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Abstract. During the last several decades, a great variety of fractional kinetic equations

involving diverse special functions have been broadly and usefully employed in describing

and solving several important problems of physics and astrophysics. In this paper, we aim

to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended

τ -hypergeometric function and the (p, q)-extended τ -confluent hypergeometric function, by

mainly using the Laplace transform. It is noted that the main employed techniques for

this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform,

Laplace and Sumudu transforms, Laplace and Fourier transforms, Pχ-transform, and an

alternative method.
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1. Introduction and preliminaries

The fractional-order calculus, which deals with differentiation and integra-
tion of an arbitrary real or complex order including, of course, the integer one,
is popularly believed to be initiated in a letter from Leibniz to L’Hospital in
1695 (see, e.g., [24]). The fractional calculus has been developed and used
in different areas of science and engineering. During the last several decades,
fractional kinetic equations of various forms have been broadly and usefully
employed in describing and solving several important problems of physics and
astrophysics (see, e.g., [2, 3, 4, 7, 13, 17, 20, 25, 28, 33, 34, 35, 36, 37]; see also
[26] and the references therein).

By integrating a standard kinetic equation, Haubold and Mathai [22, Eq.
(21)] introduced the following fractional kinetic equation (see also [33, Eq.
(11)]):

N(t)−N0 = −cν · 0D−νt N(t), (1.1)

where 0D
−ν
t is the familiar Riemann-Liouville fractional integral operator (see,

e.g., [24]) defined by

0D
−ν
t f(t) =

1

Γ(ν)

∫ t

0
(t− u)ν−1 f(u) du (<(ν) > 0), (1.2)

and Γ being the well-known Gamma function (see, e.g., [39, Section 1.1]).
Here N(t) is an arbitrary reaction characterized by a time-dependent quantity,
N0 := N(t = 0) is the quantity at time t = 0, and c is a positive constant.
The solutions of the equation (1.1) were given in terms of the Fox’s H-function
(see, e.g., [27]).

The solutions of (1.1) are also expressed as (see [33, Eq. (13)])

N(t) = N0Eν (−cν tν)
(
ν ∈ R+

)
, (1.3)

where Eα(z) is the Mittag-Leffler function defined by

Eα(z) :=

∞∑
n=0

zn

Γ(αn+ 1)
(<(α) > 0) (1.4)

(see, e.g., [47]). Saxena et al. [33] investigated solutions of three generalized
forms of (1.1) in terms of the following generalized Mittag-Leffler function
(see, e.g., [47])

Eα,β(z) :=
∞∑
n=0

zn

Γ(αn+ β)
(<(α) > 0, β ∈ C). (1.5)
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Prabhakar [31] introduced the following extension of the generalized Mittag-
Leffler function (1.5)

Eγα,β(z) :=

∞∑
n=0

(γ)n z
n

Γ(αn+ β)n!
(<(α) > 0, β, γ ∈ C), (1.6)

where (λ)ν denotes the Pochhammer symbol defined (for λ, ν ∈ C) by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

{
1 (ν = 0; λ ∈ C \ {0})
λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

(1.7)

it being accepted conventionally that (0)0 := 1.

In the sequel, the fractional kinetic equation (1.1) have been solved by using
various extensions of the Mittag-Leffler function (1.4) (see, e.g., [2, 13, 31, 33,
35, 47]).

Saxena et al. [34, Theorem 1] investigated the following unified fractional
kinetic equation:

N(t)−N0 f(t) = −cν · 0D−νt N(t)
(
ν, c ∈ R+

)
, (1.8)

f(t) being any integrable function on the finite interval [0, b], whose solution
was given by

N(t) = cN0

∫ t

0
H1,1

1,2

[
cν (t− τ)ν

∣∣∣ (− 1
ν , 1)

(− 1
ν , 1), (0, ν)

]
f(τ) dτ, (1.9)

where H1,1
1,2 (·) is the H-function. Saxena et al. [36, Theorem 1] presented a

solution of the following more generalized fractional kinetic equation than that
in (1.8):

N(t)−N0 f(t) = −
n∑
j=1

aj 0D
−νj
t N(t) (1.10)

(
n ∈ N, <(νj) > 0, aj ∈ R+, j = 1, . . . , n

)
,

where f(t) is a given function (0,∞).

Kumar et al. [25] gave solutions of the fractional kinetic equations with f(t)
in (1.8) replaced by certain forms of the generalized Mittag-Leffler function.

Saxena and Kalla [32] used an alternative method which has been employed
by Al-Saqabi and Tuan [5] for solving differintegral equations and applying the
operator (−cν)mD−mνt to both sides of (1.8). We have

(−cν)m 0D
−mν
t N(t)− (−cν)m+1

0D
−ν(m+1)
t N(t)

= N0(−cν)m 0D
−mν
t f(t),

(1.11)



384 O. Khan, N. U. Khan, J. Choi and K. S. Nisar

where ν ∈ R+ and m ∈ N0. Summing each side of (1.11) over m ∈ N0, we get

∞∑
m=0

(−cν)m 0D
−mν
t N(t)−

∞∑
m=0

(−cν)m+1
0D
−ν(m+1)
t N(t)

= N0

∞∑
m=0

(−cν)m 0D
−mν
t f(t).

(1.12)

By telescoping the sums on the left member of (1.12), we obtain

N(t) = N0

∞∑
m=0

(−cν)m 0D
−mν
t f(t). (1.13)

By using Sumudu transformation introduced by Watugala [45, 46] (see also
[6, 10, 11, 17]), Gupta et al. [21, Theorem 1] gave a solution for a general-
ized fractional kinetic equation involving the generalized Lauricella confluent
hypergeometric functions of several variables (see, e.g., [41, p. 34]).

By using Sumudu transformation on the fractional kinetic equations with
f(t) in (1.8) replaced by certain forms of generalized Mittag-Leffler function
and the G-function, Saxena et al. [37, Theorems 1, 2 and 3] presented their
corresponding solutions.

By using Sumudu transformation on the fractional kinetic equations with
f(t) in (1.8) replaced by certain forms of the generalized M -series and the ℵ-
function, Choi and Kumar [17, Theorems 1, 2 and 3] gave their corresponding
solutions.

Also, Laplace and Sumudu transforms [25], Laplace and Fourier transforms
[12], and Pχ-transform [1] have been used to solve the generalized fractional
kinetic equation (1.10).

Extensions, generalizations and unifications of a variety of special functions,
especially hypergeometric functions of one and several variables, have been
done (see, e.g., [8, 23, 27, 40, 41, 42]). For over the last two decades, extensions
of various special functions of p-variant and (p, q)-variant have been investi-
gated broadly along with a class of hypergeometric type special functions (see,
e.g., [14, 15, 16, 18, 19, 29, 30]). Among them, Choi et al. [19] introduced
and investigated the (p, q)-extended Beta, the (p, q)-extended hypergeometric,
and the (p, q)-extended confluent hypergeometric functions, respectively, as
follows:

B(x, y; p, q) =

∫ 1

0
tx−1(1− t)y−1 e−

p
t
− q

1−t dt (1.14)

(min{<(x), <(y)} > 0; min{<(p), <(q)} ≥ 0) ,
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Fp,q(a, b; c; z) =

∞∑
n=0

(a)n
B(b+ n, c− b; p, q)

B(b, c− b)
zn

n!
(|z| < 1; <(c) > <(b) > 0)

(1.15)
and

Φp,q(b; c; z) =
∞∑
n=0

B(b+ n, c− b; p, q)
B(b, c− b)

zn

n!
(<(c) > <(b) > 0) . (1.16)

Here B(α, β) is the beta function defined by (see, e.g., [39, Section 1.1])

B(α, β) =


∫ 1

0
tα−1(1− t)β−1 dt (min{<(α), <(β)} > 0)

Γ(α) Γ(β)

Γ(α+ β)

(
α, β ∈ C \ Z−0

)
.

(1.17)

Also, τ -extensions of hypergeometric and confluent hypergeometric functions
have been introduced and investigated (see [29, 43, 44]). Motivated by certain
recent (p, q)-variant and τ -extensions of special functions, Parmar et al. [30]
used the (p, q)-extended beta function to introduce and investigate the follow-
ing (p, q)-extended τ -hypergeometric function and (p, q)-extended τ -confluent
hypergeometric function, respectively, as follows:

Rτp,q(a, b; c; z) =

∞∑
n=0

(a)n
B(b+ τn, c− b; p, q)

B(b, c− b)
zn

n!
(1.18)(

min {<(p),<(q)} > 0, τ ∈ R+
0 , |z| < 1; p = 0 = q, <(c) > <(b) > 0

)
and

Φτ
p,q(b; c; z) =

∞∑
n=0

B(b+ τn, c− b; p, q)
B(b, c− b)

zn

n!
(1.19)(

min {<(p),<(q)} > 0, τ ∈ R+
0 ; p = 0 = q, <(c) > <(b) > 0

)
.

The case p = 0 = q of (1.18) and (1.19) reduces to, respectively, the
τ -hypergeometric function and the τ -confluent hypergeometric function (see
[44]):

2R
τ
1(a, b; c; z) =

Γ(c)

Γ(b)

∞∑
n=0

(a)n
Γ(b+ τn)

Γ(c+ τn)

zn

n!
(1.20)(

τ ∈ R+, <(a) > 0, <(c) > <(b) > 0, |z| < 1
)

and

1Φ
τ
1(b; c; z) =

Γ(c)

Γ(b)

∞∑
n=0

Γ(b+ τn)

Γ(c+ τn)

zn

n!

(
τ ∈ R+, <(c) > <(b) > 0

)
. (1.21)

In this paper, we aim to investigate solutions of the unified fractional ki-
netic equations (1.10) with replaced f(t) by several forms of the (p, q)-extended
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τ -hypergeometric function (1.18) and the (p, q)-extended τ -confluent hyperge-
ometric function (1.19), by mainly using the Laplace transform. The results
presented here, being general, are also pointed to reduce to fractional kinetic
equations involving simpler special functions.

Suppose that f(t) is a real(or complex)-valued function of the (time) vari-
able t > 0 and s is a real or complex parameter. The Laplace transform of
the function f(t) is defined by

F (s) = L{f (t) : s} =

∫ ∞
0

e−st f (t) dt

= lim
κ→∞

∫ κ

0
e−st f (t) dt,

(1.22)

whenever the limit exits (as a finite number). The convolution of two functions
f(t) and g(t), which are defined for t > 0, plays an important role in a number
of different physical applications. The Laplace convolution of the functions
f(t) and g(t) is given by the following integral:

(f ∗ g)(t) =

∫ t

0
f(u) g(t− u) du = (g ∗ f)(t), (1.23)

which exists if the functions f and g are at least piecewise continuous. One
of the very significant properties possessed by the convolution in connection
with the Laplace transform is that the Laplace transform of the convolution
of two functions is the product of their transforms (see, e.g., [25, 38]).

The Laplace Convolution Theorem. If f and g are piecewise continuous
on [0, ∞) and of exponential order α when t→∞, then

L{(f ∗ g)(t) : s} = L{f(t) : s} · L {g(t) : s}
(
<(s) > α

)
. (1.24)

We find

L
{
0D
−ν
t f(t) : s

}
=

1

Γ(ν)
L
{
tν−1 ∗ f(t) : s

}
=

1

Γ(ν)
L
{
tν−1 : s

}
L{f(t) : s} =

1

sν
L{f(t) : s}

(1.25)

by using the following well-known identity:

L{tν : s} =
Γ(ν + 1)

sν+1

⇐⇒ L−1
(

1

sν+1

)
=

tν

Γ(ν + 1)

(
<(ν) > −1; <(s) > 0

)
,

(1.26)

where L−1 denotes the inverse Laplace transform.
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2. Solutions of fractional kinetic equations

We find solutions of certain generalized fractional kinetic equations in-
volving the (p, q)-extended τ -hypergeometric function (1.18) and the (p, q)-
extended τ -confluent hypergeometric function (1.19) by applying the Laplace
transform technique.

Theorem 2.1. Let µ, ν, d ∈ R+, h ∈ C with d 6= h and τ ∈ R+
0 . Also let

min {<(p),<(q)} > 0 while <(c) > <(b) >0 when p = 0 = q. Then the solution
of the following generalized fractional kinetic equation:

N(t)−N0 t
µ−1Rτp,q(a, b; c;ht

ν) = −dν0D−νt N(t) (2.1)

is given by

N(t) = N0 t
µ−1

∞∑
n=0

(a)n
B(b+τn, c− b; p, q)

B(b, c−b)
Γ(µ+νn) (htν)n

n!
Eν,µ+νn (−dν tν) ,

(2.2)

where Eα,β(·) is the generalized Mittag-Leffler function (1.5).

Proof. Taking the Laplace transform on both sides of (2.1) and using (1.18),
(1.25) and (1.26), we obtain

N (s) =
1

1 +
(
d
s

)ν N0

∞∑
n=0

(a)n
B(b+ τn, c− b; p, q)

B(b, c− b)
hn

n!

Γ(µ+ νn)

sµ+νn
, (2.3)

where N (s) = L{N(t) : s}. Using the geometric series

1

1 +
(
d
s

)ν =

∞∑
k=0

(−1)k
(
d

s

)νk (∣∣∣∣ds
∣∣∣∣ < 1

)
in (2.3), we get

N (s) = N0

∞∑
n=0

(a)n
B(b+ τn, c− b; p, q)

B(b, c− b)
hn

n!
Γ(µ+ νn)

∞∑
k=0

(−1)k dνk

sµ+νn+νk
. (2.4)

By inverting the Laplace transform on each side of (2.4) with the aid of (1.26),
we find

N(t) = N0 t
µ−1

∞∑
n=0

(a)n
B(b+ τn, c− b; p, q)

B(b, c− b)
Γ(µ+ νn) (htν)n

n!

×
∞∑
k=0

(−dν tν)k

Γ(νk + µ+ νn)
,

(2.5)

which, upon expressing the inner summation in terms of the generalized Mittag-
Leffler function (1.5), yields the desired solution (2.2). �
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Theorem 2.2. Let µ, ν, d ∈ R+, γ, h ∈ C with d 6= h and τ ∈ R+
0 . Also

let min {<(p),<(q)} > 0 while <(c) > <(b) >0 when p = 0 = q. Then the
solution of the following generalized fractional kinetic equation:

N(t)−N0 t
µ−1Rτp,q(a, b; c;ht

ν) = −


∞∑
j=1

(
γ

j

)
dνj0D

−νj
t

N(t) (2.6)

is given by

N(t) = N0 t
µ−1

∞∑
n=0

(a)n
B(b+τn, c− b; p, q)

B(b, c−b)
Γ(µ+νn) (htν)n

n!
Eγν,µ+νn (−dν tν) ,

(2.7)
where Eγα,β(·) is the generalized Mittag-Leffler function (1.6).

Proof. The proof here would run parallel to that of Theorem 2.1. Here we use
the following binomial expansions:

(1 + z)γ =
∞∑
k=0

(
γ

k

)
zk (γ ∈ C, |z| < 1) , (2.8)

where
(
γ
k

)
(γ ∈ C, k ∈ N0) is the generalized binomial coefficients defined by(

γ

k

)
=

{
1 (k = 0)
γ(γ−1)···(γ−k+1)

k! (k ∈ N)
(2.9)

and

(1− z)−γ =

∞∑
k=0

(γ)k
k!

zk (γ ∈ C, |z| < 1) . (2.10)

We omit its details. �

In the same process of analysis as in Theorems 2.1 and 2.2, we can find
solutions of the generalized fractional kinetic equations involving the (p, q)-
extended τ -confluent hypergeometric function (1.19), which are given in the
following two theorems, without their proofs.

Theorem 2.3. Let µ, ν, d ∈ R+, h ∈ C with d 6= h and τ ∈ R+
0 . Also let

min {<(p),<(q)} > 0 while <(c) > <(b) >0 when p = 0 = q. Then the solution
of the following generalized fractional kinetic equation:

N(t)−N0 t
µ−1Φτ

p,q(b; c;ht
ν) = −dν0D−νt N(t) (2.11)

is given by

N(t) = N0 t
µ−1

∞∑
n=0

B(b+τn, c−b; p, q)
B(b, c−b)

Γ(µ+νn) (htν)n

n!
Eν,µ+νn (−dν tν) ,

(2.12)
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where Eα,β(·) is the generalized Mittag-Leffler function (1.5).

Theorem 2.4. Let µ, ν, d ∈ R+, γ, h ∈ C with d 6= h and τ ∈ R+
0 . Also

let min {<(p),<(q)} > 0 while <(c) > <(b) >0 when p = 0 = q. Then the
solution of the following generalized fractional kinetic equation:

N(t)−N0 t
µ−1Φτ

p,q(b; c;ht
ν) = −


∞∑
j=1

(
γ

j

)
dνj0D

−νj
t

N(t) (2.13)

is given by

N(t) = N0 t
µ−1

∞∑
n=0

B(b+τn, c−b; p, q)
B(b, c− b)

Γ(µ+νn) (htν)n

n!
Eγν,µ+νn (−dν tν) ,

(2.14)
where Eγα,β(·) is the generalized Mittag-Leffler function (1.6).

3. Concluding remarks

Without depending on Laplace transform and Sumudu transform, which
have been used among most of the numerous papers to solve the fractional
kinetic equations (1.1) and (1.10), Saxena and Kalla [32] chose an alternative
method, which had been employed by Al-Saqabi and Tuan [5].

The results in Theorems 2.2 and 2.4 when γ = 1 yield, respectively, those in
Theorems 2.1 and 2.3. The results in Theorems 2.1, 2.2, 2.3, and 2.4 are, easily,
found to reduce to those corresponding ones for the τ -hypergeometric function
(1.20) and the τ -confluent hypergeometric function (1.21) when p = 0 = q,
and for the hypergeometric series 2F1 and the confluent hypergeometric series

1F1 when p = 0 = q and τ = 1.

Batalov and Batalova [9, Eq. (8)] investigated the following generalized
fractional kinetic equation:

ζ ∂tϕ+ c
0D

α
t ϕ = λ

(
b∆ϕ− (−∆)σ/2ϕ− gϕm/m!− τϕ

)
+ F, (3.1)

where 0 < α ≤ 1 and 0 < σ ≤ 2. Here parameters ζ and b represent parts of
the Markovian property and short-range interaction property, respectively, m
is the power of non-linearity; c0D

α
t is the Caputo fractional derivative (see, e.g.,

[24]); ϕ(x, t) is the real-valued field depending on the d-dimensional position
vector x and time t; λ ∈ R+ is the kinetic coefficient, g ∈ R+ is the coupling
constant, which characterizes a vertex of the fluctuation interaction, τ ∈ R+

0
is the deviation from the critical temperature τ ∼ T − Tc, and F is a random
external force. For many other types of kinetic equations, one may be referred,
for example, to [26] and the references therein.
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