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Abstract. A plethora of applications from mathematical programmings, such as minimax,

mathematical programming, penalization and fixed point problems can be framed as varia-

tional inequality problems. Most of the methods that used to solve such problems involve

iterative methods, that is why, in this paper, we introduce a new extragradient-like method to

solve pseudomonotone variational inequalities in a real Hilbert space. The proposed method

has the advantage of a variable step size rule that is updated for each iteration based on pre-

vious iterations. The main advantage of this method is that it operates without the previous

knowledge of the Lipschitz constants of an operator. A strong convergence theorem for the

proposed method is proved by letting the mild conditions on an operator G. Numerical ex-

periments have been studied in order to validate the numerical performance of the proposed

method and to compare it with existing methods.

1. Introduction

In this article, we consider classical variational inequalities [33] and the
variational inequality problem (VIP) for an operator G : E → E is defined in
the following way:

Find u∗ ∈ K such that
〈
G(u∗), v − u∗

〉
≥ 0, ∀ v ∈ K, (VIP)
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where K is a nonempty, convex and closed subset of a real Hilbert space E,
〈., .〉 and ‖.‖ denote an inner product and the induced norm on E, respectively.
Moreover, R, N are the set of real numbers and natural numbers, respectively.
It is useful to note that the problem (VIP) is equivalent to solve the following
problem:

Find u∗ ∈ K such that u∗ = PK[u∗ − ρG(u∗)],

where ρ is any positive real number and PK is a metric projection on K .

The theory of variational inequalities has been used as an important tool to
study a wide range of topics, that is, physics, engineering, economics and opti-
mization theory. This problem was presented by Stampacchia [33] in 1964 and
also well established that the problem (VIP) is a crucial problem in nonlinear
analysis. This is an important mathematical problem that includes several im-
portant topics of applied mathematics, such as network equilibrium problems,
the necessary optimality conditions, the complementarity problems and the
systems of nonlinear equations (for more details [1, 2, 8, 13, 14, 16, 17, 27, 35]).

On the other hand, the projection methods are important iterative methods
to solve variational inequalities. Many iterative methods for solving variational
inequalities have been proposed and analyzed (see for more details [5, 6, 12,
15, 18, 24, 25, 26, 28, 29, 30, 36, 37, 38, 42]).

The extragradient method was introduced by Korpelevich [18] and Antipin
[3]. The method is of the form: u0 ∈ K,

vn = PK[un − ρG(un)],
un+1 = PK[un − ρG(vn)]

(1.1)

where 0 < ρ < 1
L and L is Lipschitz constant of an operator G.

Yang et al. [41] proposed two explicit subgradient extragradient methods
to solve monotone variational inequalities. An iterative sequence {un} was
generated in the following way:

Algorithm 1.1. (i) Let u0 ∈ K, µ ∈ (0, 1) and ρ0 > 0.
(ii) Compute iterative sequence {un} for n ≥ 1 as follows:{

vn = PK[un − ρnG(un)],

un+1 = PEn [un − ρnG(vn)],
(1.2)

where En = {z ∈ E : 〈un − ρnG(un)− vn, z − vn〉 ≤ 0}.
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(iii) Update the step size rule in the following way:

ρn+1 =


min

{
ρn,

µ‖un−vn‖2+µ‖un+1−vn‖2
〈G(un)−G(vn),un+1−vn〉

}
if 〈G(un)− G(vn), un+1 − vn〉 > 0,

ρn otherwise.

(iv) If un = vn, then stop. Otherwise, set n := n + 1 and return to Step
(ii).

Algorithm 1.2. (i) Let u0 ∈ K, µ ∈ (0, 1), ρ0 > 0 and a sequence φn ⊂
(0, 1) with φn → 0 and

∑∞
n=1 φn = +∞.

(ii) Compute iterative sequence {un} for n ≥ 1 as follows:
vn = PK[un − ρnG(un)],

tn = PEn [un − ρnG(vn)],

un+1 = φnu0 + (1− φn)tn,

(1.3)

where En = {z ∈ E : 〈un − ρnG(un)− vn, z − vn〉 ≤ 0}.
(iii) Update the step size rule in the following way:

ρn+1 =


min

{
ρn,

µ‖un−vn‖2+µ‖tn−vn‖2
〈G(un)−G(vn),tn−vn〉

}
if 〈G(un)− G(vn), tn − vn〉 > 0,

ρn otherwise.

(iv) If un = vn, then stop. Otherwise, set n := n + 1 and return to Step
(ii).

Inspired by the methods in [19, 26, 41], in this paper, we introduces a mod-
ified subgradient extragradient algorithm for solving pseudomonotone varia-
tional inequalities in real Hilbert spaces. In contrast to the results of Yang et
al. [41], the primary goal of this paper is to solve pseudomonotone variational
inequalities in real Hilbert spaces. It is important to note that the proposed
algorithm is more efficient between existing algorithms. In particular, by com-
paring the results of Yang et al. [41], the proposed algorithm is effective in
most situations. Similar to the results of Yang et al. [41], proof of the strong
convergence of the proposed algorithm is well established without knowing the
Lipschitz constant of the operator G.

The proposed algorithm can be seen as a modification of the methods shown
in [18, 19, 41]. Numerical findings have been studied and confirmed so that
the new method is more effective than the existing method in [41].

The rest of this article was arranged as follows: Section 2 contains some
definitions and basic results used in the paper. Section 3 includes the main
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algorithm and convergence theorem. Section 4 performs the numerical results
that show the algorithmic effectiveness of the proposed method.

2. Preliminaries

We assume that the following requirements have been met.

(B1) The solution set of problem (VIP) is denoted by Ω and it is nonempty.
(B2) An operator G : E→ E is pseudomonotone, that is,〈

G(v1), v2 − v1

〉
≥ 0 =⇒

〈
G(v2), v1 − v2

〉
≤ 0, ∀ v1, v2 ∈ E.

(B3) An operator G : E → E is Lipschitz continuous with constant L > 0,
that is, there exists a positive constants L such that

‖G(v1)− G(v2)‖ ≤ L‖v1 − v2‖, ∀ v1, v2 ∈ E.
(B4) An operator G : E → E is sequentially weakly continuous, that is,

{G(un)} converges weakly to G(u) for each sequence {un} weakly con-
verges to u.

The metric projection PK(v1) for v1 ∈ E onto a closed and convex subset K
of E is defined by PK(v1) = arg min

v2∈K
{‖v1 − v2‖}.

Lemma 2.1. ([20]) Let K be a nonempty, closed and convex subset of a real
Hilbert space E and PK : E→ K be a metric projection from E onto K.

(i) Let v1 ∈ K and v2 ∈ E, we have

‖v1 − PK(v2)‖2 + ‖PK(v2)− v2‖2 ≤ ‖v1 − v2‖2.
(ii) v3 = PK(v1) if and only if 〈v1 − v3, v2 − v3〉 ≤ 0, ∀ v2 ∈ K.

(iii) For v2 ∈ K and v1 ∈ E ‖v1 − PK(v1)‖ ≤ ‖v1 − v2‖.

Lemma 2.2. ([4]) For each v1, v2 ∈ E and δ ∈ R, the following relationships
hold.

(i) ‖δv1 + (1− δ)v2‖2 = δ‖v1‖2 + (1− δ)‖v2‖2 − δ(1− δ)‖v1 − v2‖2.
(ii) ‖v1 + v2‖2 ≤ ‖v1‖2 + 2〈v2, v1 + v2〉.

Lemma 2.3. ([40]) Let {Ψn} be a sequence of nonnegative real numbers such
that

Ψn+1 ≤ (1− τn)Ψn + τnδn, ∀n ∈ N,
where {τn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions:

lim
n→∞

τn = 0,

∞∑
n=1

τn = +∞ and lim sup
n→∞

δn ≤ 0.

Then limn→∞Ψn = 0.
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Lemma 2.4. ([23]) Let {Ψn} be a sequence of real numbers such that there
exists a subsequence {ni} of {n} with Ψni < Ψni+1 for all i ∈ N. Then, there
exists a nondecreasing sequence {mk} ⊂ N such that mk →∞ as k →∞, and
the following conditions are fullfilled by all (sufficiently large) numbers k ∈ N:

Ψmk
≤ Ψmk+1

and Ψk ≤ Ψmk+1
,

where mk = max{j ≤ k : Ψj ≤ Ψj+1}.

Lemma 2.5. ([34]) Assume that G : K → E is a pseudomonotone and con-
tinuous operator. Then, u∗ is a solution of the problem (VIP) if and only if
u∗ is a solution of the following problem:

Find u ∈ K such that 〈G(v), v − u〉 ≥ 0, ∀ v ∈ K.

3. Viscosity method for pseudomonotone variational inequality

In this section, we provide a method consisting of one convex minimization
problem through viscosity and an explicit step size rule which are being used to
improve the convergence rate of the iterative sequence. Suppose that g : E→ E
is a strict contraction mapping with constant ξ ∈ [0, 1). The main algorithm
is defined as follows:

Algorithm A: (An explicit method for variational inequality problem)

Step 0: Choose u0 ∈ K, µ ∈ (0, 1), ρ0 > 0 and a sequence φn ⊂ (0, 1)
satisfying the following conditions:

lim
n→∞

φn = 0 and

∞∑
n=1

φn = +∞.

Step 1: Compute
vn = PK[un − ρnG(un)].

If un = vn, then Stop. Otherwise, go to Step 2.
Step 2: Compute

tn = vn + ρn[G(un)− G(vn)].

Step 3: Compute

un+1 = φng(un) + (1− φn)tn,

where g : E→ E is a strict contraction mapping with constant ξ ∈ [0, 1).
Step 4: Evaluate

ρn+1 =

{
min

{
ρn,

µ‖un−vn‖
‖G(un)−G(vn)‖

}
, if G(un) 6= G(vn),

ρn, else.
(3.1)

Set n := n+ 1 and go back to Step 1.
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Lemma 3.1. The step size sequence {ρn} generated in (3.1) is monotonically
decreasing with a lower bound is min

{µ
L , ρ0

}
and converges to a fixed ρ > 0.

Proof. It is easy to see that by definition {ρn} is monotone and non-increasing
sequence. It is given that G is Lipschitz-continuous with constant L > 0. Let
G(un) 6= G(vn) such that

µ‖un − vn‖
‖G(un)− G(vn)‖

≥ µ‖un − vn‖
L‖un − vn‖

≥ µ

L
. (3.2)

The above expression implies that the sequence {ρn} have a lower bound
min

{µ
L , ρ0

}
. Moreover, there exits ρ > 0 such that limn→∞ ρn = ρ. �

Lemma 3.2. Assume that G : E → E satisfies the conditions (B1)-(B4). Let
{un} be a sequence which is generated by Algorithm A. Moreover, sequence
φn ⊂ (0, 1) satisfying the following conditions:

lim
n→∞

φn = 0 and

∞∑
n=1

φn = +∞.

Then for each u∗ ∈ Ω, we have

‖tn − u∗‖2 ≤
∥∥un − u∗∥∥2 −

(
1− µ2 ρ2

n

ρ2
n+1

)∥∥un − vn∥∥2
.

Proof. Let u∗ ∈ Ω and by definition of tn, we have∥∥tn − u∗∥∥2
=
∥∥vn + ρn[G(un)− G(vn)]− u∗

∥∥2

=
∥∥vn − u∗∥∥2

+ ρ2
n

∥∥G(un)− G(vn)
∥∥2

+ 2ρn〈vn − u∗,G(un)− G(vn)〉

=
∥∥vn + un − un − u∗

∥∥2
+ ρ2

n

∥∥G(un)− G(vn)
∥∥2

+ 2ρn〈vn − u∗,G(un)− G(vn)〉

=
∥∥vn − un∥∥2

+
∥∥un − u∗∥∥2

+ 2〈vn − un, un − u∗〉

+ ρ2
n

∥∥G(un)− G(vn)
∥∥2

+ 2ρn〈vn − u∗,G(un)− G(vn)〉

=
∥∥un − u∗∥∥2

+
∥∥vn − un∥∥2

+ 2〈vn − un, vn − u∗〉+ 2〈vn − un, un − vn〉

+ ρ2
n

∥∥G(un)− G(vn)
∥∥2

+ 2ρn〈vn − u∗,G(un)− G(vn)〉. (3.3)

It is given that vn = PK[un − ρnG(un)] and it further implies that

〈un − ρnG(un)− vn, y − vn〉 ≤ 0, ∀ y ∈ K (3.4)
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or equivalently for some u∗ ∈ Ω, we can write

〈un − vn, u∗ − vn〉 ≤ ρn〈G(un), u∗ − vn〉. (3.5)

Combining expressions (3.3) and (3.5), we have∥∥tn − u∗∥∥2

≤
∥∥un − u∗∥∥2

+
∥∥vn − un∥∥2

+ 2ρn〈G(un), u∗ − vn〉 − 2〈un − vn, un − vn〉

+ ρ2
n

∥∥G(un)− G(vn)
∥∥2 − 2ρn〈G(un)− G(vn), u∗ − vn〉

=
∥∥un − u∗∥∥2 −

∥∥un − vn∥∥2
+ ρ2

n

∥∥G(un)− G(vn)
∥∥2 − 2ρn〈G(vn), vn − u∗〉.

(3.6)

It is given that u∗ is the solution of the problem (VIP), implies that

〈G(u∗), y − u∗〉 ≥ 0, ∀ y ∈ K.

Due to the pseudomontonicity of G on K, we obtain

〈G(y), y − u∗〉 ≥ 0, ∀ y ∈ K.

Substituting y = vn ∈ K, we have

〈G(vn), vn − u∗〉 ≥ 0. (3.7)

Combining expressions (3.6) and (3.7), we obtain∥∥tn − u∗∥∥2 ≤
∥∥un − u∗∥∥2 −

∥∥un − vn∥∥2
+ µ2 ρ2

n

ρ2
n+1

∥∥un − vn∥∥2

=
∥∥un − u∗∥∥2 −

(
1− µ2 ρ2

n

ρ2
n+1

)∥∥un − vn∥∥2
. (3.8)

�

Lemma 3.3. Suppose that conditions (B1)-(B4) are hold. Let {un} be a
sequence which is generated by Algorithm A. Moreover, sequence φn ⊂ (0, 1)
satisfying the following conditions:

lim
n→∞

φn = 0 and
∞∑
n=1

φn = +∞.

If there is a weakly convergent subsequence {unk
} to û ∈ E and

lim
n→∞

‖un − vn‖ = 0,

then û ∈ Ω.
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Proof. It is given that vnk
= PK[unk

− ρnk
G(unk

)] which is equivalent to

〈unk
− ρnk

G(unk
)− vnk

, y − vnk
〉 ≤ 0, ∀ y ∈ K. (3.9)

The above inequality implies that

〈unk
− vnk

, y − vnk
〉 ≤ ρnk

〈G(unk
), y − vnk

〉, ∀ y ∈ K. (3.10)

Thus, we obtain

1

ρnk

〈unk
− vnk

, y − vnk
〉+ 〈G(unk

), vnk
− unk

〉 ≤ 〈G(unk
), y − unk

〉, ∀ y ∈ K.

(3.11)
Due to boundedness of the sequence {unk

} implies that {G(unk
)} is also

bounded. Now, using limk→∞ ‖unk
− vnk

‖ = 0 and limk→∞ ρnk
= ρ > 0,

and k →∞ in (3.11), we obtain

lim inf
k→∞

〈G(unk
), y − unk

〉 ≥ 0, ∀ y ∈ K. (3.12)

Moreover, we have

〈G(vnk
), y − vnk

〉 = 〈G(vnk
)− G(unk

), y − unk
〉

+ 〈G(unk
), y − unk

〉+ 〈G(vnk
), unk

− vnk
〉. (3.13)

Since limk→∞ ‖unk
− vnk

‖ = 0 and G is L-Lipschitz continuous on E implies
that

lim
k→∞

‖G(unk
)− G(vnk

)‖ = 0, (3.14)

which together with (3.13) and (3.14), we obtain

lim inf
k→∞

〈G(vnk
), y − vnk

〉 ≥ 0, ∀ y ∈ K. (3.15)

Next, we need to prove that û belongs to solution set Ω. Let consider a
sequence of positive numbers {εk} that is decreasing and converge to zero.

For each k, we denote mk by the smallest positive integer such that

〈G(uni), y − uni〉+ εk ≥ 0, ∀ i ≥ mk. (3.16)

Due to {εk} is decreasing and {mk} is increasing.

Case 1: If there is a subsequence {unmkj
} of {unmk

} such that G(unmkj
) = 0

for all j. Let j →∞, we obtain

〈G(û), y − û〉 = lim
j→∞
〈G(unmkj

), y − û〉 = 0. (3.17)

Hence û ∈ K, therefore we obtain û ∈ Ω.

Case 2: If there exits N0 ∈ N such that for all nmk
≥ N0, G(unmk

) 6= 0.
Consider that

=nmk
=
G(unmk

)

‖G(unmk
)‖2

, ∀nmk
≥ N0. (3.18)
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Due to the above definition, we obtain

〈G(unmk
),=nmk

〉 = 1, ∀nmk
≥ N0. (3.19)

Moreover, expressions (3.16) and (3.19), for all nmk
≥ N0, we have

〈G(unmk
), y + εk=nmk

− unmk
〉 ≥ 0. (3.20)

Due to the pseudomonotonicity of G for nmk
≥ N0,

〈G(y + εk=nmk
), y + εk=nmk

− unmk
〉 ≥ 0. (3.21)

For all nmk
≥ N0, we have

〈G(y), y − unmk
〉 ≥ 〈G(y)− G(y + εk=nmk

), y + εk=nmk
− unmk

〉
− εk〈G(y),=nmk

〉. (3.22)

Due to {unk
} weakly converges to û ∈ K and through G is sequentially weakly

continuous on the set K, we get {G(unk
)} weakly converges to G(û).

Suppose that G(û) 6= 0, we have

‖G(û)‖ ≤ lim inf
k→∞

‖G(unk
)‖. (3.23)

Since {unmk
} ⊂ {unk

} and limk→∞ εk = 0, we have

0 ≤ lim
k→∞

‖εk=nmk
‖

= lim
k→∞

εk
‖G(unmk

)‖

≤ 0

‖G(û)‖
= 0. (3.24)

Next, consider k →∞ in (3.22), we obtain

〈G(y), y − û〉 ≥ 0, ∀ y ∈ K. (3.25)

By the use of Minty Lemma 2.5, we infer û ∈ Ω. �

Theorem 3.4. Assume that an operator G : K → E satisfies the conditions
(B1)-(B4) and u∗ belongs to the solution set Ω. Moreover, sequence {φn} ⊂
(0, 1) satisfying the following conditions:

lim
n→∞

φn = 0 and
∞∑
n=1

φn = +∞.

Then the sequences {un}, {vn} and {tn} generated by Algorithm A converge
strongly to u∗ = PΩ ◦ g(u∗).
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Proof. By using Lemma 3.2, we have

‖tn − u∗‖2 ≤
∥∥un − u∗∥∥2 −

(
1− µ2 ρ2

n

ρ2
n+1

)∥∥un − vn∥∥2
. (3.26)

Given that ρn → ρ, so there exists a fixed number ε ∈ (0, 1− µ2) such that

lim
n→∞

(
1− µ2 ρ2

n

ρ2
n+1

)
= 1− µ2 > ε > 0.

Thus, there is a finite number N1 ∈ N such that(
1− µ2 ρ2

n

ρ2
n+1

)
> ε > 0, ∀n ≥ N1. (3.27)

Thus, we obtain

‖tn − u∗‖2 ≤ ‖un − u∗‖2, ∀n ≥ N1. (3.28)

It is given that u∗ ∈ Ω. From sequence {un+1} and the reason that g is a
contraction with constant ξ ∈ [0, 1) and n ≥ N1, we have∥∥un+1 − u∗

∥∥ =
∥∥φng(un) + (1− φn)tn − u∗

∥∥
=
∥∥φn[g(un)− u∗] + (1− φn)[tn − u∗]

∥∥
=
∥∥φn[g(un) + g(u∗)− g(u∗)− u∗]
+ (1− φn)[tn − u∗]

∥∥
≤ φn

∥∥g(un)− g(u∗)
∥∥+ φn

∥∥g(u∗)− u∗
∥∥

+ (1− φn)
∥∥tn − u∗∥∥

≤ φnξ
∥∥un − u∗∥∥+ φn

∥∥g(u∗)− u∗
∥∥

+ (1− φn)
∥∥tn − u∗∥∥. (3.29)

Combining expressions (3.28) with (3.29) and {φn} ⊂ (0, 1), we deduce that∥∥un+1 − u∗
∥∥ ≤ φnξ∥∥un − u∗∥∥+ φn

∥∥g(u∗)− u∗
∥∥

+ (1− φn)
∥∥un − u∗∥∥

= [1− φn + ξφn]
∥∥un − u∗∥∥

+ φn(1− ξ)
∥∥g(u∗)− u∗

∥∥
(1− ξ)

≤ max

{∥∥un − u∗∥∥, ∥∥g(u∗)− u∗
∥∥

(1− ξ)

}

≤ max

{∥∥uN1 − u∗
∥∥, ∥∥g(u∗)− u∗

∥∥
(1− ξ)

}
. (3.30)
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Therefore, we deduce that {un} is a bounded sequence. Due to the continu-
ity and monotonicity of the operator G implies that the solution set Ω is a
closed and convex set (for more details see [22, 21]). Since the mapping is a
contraction and so does PΩ ◦ g.

Now, we are in position to use the Banach contraction theorem for the
existence of a fixed point of u∗ ∈ Ω such that

u∗ = PΩ(g(u∗)).

By using Lemma 2.1 (ii), we have

〈g(u∗)− u∗, y − u∗〉 ≤ 0, ∀ y ∈ Ω. (3.31)

It is given that un+1 = φng(un) + (1 − φn)tn, and using Lemma 2.2 (i) and
Lemma 3.2, we have∥∥un+1 − u∗

∥∥2
=
∥∥φng(un) + (1− φn)tn − u∗

∥∥2

=
∥∥φn[g(un)− u∗] + (1− φn)[tn − u∗]

∥∥2

= φn‖g(un)− u∗‖2 + (1− φn)‖tn − u∗‖2

− φn(1− φn)‖g(un)− tn‖2

≤ φn‖g(un)− u∗‖2

+ (1− φn)
[∥∥un − u∗∥∥2 −

(
1− µ2 ρ2

n

ρ2
n+1

)∥∥un − vn∥∥2
]

− φn(1− φn)‖g(un)− tn‖2

≤ φn‖g(un)− u∗‖2 + ‖un − u∗‖2

− (1− φn)

(
1− µ2 ρ2

n

ρ2
n+1

)∥∥un − vn∥∥2
. (3.32)

The remainder of the proof shall be divided into the following two parts:

Case 1: Assume that there is a fixed number N2 ∈ N (N2 ≥ N1) such that

‖un+1 − u∗‖ ≤ ‖un − u∗‖, ∀n ≥ N2. (3.33)

Then, limn→∞ ‖un−u∗‖ exists and let limn→∞ ‖un−u∗‖ = l. From expression
(3.32), we have

(1− φn)

(
1− µ2 ρ2

n

ρ2
n+1

)∥∥un − vn∥∥2

≤ φn‖g(un)− u∗‖2 + ‖un − u∗‖2 − ‖un+1 − u∗‖2. (3.34)

Due to the existence of limn→∞ ‖un − u∗‖ = l, and φn → 0, we infer that

lim
n→∞

‖un − vn‖ = 0. (3.35)
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It follows that

‖tn − vn‖ = ‖vn + ρn[G(un)− G(vn)]− vn‖
≤ ρ0L‖un − vn‖.

The above expression implies that

lim
n→∞

‖tn − vn‖ = 0. (3.36)

It follows that

lim
n→∞

‖un − tn‖ ≤ lim
n→∞

‖un − vn‖+ lim
n→∞

‖vn − tn‖ = 0. (3.37)

We can also obtain∥∥un+1 − un
∥∥ =

∥∥φng(un) + (1− φn)tn − un
∥∥

=
∥∥φn[g(un)− un] + (1− φn)[tn − un]

∥∥
≤ φn

∥∥g(un)− un
∥∥+ (1− φn)

∥∥tn − un∥∥
−→ 0, as n→∞. (3.38)

The above expression implies that

lim
n→∞

‖un+1 − un‖ = 0. (3.39)

The sequence {un} is bounded and implies that the sequences {vn} and {tn}
are also bounded. Thus, we can take a subsequence {unk

} of {un} such that
{unk

} weakly converges to some û ∈ E. Moreover, due to ‖un − vn‖ → 0, we
have û ∈ Ω. It follows that

lim sup
n→∞

〈g(u∗)− u∗, un − u∗〉 = lim sup
k→∞

〈g(u∗)− u∗, unk
− u∗〉

= 〈g(u∗)− u∗, û− u∗〉
≤ 0. (3.40)

We have limn→∞
∥∥un+1 − un

∥∥ = 0. It follows that

lim sup
n→∞

〈g(u∗)− u∗, un+1 − u∗〉 ≤ lim sup
n→∞

〈g(u∗)− u∗, un+1 − un〉

+ lim sup
n→∞

〈g(u∗)− u∗, un − u∗〉

≤ 0. (3.41)
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From Lemma 2.2(ii) and Lemma 3.2 for all n ≥ N2, we obtain∥∥un+1 − u∗
∥∥2

=
∥∥φng(un) + (1− φn)tn − u∗

∥∥2

=
∥∥φn[g(un)− u∗] + (1− φn)[tn − u∗]

∥∥2

≤ (1− φn)2
∥∥tn − u∗∥∥2

+ 2φn〈g(un)− u∗, (1− φn)[tn − u∗] + φn[g(un)− u∗]〉

= (1− φn)2
∥∥tn − u∗∥∥2

+ 2φn〈g(un)− g(u∗) + g(u∗)− u∗, un+1 − u∗〉

= (1− φn)2
∥∥tn − u∗∥∥2

+ 2φn〈g(un)− g(u∗), un+1 − u∗〉
+ 2φn〈g(u∗)− u∗, un+1 − u∗〉

≤ (1− φn)2
∥∥tn − u∗∥∥2

+ 2φnξ
∥∥un − u∗∥∥∥∥un+1 − u∗

∥∥
+ 2φn〈g(u∗)− u∗, un+1 − u∗〉

≤ (1 + φ2
n − 2φn)

∥∥un − u∗∥∥2
+ 2φnξ

∥∥un − u∗∥∥2

+ 2φn〈g(u∗)− u∗, un+1 − u∗〉

= (1− 2φn)
∥∥un − u∗∥∥2

+ φ2
n

∥∥un − u∗∥∥2
+ 2φnξ

∥∥un − u∗∥∥2

+ 2φn〈g(u∗)− u∗, un+1 − u∗〉

=
[
1− 2φn(1− ξ)

]∥∥un − u∗∥∥2

+ 2φn(1− ξ)

[
φn
∥∥un − u∗∥∥2

2(1− ξ)
+
〈g(u∗)− u∗, un+1 − u∗〉

1− ξ

]
.

(3.42)

It follows from expressions (3.41) and (3.42), we obtain

lim sup
n→∞

[
φn
∥∥un − u∗∥∥2

2(1− ξ)
+
〈g(u∗)− u∗, un+1 − u∗〉

1− ξ

]
≤ 0. (3.43)

Let choose n ≥ N3 ∈ N (N3 ≥ N2) large enough such that 2φn(1− ξ) < 1.
Now, by using expressions (3.42) and (3.43) and applying Lemma 2.3, we
conclude that

∥∥un − u∗∥∥→ 0, as n→∞.

Case 2: Assume there is a subsequence {ni} of {n} such that

‖uni − u∗‖ ≤ ‖uni+1 − u∗‖, ∀i ∈ N.

Then, by Lemma 2.4, there is a sequence {mk} ⊂ N as {mk} → ∞, such that

‖umk
− u∗‖ ≤ ‖umk+1

− u∗‖
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and

‖uk − u∗‖ ≤ ‖umk+1
− u∗‖, for all k ∈ N. (3.44)

As similar to Case 1, from (3.32), we have

(1− φmk
)

(
1− µ2 ρ2

mk

ρ2
mk+1

)∥∥umk
− vmk

∥∥2

≤ φmk
‖g(umk

)− u∗‖2 + ‖umk
− u∗‖2 − ‖umk+1 − u∗‖2. (3.45)

Due to φmk
→ 0, we deduce the following:

lim
k→∞

‖umk
− vmk

‖ = 0. (3.46)

Similar to above case we can prove that

lim
k→∞

‖umk
− tmk

‖ = lim
k→∞

‖vmk
− tmk

‖

= 0. (3.47)

Also, we obtain∥∥umk+1 − umk

∥∥ =
∥∥φmk

g(umk
) + (1− φmk

)tmk
− umk

∥∥
=
∥∥φmk

[g(umk
)− umk

] + (1− φmk
)[tmk

− umk
]
∥∥

≤ φmk

∥∥g(umk
)− umk

∥∥+ (1− φmk
)
∥∥tmk

− umk

∥∥
−→ 0. (3.48)

We have to use the same justification as in the Case 1, such that

lim sup
k→∞

〈g(u∗)− u∗, umk+1 − u∗〉 ≤ 0. (3.49)

By the use of expressions (3.42) and (3.44), we have∥∥umk+1 − u∗
∥∥2 ≤

[
1− 2φmk

(1− ξ)
]∥∥umk

− u∗
∥∥2

+ 2φmk
(1− ξ)

×

[
φmk

∥∥umk
− u∗

∥∥2

2(1− ξ)
+
〈g(u∗)− u∗, umk+1 − u∗〉

1− ξ

]
≤
[
1− 2φmk

(1− ξ)
]∥∥umk+1 − u∗

∥∥2
+ 2φmk

(1− ξ)

×

[
φmk

∥∥umk
− u∗

∥∥2

2(1− ξ)
+
〈g(u∗)− u∗, umk+1 − u∗〉

1− ξ

]
. (3.50)

It follows that ∥∥umk+1 − u∗
∥∥2 ≤

φmk

∥∥umk
− u∗

∥∥2

2(1− ξ)

+
〈g(u∗)− u∗, umk+1 − u∗〉

1− ξ
. (3.51)
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Since φmk
→ 0, as k →∞ and

∥∥umk
−u∗

∥∥ is a bounded sequence, expressions
(3.49) and (3.51) implies that

‖umk+1 − u∗‖2 → 0, as k →∞. (3.52)

The above expression with (3.44) implies that

lim
k→∞

‖uk − u∗‖2 ≤ lim
k→∞

‖umk+1 − u∗‖2

≤ 0. (3.53)

Consequently, un → u∗ as n→∞. This completes the proof. �

4. Numerical Illustrations

The numerical results given in this section show the efficacy of Algorithm
A for six test problems, two of which are monotone and the other four are
pseudomonotone variational inequalities.

Example 4.1. First consider the HpHard problem which is taken from [9].
This example was considered by many authors for experimental tests (see,
[7, 10, 32]), while G : Rm → Rm is an operator taken as G(u) = Mu+ q with
q ∈ Rm and

M = NNT +B +D,

where N is an m×m matrix, B is an m×m skew-symmetric matrix and D is
an m×m positive definite diagonal matrix. The set K is taken in the following
way:

K = {u ∈ Rm : Qu ≤ b},

where Q is an 100 × m matrix and b is a nonnegative vector in Rm. It is
clear that G is monotone and Lipschitz continuous through L = ‖M‖. During
this experiment, the initial point is u0 = (1, 1, · · · , 1) and Dn = ‖un − vn‖ ≤
Tolerance = 10−3. Furthermore, control conditions ρ0 = 0.5

‖M‖ and µ = 0.7

for Algorithm 1 (EgM-1) in [41]; ρ0 = 0.5
‖M‖ , µ = 0.7 and φn = 1

40n+100 for

Algorithm 2 (EgM-2) in [41]; ρ0 = 0.5
‖M‖ , µ = 0.7, φn = 1

2n+4 and g(u) = u
2 for

Algorithm A (EgM-3).

The numerical and graphical results of three methods are shown in Figures
1-5 and Table 1.
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Figure 1. Numerical behavior of Algorithm A relative to Al-
gorithm 1 in [41] and Algorithm 2 in [41] for Example 4.1 when
m = 5.
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Figure 2. Numerical behavior of Algorithm A relative to Al-
gorithm 1 in [41] and Algorithm 2 in [41] for Example 4.1 when
m = 10.
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Figure 3. Numerical behavior of Algorithm A relative to Al-
gorithm 1 in [41] and Algorithm 2 in [41] for Example 4.1 when
m = 20.
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Figure 4. Numerical behavior of Algorithm A relative to Al-
gorithm 1 in [41] and Algorithm 2 in [41] for Example 4.1 when
m = 20.
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Figure 5. Numerical behavior of Algorithm A relative to Al-
gorithm 1 in [41] and Algorithm 2 in [41] for Example 4.1 when
m = 50.

Table 1. Numerical comparison values for Figures 1-5.
EgM-1 [41] EgM-2 [41] EgM-3

m iter. time iter. time iter. time

5 48 0.5567 64 0.7195 25 0.3387
10 123 1.5047 122 1.4211 55 0.6207
20 180 2.1935 194 2.2479 82 0.9162
50 229 3.3714 269 3.5252 97 1.3614

Example 4.2. Suppose that E = L2([0, 1]) is a Hilbert space through an inner
product

〈u, v〉 =

∫ 1

0
u(t)v(t)dt, ∀u, v ∈ E,

where the induced norm

‖u‖ =

√∫ 1

0
|u(t)|2dt.

Let K := {u ∈ L2([0, 1]) : ‖u‖ ≤ 1} be the unit ball and G : K→ E be defined
by

G(u)(t) =

∫ 1

0

(
u(t)−H(t, s)f(u(s))

)
ds+ g(t),
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where

H(t, s) =
2tse(t+s)

e
√
e2 − 1

, f(u) = cosu, g(t) =
2tet

e
√
e2 − 1

.

Then, it is easily to see that G is Lipschitz-continuous with Lipschitz constant
L = 2 and monotone [39]. Figures 6-8 and Table 2 show the numerical results
by choosing different values of u0. The numerical results of three methods are
shown in Figures 6-8 and Table 2.

In this experiment, we take the different initial points u0 and

Dn = ‖un − vn‖ ≤ Tolerance = 10−3.

Moreover, the control parameters ρ0 = 0.6
L and µ = 0.45 for Algorithm 1 (EgM-

1) in [41]; ρ0 = 0.6
L , µ = 0.45 and φn = 1

100(n+2) for Algorithm 2 (EgM-2) in

[41]; ρ0 = 0.6
L , µ = 0.45, φn = 1

n+2 and g(u) = u
3 for Algorithm A (EgM-3).
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100

101

Figure 6. Numerical behavior of Algorithm A relative to Al-
gorithm 1 in [41] and Algorithm 2 in [41] for Example 4.2 when
u0 = 1.
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Figure 7. Numerical behavior of Algorithm A relative to Al-
gorithm 1 in [41] and Algorithm 2 in [41] for Example 4.2 when
u0 = et.
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Figure 8. Numerical behavior of Algorithm A relative to Al-
gorithm 1 in [41] and Algorithm 2 in [41] for Example 4.2 when
u0 = sin(t).
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Table 2. Numerical comparison values for Figures 6-8.
EgM-1 [41] EgM-2 [41] EgM-3

u0 iter. time iter. time iter. time

1 44 0.041021 68 0.042249 30 0.019874
et 51 0.036009 67 0.039082 28 0.020269

sin(t) 51 0.036100 65 0.038172 29 0.020530

Example 4.3. Consider the nonlinear complementarity problem of Kojima-
Shindo where the feasible set K is

K = {u ∈ R4 : 1 ≤ ui ≤ 5, i = 1, 2, 3, 4}

and the mapping G : R4 → R4 is evaluated by

G(u) =


u1 + u2 + u3 + u4 − 4u2u3u4

u1 + u2 + u3 + u4 − 4u1u3u4

u1 + u2 + u3 + u4 − 4u1u2u4

u1 + u2 + u3 + u4 − 4u1u2u3

 .

Then, it is easy to see that G is not monotone on the set K. By using the
Monte-Carlo approach [11], it can be shown that G is pseudo-monotone on
K. This problem has a unique solution u∗ = (5, 5, 5, 5)T . Actually, in general,
it is a very difficult task to check the pseudomonotonicity of any mapping
G in practice. We here employ the Monte Carlo approach according to the
definition of pseudomonotonicity: Generate a large number of pairs of points u
and v uniformly in K satisfying G(u)T (v−u) ≥ 0 and then check if G(v)T (v−
u) ≥ 0.

In this experiment, we take different initial points and Dn = ‖un − vn‖.
Moreover, control parameters ρ0 = 0.33, µ = 0.25, φn = 1

2(n+2) and g(u) = u
2

for Algorithm A. Numerical results regarding the third example are shown in
Table 3.

Table 3. Numerical behavior of Algorithm A for Example 4.3.
TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. time time time time

[−2, 2, 8, 10]T 11 49 477 4873 0.068822 0.217773 3.051465 41.9378342

[−1, 1, 5, 6]T 10 47 475 4873 0.073831 0.216922 2.108431 42.1511784

[−5, 2,−1, 2]T 8 42 477 4873 0.055413 0.215572 3.234742 43.0306253

[1, 2, 3, 4]T 6 1104 979 4873 0.030871 8.053123 6.136634 42.2317051
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Example 4.4. For this example, consider the quadratic fractional program-
ming problem in the following form [11]: min f(u) =

uTQu+ aTu+ a0

bTu+ b0
,

subject to u ∈ K = {u ∈ R4 : bTu+ b0 > 0},

where

Q =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , a =


1
−2
−2
1

 , b =


2
1
1
0

 , a0 = −2, and b0 = 4.

Then, it is easy to verify that Q is symmetric and positive definite on R4 and
consequently f is pseudoconvex on K. Hence, ∇f is pseudomonotone. Using
the quotient rule, we obtain

∇f(u) =
(bTu+ b0)(2Qu+ a)− b(uTQ+ aTu+ a0)

(bTu+ b0)2
. (4.1)

In this point of view, we can set G = ∇f in Theorem 3.4. We minimize f over
K = {u ∈ R4 : 1 ≤ ui ≤ 10, i = 1, 2, 3, 4}. This problem has a unique solution
u∗ = (1, 1, 1, 1)T ∈ K.

In this experiment, we take different initial points and Dn = ‖un − vn‖.
Moreover, control parameters ρ0 = 0.33, µ = 0.25, φn = 1

3(n+2) and g(u) = u
2

for Algorithm A. Numerical results regarding the fourth example are shown
in Table 4.

Table 4. Numerical behavior of Algorithm A for Example 4.4.
TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. time time time time

[10, 10, 10, 10]T 40 40 89 867 0.279142 0.209284 0.39155201 7.4805312

[10, 20, 30, 40]T 39 41 89 867 0.261706 0.177554 0.38415240 7.8989278

[20,−20, 20,−20]T 37 33 89 867 0.127673 0.148191 0.37465402 7.1684634

Example 4.5. The fifth example was taken from [31] where G : R2 → R2 is
defined by

G(u) =

(
0.5u1u2 − 2u2 − 107

−4u1 − 0.1u2
2 − 107

)
,

where K = {u ∈ R2 : (u1−2)2 +(u2−2)2 ≤ 1}. It can easily see that G is Lips-
chitz continuous with L = 5 and G is not monotone on K but pseudomonotone.
Here, the above problem has unique solution u∗ = (2.707, 2.707)T .
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In this experiment, we take different initial points and Dn = ‖un − vn‖.
Moreover, control parameters ρ0 = 0.53, µ = 0.33, φn = 1

3(n+2) and g(u) = u
3

for Algorithm A. Numerical results for fifth example are shown in Table 5.

Table 5. Numerical behavior of Algorithm A for Example 4.5.
TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. time time time time

[0, 0]T 7 27 263 2560 0.6069327 1.8075131 13.1206618 101.2023872

[10, 10]T 7 26 265 2581 0.2718143 1.0576142 11.7641276 103.0158238

[−5,−5]T 6 26 258 2587 0.3247282 1.0951934 11.0242628 103.9937285

Example 4.6. The last example is taken from [31] where G : R2 → R2 is
defined by

G(u) =

(
(u2

1 + (u2 − 1)2)(1 + u2)
−u3

1 − u1(u2 − 1)2

)
,

where K = {u ∈ R2 : −10 ≤ ui ≤ 10, i = 1, 2}. It can easily see that G is
Lipschitz continuous with L = 5 and G is not monotone on K but pseudo-
monotone.

In this experiment, we take different initial points and Dn = ‖un − vn‖.
Moreover, control parameters ρ0 = 0.43, µ = 0.72, φn = 1

4(n+2) and g(u) = u
4

for Algorithm A. Numerical results regarding the sixth example are shown in
Table 6.

Table 6. Numerical behavior of Algorithm A for Example 4.6.
TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. time time time time

[0, 0]T 14 201 2131 28871 0.1451215 1.954013 25.386392 201.565752

[10, 10]T 23 179 2001 25043 0.1318482 1.647422 23.264956 190.633297

[−5,−5]T 40 399 3866 44756 0.5731771 3.971161 40.293646 387.086833

Acknowledgements: This project was supported by Rajamangala Univer-
sity of Technology Phra Nakhon (RMUTP).
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[23] P.-E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and
nonstrictly convex minimization, Set-Valued Anal., 16(7-8) (2008), 899–912.

[24] Y.V. Malitsky and V.V. Semenov, An extragradient algorithm for monotone variational
inequalities, Cybern. Syst. Anal., 50(2) (2014), 271–277.

[25] A.A. Mogbademu, New iteration process for a general class of contractive mappings,
Acta Comment. Univ. Tartu. Math., 20(2) (2016), 117–122.



Viscosity type projection method 371

[26] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal.
Appl., 241(1) (2000), 46–55.

[27] A. Nagurney, A variational inequality approach, Springer, Dordrecht, Boston, 1999.
[28] M.A. Noor, General variational inequalities, Appl. Math. Lett., 1(2) (1988), 119–122.
[29] M.A. Noor, An iterative algorithm for variational inequalities, J. Math. Anal. Appl.,

158(2) (1991), 448–455.
[30] M.A. Noor, Some iterative methods for nonconvex variational inequalities, Comput.

Math. Model., 21(1) (2010), 97–108.
[31] Y. Shehu, Q.-L. Dong and D. Jiang, Single projection method for pseudo-monotone

variational inequality in Hilbert spaces, Optim., 68(1) (2018), 385–409.
[32] M.V. Solodov and B.F. Svaiter, A new projection method for variational inequality

problems, SIAM J. Control Optim., 37(3) (1999), 765–776.
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