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Abstract. In this paper, by using the methods of real analysis and functional analysis, a
Hilbert-type integral inequality in the finite interval (0, b) (0 < b < oo) with the homogeneous
kernel of (—)\)-degree and a best constant factor is given. We also consider its operator
expression. A few improved results, the equivalent forms and some new inequalities with the

particular kernels are obtained.

1. INTRODUCTION

Let f,g(> 0) € L(0,00), ||| = { f5* f2(x)dx}> and ||g|| = { [y ¢ (v)da}.
Then we have the following Hilbert’s mtegral inequality [1]:

//f ddy<7r\|f|\ [l (1.1)

where the constant factor 7 is the best possible. Inequality (1.1) is im-
portant in analysis and its applications ([1,2]). Define an integral operator
T : L?(0,00) — L?(0,00), for f(>0) € L?(0,00),

110 = [ oty € 0,00) (1.2

Then inequality (1.1) is rewritten to
(Tf,9) <=l f1] - llgll;

(Tf,g):= /Ooo( OOO :‘Uffldm)g(y)dy

where
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is the inner product of T'f and g. We named of T" Hilbert integral operator.
By (1.1), we can prove that the equivalent form is

ITfI] < =|l.f1],

and conclude that [3]
T = .

x+y by a bilinear function k(x,y)(> 0) in (1.1), then the

problem is how to make sure the conditions of k(x,y) for giving an integral

operator T" as (1.2) and the inequality with a best constant factor as (1.1).
In recent years, Yang [4,5] considered the case of k(z,y) being continuous

and symmetric in the function space LP(0,0), Yang [6,7,8] considered the

same case of k(z,y) in the disperse space [P, and Zhong et al. [9] considered

the case of k(x,y) in LP(R’.). But their given conditions are not quite simple.
In 1998, by introducing A € (0, 1] and the Beta function B(u,v) as [10]:

If we replace

o) 1 w
B(U, U) = /0 Wt "Hdt(u,v > 0), (13)

Yang 11] gave an extension of (1. 1) in the subinterval (0,b)(0 < b < 00) as:

(1.4)
where k) = B(%, %) and o(x) =1 — %(%)% When X = 1,b — oo, inequality
(1.4) deduces to (1.1). In recent years, a number of papers studied some
improvements and extensions of (1.4) (cf. [12-15]).

In this paper, a simple condition of the homogeneous kernel ky(z,y) with
(—A)-degree (A > 0) is considered. By using the methods of real analysis
and functional analysis, a Hilbert-type integral inequality in the finite interval
(0,b) with the homogeneous kernel of (—\)-degree and a best constant factor
and its operator expression are given. A few improved results, the equivalent
forms and some new inequalities of the particular kernels are obtained.

2. LEMMAS AND MAIN RESULTS

If A > 0, the function k) (z, y) is non-negative measurable in (0, c0)x (0, c0),
satisfying ky(ux, uy) = v ky(z,y) for any u, z,y > 0, then we call ky(z, ) the
homogeneous function of (—\)-degree. If for any =,y > 0, kx(z,y) = ki(y, x),
then We call ky(z,y) the symmetrlc homogeneous function. Assume that r >

1,1 + 1 =1. Setting ky(r) and Ex(s) as

Ex(r) == /OOOkA(u Dur~ldu, ky(s) = /Oook,\(l w)u's " tdu, (2.1)
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then it follows ky(r) = k(s). In fact, setting v = 1 we obtain

~ > 1. =2, dv >
Fa () :/0 ba(1, 7o +12:/0 a0, 1)L = ke (1).

v

Suppose that ky(r) is a positive number. For 0 < b < oo, z,y € (0,b), define
the weight functions wy(r,y,b) and wy(s,z,b) as
A

b b

xTr
arlrnt) = [ k) Lrde. masa) = [ ) rdr 22
LU Yy s

Setting u = y/x in the integral wy(r,y,b), for y € (0, b) we find

wx(r,y,b) = /OO kx(l,u)uéfldu < /Ooo Ex(1,u)us s ldu = Ex(s). (2.3)

T

S

Similarly, wy (s, z,b) < kx(r) (x € (0,b)). Setting @,(r) and 5)\(3) as
1 1
or(r) :—/ Fx(u, Dt ~Ldu, By (s) = / (L)l e, (2.4)
0 0

If 9)\(7"),5)\(8) > 0, then for 0 < y < b, we find

b

wx(r,y,b) :/0 Ex(u, Dur > Ldu >/O Ex(u, Dur 1du—9>\( ) >

Similarly, @y (s,z,a) > Ox(s) > 0 (0 < = < b). By (2.2), for fixed 0 < y <
b, kx(z,y) > 0 a.e. in (0,b), and for fixed 0 < = < b, ky(x,y) > 0 a.e. in (0,b).

Lemma 2.1. If both k)(1,u), kx(u,1) > Iy > 0,u € (0, 1], then we have
sly

A < B = s (e (0,) (2.5)
msad) < ROl -GS 0N, (20)

Proof. As (2.3), we find

wi(r,y,b) = L kx(l,u)uéfldu
b

< k,\(r)—lk/ usldu
0

Sl)\

= =) -2 we o),

Hence we have (2.5). Similarly we have (2.6). This completes the proof. [
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Lemma 2.2. If both ky(1,u) and ky(u, 1) are derivable decreasing function
in (0, 1], then we have

St

aalrat) < BOL-P2OON G @D
ox(s,2,b) < kA(r)u—ZiEg(”Z)i] (z € (0,b)). (2.8)

In particular, if ky(z,y) is symmetric, setting k) := kx(2), then

L oy a
A2y < k- 5w
1 2 A
< ——(=)2 .
< k- 553 (2.9
Proof. Since k) (1,u) < 0,u € (0,1), for y € (0,1), we obtain
d [V N _a [V
[ysA/ k,\(l,u)uéfldu] = —yTA k:)\(l,u)uéflalu—i—k)\(l,y)gf1
dy 0 S 0
= [Y A -1
= -y / ka(L w)dus + k(L y)y
0
[V
- yﬁ/ KA(1, w)u s du
0
< 0
and

= (Y A_q ! A1 0
Y / Ex(1,u)us duZ/ Ex(1L,u)us""du = 6y(s).
0 0

Hence, we find

A
s

o) = B0 =D [" 0w ad)

ka(r) = Ba(5)(5)7 (v € (0,D)).

Hence we obtain (2.7). Similarly, we obtain (2.8). If kx(x,y) is symmetric,

then we find 0)(2) = 0,(2) and

IA

by = eA(2)+/ kx(1,w)u2 " du
1

1

_ eA(2)+/ (v, 103 L
0

— 20,(2).
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Then by (2.7) and (2.8), we have (2.9). The Lemma is proved. O

For a measurable function ¢(x) > 0, we set the function spaces as
b 1
Lg(0,0) :={h = 0;|[Al]pp := {/0 p(x)h(z)dr}e < oo}(p = p,q).

Theorem 2.3. Assume that p,r > 1,%4—% = 1,%4—% =1, A>0, kx(z,y)isa
homogeneous function of (—\)-degree in (0, 0c0) x (0, 00), satisfying kx(r), &x(r)
and 0)(s) are positive numbers. For 0 < b < oo, there exist measurable
functions x(y) and u(x), such that 0 < k(y), p(x) < 1 and
wr(r,y,b) < kx(r)k(y), wa(s,z,b)
< ka(r)p(e)(z,y € (0,0)). (2.10)

I 6rle) 3= 22070 (o) = w97 € (00), f € L) (0.b).g €
( ,b), H qu,dJs > 0, then we have the equivalent mequahtles as

b b
/ / k() f(2)g (y)dady
0 0

< k(O flp o 19l mwss (2.11)

b, P21 b
no): = [ s [ @) f@ayy
< RO, (212)

where the constant factors ky (r) and k% (r) are the best possible. In particular,
for k(y) = p(z) = 1, we have the equivalent inequalities as

b) < ka(r)] / P27 ()} / (ndy}e;  (213)

kx(z,y) f(z)dx)Pdy < K (r) 1fp( )dx. (2.14)
/ ) /0

Proof. Since 0 < Ox(r)/kx(r) < k(y) < kx(r),0 < Ox(s)/kx(r) < fi(z) <
kx(r)(z,y € (0,b)), it is obvious that the condition

0 < Hprv(br? Hg”%ws < o0

is equivalent to the condition

0 <[ fllpjigrs l9llgrn. <00
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By Holder’s inequality [16], in view of (2.2) and Fubini’s theorem [17], we find

(b ~ w(l 2/a y(l—g)/ o
0 = [ [ s M)/pf(x)nx(l ooy

(1—*)(17 1) 1
{ / / b)) dudy} (2.15)

(1—7)(q 1) .
X{/ / kx(z,y) =————9%(y)dxdy}«

b 1
= {/0 wx(s,fcvb)¢r(w)fp($)dw}”{/0 wx(r,y,0)¥s(y)g?(y)dy}e.

IN

If inequality (2.15) keeps the form of equality, then, there exist constants A
and B, such that they are not all zero and

z(l—%)(p—l) (1—*)(q 1)
e - LA

— 9%(y) a.e. in (0,b) x (0,b).
y s

xl_?

It follows AzP(! fp( )= Byq(k%)gq(y) a.e.in (0,b) x (0,b). Assuming that
A # 0, there exists 0 < y < b, such that

—A)—lfp(x) — [Byq(l_%)g (y )}Al ,a.e. in z € (0,b).

This contradicts the fact that 0 < || f||,.¢, < 0o. Then inequality (2.15) keeps
the strict form and inequality (2.11) is valid by using (2.10).
For = € (0,b), setting a bounded measurable function [f(x)], as

n, for f(x) > n,

[f ()] := min{ f(z), n} _{ f(), for f(z) <n

then, since || f|[p,4,. > 0, there exists ng € IV, such that

/ or(x)[f(2)]Pdz > 0(n > np),

and then

b
| i@l @pds > o
Setting gn(y) as

PA_g
S

b
(1) = s ) @) @)lade) (0 € (B = o)
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then by (2.11), we have

b

0 < [ sy (2.16)
b y%_l b )
= [, i, e U@l
- / / 7@ ) [ (@) ] (9) dardly
b
< k)] / () () [ ()]} { / (v)dy}
< o0 "
and
b
0 < / ()0 (1) () dy (2.17)

b
< B [ @)oo s
0
< oQ.
It follows 0 < [|g|g.kps < 00 and then 0 < |[g||gp, < 00. For n — oo, by
(2.11), both (2.16) and (2.17) still keep the forms of strict inequality. Hence

we have (2.12).
On the other-hand, suppose that (2.12) is valid. By Hélder’s inequality,

1 A

b 1 A 1 b
) = / TWT() /0 k(o) f@)dallst () S o()ldy  (2.18)

L[ mnsarap ([ swswemas

In view of (2.12), we have (2 11). Hence (2.11) is equivalent to (2.12).
Forn € N,n > max{r, S} setting f,, gn as

@

fula) = 475!

and

gn(z) = xﬁ*_l,

for x € (0,b), if there exists 0 < K < ky(r), such that (2.11) is still valid if we
replace ky(r) by K, then we have
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b b
1) = /0 /0 k(2. 9) fu (@) gn (y)dcdy (2.19)
< Kanpr@HQnH%%
— nKbr

1 2

(n) b b A+L, +L,1
100 = [ w57y dulay
= yo [ ka(u, Dur e duldy(u = x/y) (2.20)
0 0

1 1 A+L,1 b lfl % A+L,1
= nbn/ Ex(u, Dur " ne du+/ yn / kx(u, Dur " mr dudy
0 0 1
b
1

1 00
= nbi/ kj)\(u71)ui\+nlp_ldu+/ (/ y%_ldy)k,\(u, 1)u%+n7p_1du
0 1 0

1 1 ALl g & A1 4
= nbn[/ Ex(u, Dur " nr du+/ Ex(u,)ur ™ na~"dul.
0 1
Hence by (2.19) and (2.20), we have
1 A1l g > A1 _q
/ ka(u, D)ur " nr du+/ Ex(u,Dur " na "du < K
0 1

and by Fatou’s Lemma [17], it follows

A

! lim Ap L g * lim A_1L g
kx(r) = / oo ka(u, Dur e du+/ oo ka(u, Dur na ™ “du
0 1

IN

n—oo

lim ! P . | o A_1 g
[/ kjk(u, 1)u7“ np du + / k}\(u7 1)ur ngq du}
0 1
< K.

Therefor K = k) (r) is the best constant factor of (2.11). If the constant factor
in (2.12) is not the best possible, then by (2.18), we can get a contradiction
that the constant factor in (2.11) is not the best possible. This completes the
proof. O

Define an operator T, : L} (0,b) — in_p(o, b) as: for f € Lf (0,b),

b
(Tyf)(y) = /0 Iin () (@) (y € (0,1)). (2.21)
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In view of (2.14), it follows Tp,f € ng_p((), b). For g € L (0,b), define the

formal inner of T f and g as

(T f,9) / / kx(z,y) f(z)g(y)dzdy. (2.22)
Hence the equivalent inequalities (2.13) and (2.14) may be rewritten as

(Tyf.9) < ka(r) i ITFl s < B Fllpos  (2:23)

where the constant factor ky(r) is the best possible, T} is obviously bounded
and ||Tp|| = ka(r). We call T}, Hilbert-type integral operator with the homo-
geneous kernel of (—\)-degree in the finite interval (0,b).

llg

Corollary 2.4. As the assumption of Theorem 1, if both ky(1,u), kx(u,1) >
Ix >0, u € (0,1], we have the following equivalent inequalities:

rlA

NG
< / - S“ ()20 )o )y (2.24)

N (r
b
[

< K(r) /b[l— ”A ()7 )¢ (2) f7 () da (2.25)
A 0 )\]@\(T‘) b " ’ )

where the constant factors ky(r) and k% (r) are the best possible. We still have
the following two pairs of equivalent inequalities:

2
T

(Tif.9) < k()i / 1 2 ()26, () P (@)}

> 8

and

P
SZA 2pl/k)\:ny x)dx)Pdy

8

A,;Z?T)(b)ﬁ]qﬁr(x)fp(x)dx}éngm, (2.26)

b
(Tof,g) < ka(r)} /0 -

|6 (2) 7 (z)d, (2.27)

: X
ITAIE oo < 0D [ 1= 50 ()

b sy Yy 1
(T.9) < IOl d | 1= s (D g}t (228)

)
/b v (/bkA(l“ o) f(@)dw)dy < eI, (2:29)
0 [1- ghsHet o T e
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rl z\2
)\k;(\r) (E) "

Proof. By Lemma 2.1, setting £(y) = 1— 22— (,)ﬁ and pi(x)

=1-
Ak (r)
n (2.11) and (2.12), we have (2.24) and (2.25). Since x(y) < 1, by (2.24) and
(2.25), we have (2.26) and (2.27). Similarly, since p(x) < 1, we have (2.28)
and (2.29). The Corollary is proved. O

Corollary 2.5. As the assumption of Theorem 2.3, if both k)(1,u) and
kx(u, 1) are derivable decreasing function in (0, 1], then we have the following
equivalent inequalities with the best constant factors:

(Tif.0) < halr {/‘ <§>

x{/

A
T

6, (2) 7 ()da} >

) > s ()9 (y)dy o (2.30)

and

b T) T A
< B0 [ 2O 0@ @ (2.31)

If ky(z,y) is symmetric and o(z) = 1 — %(%)
equivalent inequalities as

(as (1.4)), then we have the

<md' ) () P (a M}q“ Ay} (232)

and

byl b ) L[t o
Angwwmmmw<@Aaw@MfUd.<mm

oP~1(y

3>

Proof. By Lemma 2.2, setting x(y) =1 — 9*25%(%) s and p(z) =1— 0*(7’) (%)

n (2.11) and (2.12), we have (2.30) and (2.31). For r = s =2,k) = k:A( ), by
(2.9), we have (2.32) and (2.33). The Corollary is proved. O
3. APPLICATIONS TO SOME PARTICULAR KERNELS

In the following, some words that b, A > 0,p,r > 1, 1 % =1, % + % 1,
.(a) = M (a) = 10D, () = 1 K@), fg 2 0,0 <

| fllp.érs 119]]g.. < 00 and the constants are the best possible are omitted.
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Example 3.1. Let ky(z,y) = W (
both kx(1,u) and kj(u,1) are derivable decreasing in (0, 1], and ky(u,1) =
€ (0,1)), setting v = u®, by (1.3), we have

a > 0), which is symmetric. Since

1 _ 1
(ua+1))\/a Z l)\ — 92X/« (U

o] A_q 0o 21
~ ur du 1 var dv 1 A A
kx(r) 3:/0 (7)\ :/0 ——— = —B(—,—). (3.1)

ua_i_l)g (07 (U-i—l)E « ar as

By (28),(29) and (36), (37), we have two pairs of equivalent inequalities as:

//fxa+ydxdy

< kx(r){/o [1— m(g)ﬂfﬁr(x)fp(ﬂ?)dx};

b
et (P ) )
< 1 o ) ek, (32
/b ZPSA— A b f(z)dzx . PPdy
0 L= i (DI @)
P ’ r LTya P
< Bo) [ e (33)
#< B[ o@o@ P [ oW, 6

b y7_1 b f(z)dz » ~» bam T
/0 o l(y)[/o (xa+ya)%] dy<l<:/\(2)/0 (x)p2(z) [P (x)dz. (3.5)

Example 3.2. Let ky(z,y) = I;(f/y Y which is symmetric. We find that
both kx(1,u) and ky(u, 1) are derivable decreasing in (0, 1][18], and kj(u,1) =
ulfi‘l > 1y =+ (u € (0,1]). Setting v = u*, we obtain [1]

B OO(lnu)u%_1 B OO(IDU)U%_I _ 7T
;ﬂ(r)_/o u}\_ldu—/o mdv—[m]? (3.6)
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By (2.24),(2.25) and (2.32), (2.33), we have two pairs of equivalent inequal-
ities as
b In(3)f(x)g(y
_/ / —(y) E; ( )d:rdy

sm x
)\ sin( { / -l 3)
si

x{/ 1 - s )2 gt ) (3.7)

S >

60 (z) f7()d} >

o e ‘() /@)
[ g - Uy e

T [y ) s P(\d
< g™ ) 1RO @ s, (38)

Asin

) / 2)al) fP(2) o} {/ Fy)dy}s,  (3.9)

b yT_l bln(ﬁ)f(ac)dmp T\ 9p b -
| ol mr iy < G [o@a@r@dr. (310

oP~(y) ot —

Example 3.3. Let ky(z,y) = W’ which is symmetric. Since both

kx(1,u) and ky(u, 1) are derivable decreasing in (0,1}, and ky(u,1) =1\ =1
(u € (0,1]), we have

A_
ur

00 -1
kx(r) = /0 mdu (3.11)

1 0o, 2—1
A ur rs
= wr tdu + Y du = —.
0 1 u A

Then by (2.14) and (2.25), we have two equivalent inequalities as follows:

/ / max{x ngg]c»dy 7“).\9{/01’[1 - E(%)é]ér(w)fp(x)da:}%

b N 1
A [ 1= 1w i G2
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’ y%_l b f(x)dx
/0 11— i(i’)?]p—l[/o (max{:n,y})/\]pdy
rs b 1 x a
<A)p/0 [ =)o) fP(2)dz. (3.13)

Example 3.4. Let ky(z,y) = %, which is symmetric. We find that

A
[ |Inufur " du
Ralr) = /0 (max{u, 1})*

1 (] %—1
= /(lnu)ui_ldqu/ %du
0 1 u
r? + 82
A2

o0 |lnu\ui71

s (max{u,1})*

T2+82 % A_q
= 32 —/ (—Inw)us™"du
0

2 2 4
_ TEs S/b(_lnu)du¢
0

A2 A
r? 4+ §2
—_ )\2 H(y),
52 YA
K(y) - TQ—I-SQ(E)S’
r? 452 _ -
W)\(S,.’E,b) < TM(‘/E)?M(:U)
r2 T A
= el

Then by (2.11) and (2.12), we have two equivalent inequalities as follows:
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I

< N1 SO

X{/ 7‘2—|—82(7)

b s b |In({)1f (z)dw
b th e

T2 82 b 7‘2 T A
< (G5 [ 0= @@ P@a. (313

r2 4 52

2
s

[0 ()" (y)dy} 7, (3.14)

Remarks.

(i) For a = 1,p = g = 2, inequality (3.4) deduces to (1.2).
(ii) Inequality (2.11) is a refinement of (2.13), because of

In(a) < Ex(Ofllpgorllgllg e,
< kA lpgrs 1911 q,.-

(iii) When b — oo, (2.13) deduces to a Hilbert-type integral inequality in
(0,00) with a best constant factor ky(r) as

1(0) < ka(r){ /0 " (@) P (@) da} | /0 T Wyt (316)

REFERENCES

[1] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, Cam-
bridge, 1952.

[2] D. S. Mintrinovic, J. E. Pecaric and A. M. Kink, Inequalities involving functions and
their integrals and derivertives, Kluwer Academic Publishers, Boston, 1991.

[3] T. Carleman, Sur les equations integrals singulieres a noyau reel et symetrique, Uppsala,
1923.

[4] Bicheng Yang, On the norm of an integral operator and applications, J. Math. Anal.
Appl., 321(2006) 182-192.

[5] Bicheng Yang, On the norm of a self-adjoint operator and a new bilinear integral in-
equality, Acta Mathematica Sinica, English Series, 23,7(2007) 1311-1316.

[6] Bicheng Yang, On the norm of a self-adjoint operator and applications to the Hilbert’s
type inequalities, Bull. Belg. Math. Soc, 13(2006) 577-584.

[7] Bicheng Yang, On the norm of a Hilbert’s type linear operator and applications, J. Math.
Anal. Appl., 325(2007) 529-541.



(8]

A Hilbert-type integral inequality in the finite interval 683

Bicheng Yang, On a Hilbert- type operator with a symmetric homogeneous kernel of
—1—order and applications, Journal of Inequalities and Applications, Volum 2007, Ar-
ticle ID 47812, 9 pages, doi: 10.1155/2007/47812.

Wuyi Zhong and Bicheng Yang, On multiple’s Hardy-Hilbert integral inequality with
kernel, Journal of Inequalities and Applications, Volum 2007, Article ID27962, 16 pages,
doi: 10.1155/2007/27962.

Zhuxi Wang and Dunren Guo, Introduction to special functions, Science Press, Beijing,
1979.

Bicheng Yang, On Hilbert’s integral inequality, J. Math. Anal. Appl., 220(1998) 778-785.
Bicheng Yang, On generalizations of Hardy-Hilbert’s integral inequalities, Acta Math.
Sinica, 41,4(1998) 839-844.

Bicheng Yang, On Hardy-Hilbert’s integral inequality, J. Math. Anal. Appl., 261(2001)
295-306.

Bicheng Yang, On Hardy-Hilbert’s integral inequality and its equivalent form, Northeast
Math. J., 19,2(2003) 139-148.

Wuyi Zhong and Bicheng Yang, On an equivalent inequality of a general Hardy-Hilbert’s
integral inequality , Journal of Shanhai University (Science Edition), 13,1(2007) 51-54.

Jichang Kuang, Applied inequalities, Shangdong Science Press, Jinan, 2004.

Jichang Kuang, Introduction to real analysis, Hunan Education Press, Changsha, 1996
Bicheng Yang, Generalization of Hilbert’s type inequality with best constant factorr and
its applications, J. Math. Res. Exp., 25,2(2005) 341-346.



