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Abstract. If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having all its zeros on |z| = k,

k ≤ 1, then Govil [3] proved that

max
|z|=1

|p′(z)| ≤ n

kn + kn−1
max
|z|=1

|p(z)|.

In this paper, by involving certain coefficients of p(z), we not only improve the above

inequality but also improve a result proved by Dewan and Mir [2].

1. Introduction

For a polynomial p(z) of degree n, let M(p, r) = max
|z|=r
|p(z)| and q(z) =

znp (1/z) be the reciprocal polynomial of p(z). Bernstein [1] proved that

M(p′, 1) ≤ nM(p, 1). (1.1)

Equality in (1.1) is attained for the polynomial p(z) = αzn, α 6= 0.
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If we restrict ourselves to the class of polynomials p(z) of degree n having
no zero in |z| < 1, then Erdös conjectured and Lax [8] later proved that

M(p′, 1) ≤ n

2
M(p, 1). (1.2)

Inequality (1.2) is best possible and the extremal polynomial is p(z) = α+βzn

with |α| = |β|.
The renowned mathematician Boas asked that if p(z) is a polynomial of

degree n not vanishing in |z| < k, k > 0, then how large can
M(p′, 1)

M(p, 1)
be? A

partial answer to this problem was given by Malik [7] by proving a generaliza-
tion of (1.2).

Theorem 1.1. ([7]) If p(z) is a polynomial of degree n having no zero in
|z| < k, k ≥ 1, then

M(p′, 1) ≤ n

1 + k
M(p, 1). (1.3)

Equality in (1.3) occurs for p(z) = (z + k)n.

The question as to what happens to the inequality (1.3) if k < 1 remains
unanswered. For quite sometime, it was believed that the inequality analogous
to (1.3) for k < 1 would be

M(p′, 1) ≤ n

1 + kn
M(p, 1) (1.4)

until Professor E.B. Saff countered the belief with the example p(z) =
(
z − 1

2

)
×
(
z + 1

3

)
. Though, Govil [4] proved the validity of (1.4), it was achieved with

additional condition that both |p′(z)| and |q′(z)| attain their maxima at the
same point on |z| = 1. Further in this quest, Govil [3] could only prove.

Theorem 1.2. ([3]) If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having all

its zeros on |z| = k, k ≤ 1, then

M(p′, 1) ≤ n

kn + kn−1
M(p, 1). (1.5)

Inequality (1.5) was further improved by Dewan and Mir [2] by involving
certain coefficients of p(z).

Theorem 1.3. If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having all its

zeros on |z| = k, k ≤ 1, then
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M(p′, 1) ≤ n

kn

{
n|an|k2 + |an−1|

n|an|(1 + k2) + 2|an−1|

}
M(p, 1). (1.6)

2. Lemmas

We need the following lemmas to prove our result.

Lemma 2.1. ([3, Lemma 3]) If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n

having no zero in |z| < k, k ≤ 1 and q(z) = znp

(
1

z

)
, then

kn max
|z|=1

|p′(z)| ≤ max
|z|=1

|q′(z)|. (2.1)

Lemma 2.2. ([5, page 511, inequality (3.2)]) If p(z) =
n∑
ν=0

aνz
ν is a polyno-

mial of degree n and q(z) = znp

(
1

z

)
, then on |z| = 1,

|p′(z)|+ |q′(z)| ≤ nmax
|z|=1

|p(z)|. (2.2)

Lemma 2.3. ([6, page 327, Proof of Theorem 1]) If p(z) =
n∑
ν=0

aνz
ν is a

polynomial of degree n having all its zeros in |z| ≥ k, k ≥ 1 and q(z) =

znp

(
1

z

)
, then for |z| = 1

|p′(z)| ≤ 1

k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(|λ|+ k2) + k(n− 1)|µ− λ2|

|q′(z)|, (2.3)

where λ =
k

n

a1
a0

and µ =
2k2

n(n− 1)

a2
a0

.

Lemma 2.4. If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having all its zeros

on |z| = k, k ≤ 1 and q(z) = znp

(
1

z

)
, then for |z| = 1

|p′(z)| ≥ 1

k

(1− |τ |)(1 + k2|τ |) + k(n− 1)|σ − τ2|
(1− |τ |)(|τ |+ k2) + k(n− 1)|σ − τ2|

|q′(z)|, (2.4)
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where

τ =
1

kn

an−1
an

and σ =
2

k2n(n− 1)

an−2
an

.

Proof. Since p(z) has all its zeros on |z| = k, q(z) =
n∑
ν=0

an−νz
ν has all its

zeros on |z| =
1

k
, where

1

k
≥ 1. Thus, q(z) has no zeros in |z| < 1

k
,

1

k
≥ 1.

Applying Lemma 2.3 to the polynomial q(z), the desired conclusion of the
lemma follows. �

Lemma 2.5. ([6, page 320, inequality (9)]) If p(z) =
n∑
ν=0

aνz
ν is a polynomial

of degree n having no zero in |z| < k, k ≥ 1, then

k

n

∣∣∣∣a1a0
∣∣∣∣ ≤ 1 (2.5)

and

(n− 1)

∣∣∣∣∣ 2k2

n(n− 1)

a2
a0
− k2

n2

(
a1
a0

)2
∣∣∣∣∣ ≤ 1− k2

n2

∣∣∣∣a1a0
∣∣∣∣2 . (2.6)

Lemma 2.6. If p(z) =
n∑
ν
aνz

ν is a polynomial of degree n having all its zeros

in |z| ≤ k, k ≤ 1, then

1

kn

∣∣∣∣an−1an

∣∣∣∣ ≤ 1 (2.7)

and

(n− 1)

∣∣∣∣∣ 2

k2n(n− 1)

an−2
an
− 1

k2n2

(
an−1
an

)2
∣∣∣∣∣ ≤ 1− 1

k2n2

∣∣∣∣an−1an

∣∣∣∣2 . (2.8)

Proof. Since p(z) has all its zeros in |z| ≤ k, then q(z) = znp

(
1

z

)
has no zeros

in |z| < 1

k
,

1

k
≥ 1. Thus, applying Lemma 2.5 to q(z), we obtain inequalities

(2.7) and (2.8) respectively from (2.5) and (2.6). �

Lemma 2.7. Let a, b, c, d > 0 be real numbers such that c ≤ d. If a ≤ b, then
a+ c

b+ c
≤ a+ d

b+ d
. (2.9)
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Proof. Suppose that c < d. Then (2.9) follows easily as

a ≤ b implies a(d− c) ≤ b(d− c),

which simplifies to

(a+ c)(b+ d) ≤ (a+ d)(b+ c),

giving the desired conclusion of the lemma. For c = d, the equality in (2.9)
holds trivially. �

Lemma 2.8. If p(z) =
n∑
ν
aνz

ν is a polynomial of degree n having all its zeros

in |z| ≤ k, k ≤ 1, then

n

kn + kn−1

(
(1− |τ |)(k2 + |τ |) + k(n− 1)|σ − τ2|

(1− |τ |)(1− k + k2 + k|τ |) + k(n− 1)|σ − τ2|

)
≤ n

kn−1

(
k + |τ |

1 + k2 + 2k|τ |

)
, (2.10)

where

τ =
1

kn

an−1
an

and σ =
2

k2n(n− 1)

an−2
an

.

Proof. Let a = (1 − |τ |)(k2 + |τ |), b = (1 − |τ |)(1 − k + k2 + k|τ |), c =
k(n− 1)|σ− τ2| and d = k(1− |τ |2). Then, by inequality (2.8) of Lemma 2.6,
we have c ≤ d. It is also easy to verify that a ≤ b as k ≤ 1 and |τ | ≤ 1 by
inequality (2.7) of Lemma 2.6. Thus, by Lemma 2.7, we have

n

kn + kn−1

(
(1− |τ |)(k2 + |τ |) + k(n− 1)|σ − τ2|

(1− |τ |)(1− k + k2 + k|τ |) + k(n− 1)|σ − τ2|

)
≤ n

kn + kn−1

(
(1− |τ |)(k2 + |τ |) + k(1− |τ |2)

(1− |τ |)(1− k + k2 + k|τ |) + k(1− |τ |2)

)
=

n

kn−1(k + 1)

(
k2 + |τ |+ k + k|τ |

1− k + k2 + k + k|τ |

)
=

n

kn−1

(
k + |τ |

1 + k2 + 2k|τ |

)
.

�

3. Main results

In this section, we prove an improvement of (1.5) due to Govil [3]. Moreover,
our result also improves (1.6) proved by Dewan and Mir [2].
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Theorem 3.1. If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having all its

zeros on |z| = k, k ≤ 1, then

M(p′, 1) ≤ n

kn + kn−1

(
(1− |τ |)(k2 + |τ |) + k(n− 1)|σ − τ2|

(1− |τ |)(1− k + k2 + k|τ |) + k(n− 1)|σ − τ2|

)
×M(p, 1), (3.1)

where

τ =
1

kn

an−1
an

and σ =
2

k2n(n− 1)

an−2
an

. (3.2)

Proof. Let z0 be a point on |z| = 1 such that |q′(z0)| = M(q′, 1). Then, by
Lemma 2.2, we have

|p′(z0)|+M(q′, 1) ≤ nM(p, 1), (3.3)

which on combining with inequality (2.4) of Lemma 2.4, we get

1

k

(
(1− |τ |)(1 + k2|τ |) + k(n− 1)|σ − τ2|
(1− |τ |)(|τ |+ k2) + k(n− 1)|σ − τ2|

)
|q′(z0)|+M(q′, 1)

≤ nM(p, 1), (3.4)

which simplifies to(
(1− |τ |)(1− k + k2 + k|τ |) + k(n− 1)|σ − τ2|

(1− |τ |)(|τ |+ k2) + k(n− 1)|σ − τ2|

)
M(q′, 1)

≤ kn

k + 1
M(p, 1). (3.5)

Inequality (3.5), in conjunction with Lemma 2.1 yields

kn
(

(1− |τ |)(1− k + k2 + k|τ |) + k(n− 1)|σ − τ2|
(1− |τ |)(|τ |+ k2) + k(n− 1)|σ − τ2|

)
M(p′, 1)

≤ kn

k + 1
M(p, 1), (3.6)

which is equivalent to

M(p′, 1) ≤ n

kn + kn−1

×
(

(1− |τ |)(|τ |+ k2) + k(n− 1)|σ − τ2|
(1− |τ |)(1− k + k2 + k|τ |) + k(n− 1)|σ − τ2|

)
M(p, 1),

which proves Theorem 3.1 completely. �
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Remark 3.2. To prove that the bound given by (3.1) improves over the bound
given by (1.5) of Theorem 1.2 proved by Govil [3], we show that

n

kn + kn−1

(
(1− |τ |)(k2 + |τ |) + k(n− 1)|σ − τ2|

(1− |τ |)(1− k + k2 + k|τ |) + k(n− 1)|σ − τ2|

)
≤ n

kn + kn−1
,

for which it is sufficient to show that

(1− |τ |)(k2 + |τ |) + k(n− 1)|σ − τ2|
(1− |τ |)(1− k + k2 + k|τ |) + k(n− 1)|σ − τ2|

≤ 1

or

(k2 + |τ |) ≤ (1− k + k2 + k|τ |),

which clearly holds as k ≤ 1 and |τ | ≤ 1 by (2.7) of Lemma 2.6.

Remark 3.3. Inequality (3.1) is also an improvement of inequality (1.6) of
Theorem 1.3 due to Dewan and Mir [2]. It is enough to show that

n

kn + kn−1

(
(1− |τ |)(k2 + |τ |) + k(n− 1)|σ − τ2|

(1− |τ |)(1− k + k2 + k|τ |) + k(n− 1)|σ − τ2|

)
≤ n

kn

{
n|an|k2 + |an−1|

n|an|(1 + k2) + 2|an−1|

}
. (3.7)

Dividing both numerator and denominator of
n

kn

{
n|an|k2 + |an−1|

n|an|(1 + k2) + 2|an−1|

}
by kn|an|, we get, from (3.2)

n

kn

 k +
1

kn

|an−1|
|an|

1 + k2

k
+

2

kn

|an−1|
|an|

 =
n

kn−1

(
k + |τ |

1 + k2 + 2k|τ |

)

which, in conjunction with inequality (2.10) of Lemma 2.8 proves (3.7).

As discussed earlier, Theorem 3.1 improves both Theorem 1.2 and Theorem
1.3. We illustrate this by means of the following example.

Example 3.4. Let p(z) = z3 − 3
50z

2 − 3
500z + 1

1000 , k = 1
10 . By Theorem 1.2

and Theorem 1.3, we have

M(p′, 1) ≤ 272.727 M(p, 1)

and
M(p′, 1) ≤ 85.7143 M(p, 1)

respectively, while by Theorem 3.1, we obtain

M(p′, 1) ≤ 74.3802 M(p, 1),
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which shows improvement in the bound of about 72.73 % and 13.22 % over
bounds given by Theorem 1.2 and Theorem 1.3, respectively.

Acknowledgement: The authors are extremely grateful to the referee for
his valuable comments and suggestions about the paper.

References

[1] S. Bernstein, Lecons sur les propriétés extrémales et la meilleure approximation des-
fonctions analytiques d’une variable réelle, Gauthier Villars, Paris, 1926.
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