}\right)\right|^{q} d \theta \\
& \leq 2 \pi n^{q} \int_{0}^{2 \pi}| | p\left(r e^{i \theta}\right)\left|+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t-\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} m d t-m\right|^{q} d \theta \tag{3.25}
\end{align*}
$$

or equivalently

$$
\begin{aligned}
& \left\{\int_{0}^{2 \pi}\left|R p^{\prime}\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \\
& \leq \frac{n T_{q}}{R}\left\{\int_{0}^{2 \pi}| | p\left(r e^{i \theta}\right)\left|+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t-\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} m d t-m\right|^{q} d \theta\right\}^{\frac{1}{q}}
\end{aligned}
$$

This completes the proof of Theorem 3.6.
Remark 3.7. As is noticed earlier that inequality (1.10) of Theorem 1.2 is sharp for $p(z)=\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$ where n is a multiple of μ, we examine the sharpness of inequality (3.16) of Theorem 3.6 for this polynomial.

It is obvious that for $p(z)=\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$ where n is a multiple of μ,

$$
m=\min _{|z|=k}|p(z)|=0
$$

and hence by Remark 3.2, inequality (3.16) of Theorem 3.6 is not sharp.
Remark 3.8. Using $\left|p\left(r e^{i \theta}\right)\right| \leq M(p, r)$ in Theorem 3.6, we have the following result.

Corollary 3.9. If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having no zeros in the disk $|z|<k, k>0$, then for $0<r \leq R \leq k$ and $q>0$,

$$
\begin{align*}
& \left\|p^{\prime}(R z)\right\|_{q} \\
& \leq \frac{n}{R} T_{q}\left\{\left|M(p, r)+\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} M(p, t) d t-\int_{r}^{R} \frac{n t^{\mu-1}}{t^{\mu}+k^{\mu}} m d t-m\right|\right\}, \tag{3.26}
\end{align*}
$$

where T_{q} is as in Theorem 3.1 and $m=\min _{|z|=k}|p(z)|$.
Further, using inequality (2.15) of Lemma 2.7 in the inequality (3.26) of Corollary 3.9 , we have, the L^{q} version of Theorem 1.2:

Corollary 3.10. If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having no zeros in the disk $|z|<k, k>0$, then for $0<r \leq R \leq k$ and $q>0$,

$$
\begin{equation*}
\left\|p^{\prime}(R z)\right\|_{q} \leq \frac{n}{R} T_{q}\left(\frac{k^{\mu}+R^{\mu}}{k^{\mu}+r^{\mu}}\right)^{\frac{n}{\mu}}\{M(p, r)-m\} . \tag{3.27}
\end{equation*}
$$

where T_{q} is as in Theorem 3.1 and $m=\min _{|z|=k}|p(z)|$.
Letting $q \rightarrow \infty$ in inequality (3.27), we get inequality (1.10) of Theorem 1.2. Further, if we let $\mu=1$ and $r=1$ in Corollary 3.10, we obtain an improvement in L^{q} version of inequality (1.8) proved by Bidkham and Dewan [5].

Also, when $\mu=1=R=r$ in Corollary 3.10, it gives an improvement of L^{q} inequality (1.7) due to Govil and Rahman [9] of the ordinary inequality (1.6) proved by Malik [11].

Acknowledgments: The authors wish to thank the referees for their valuable comments.

References

[1] V.V. Arestov, On inequalities for trigonometric polynomials and their derivative, IZV. Akad. Nauk. SSSR. Ser. Math., 45 (1981), 3-22.
[2] A. Aziz and N.A. Rather, Some Zygmund type L^{p} inequalities for polynomials, J. Math. Anal. Appl., 289 (2004), 14-29.
[3] A. Aziz and W.M. Shah, Inequalities for a polynomial and its derivative, Math. Ineq. Appl., 3 (2004), 379-391.
[4] A. Aziz and B.A. Zargar, Inequalities for a polynomial and its derivative, Math. Ineq. Appl., 4 (1998), 543-550.
[5] M. Bidkham and K.K. Dewan, Inequalities for polynomial and its derivative, J. Math. Anal. Appl., 166 (1992), 319-324.
[6] N.G. de-Bruijn, Inequalities concerning polynomials in the complex domain, Ned-erl. Akad. Wetench. Proc. Ser. A, 50 (1947), 1265-1272; Indag. Math 9(1947), 591-598.
[7] R.B. Gardner and N.K. Govil, An L^{p} inequality for a polynomial and its derivative, J. Math. Anal. Appl., 194 (1995), 720-726.
[8] R.B. Gardner and A. Weems, A Bernstein-type of L^{p} inequality for a certain class of polynomials, J. Math. Anal. Appl., 219 (1998), 472-478.
[9] N.K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517.
[10] P.D. Lax, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
[11] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60. https://doi.org/10.1112/jlms/s2-1.1.57
[12] G.V. Milovanović, D.S. Mitrinović and Th. Rassias, Topics in polynomials: External problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
[13] M.S. Pukhta, Ph.D Thesis, Submitted to the Jamia Millia Islamia, New Delhi, 1995.
[14] M.A. QAZI, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115 (1992), 337-343.
[15] Q.I. Rahman and G. Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory, 53 (1988), 26-32.
[16] N.A. Rather, Extremal properties and location of the zeros of polynomials, Ph.D Thesis, University of Kashmir, 1998.
[17] W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Publishing Company(reprinted in India), 1977.
[18] A.C. Schaeffer,Inequalities of A. Markoff and S. N. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., 47 (1941), 565-579.
[19] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392400.

[^0]: ${ }^{0}$ Received September 25, 2020. Revised February 15, 2021. Accepted March 21, 2021.
 ${ }^{0} 2010$ Mathematics Subject Classification: 30A10, 30C10, 30C15.
 ${ }^{0}$ Keywords: L^{q} norm, inequality, polynomial, zero.
 ${ }^{0}$ Corresponding author: Barchand Chanam(barchand_2004@yahoo.co.in).

