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Abstract. In this paper, we introduce and study a new system of strongly nonlinear quasi-

variational inclusions involving generalized m-accretive mappings in Banach spaces. By using

the resolvent operator technique for generalized m-accretive mapping due to Huang and

Fang, we prove the existence theorem of the solution for this system of variational inclusions

in Banach spaces, and discuss the convergence and stability of a new perturbed iterative

algorithm for solving this system of nonlinear variational inclusions in Banach spaces. Our

results improve and generalize the corresponding results of [3, 6, 9, 12].

1. Introduction

In this paper, we introduce and study the following new system of strongly
nonlinear quasi-variational inclusion involving generalized m-accretive map-
pings:

Find (x, y) ∈ X1 ×X2 such that

0 ∈ N1(x, y) + M1(x), 0 ∈ N2(x, y) + M2(y), (1.1)

where X1 and X2 are two real Banach spaces, N1 : X1 ×X2 → X1 and N2 :
X1×X2 → X2 are single-valued mappings and for i = 1, 2, Mi : Xi → 2Xi is a
generalized m-accretive mapping, 2Xi denotes the family of all the nonempty
subsets of Xi.
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We remark that for a suitable choice of the mappings N1, N2, η1, η2,M1, M2

and the spaces X1, X2, a number of known new classes variational inequal-
ities, variational inclusions and corresponding optimization problems can be
obtained as special cases of nonlinear quasi-variational inclusion problem (1.1).
Moreover, these classes variational inclusions provide us a general and unified
framework for studying a wide range of interesting and important problems
arising in mathematics, physics, engineering sciences and economics finance,
etc. See for more details [1, 3, 4, 6, 9, 14, 15, 17] and the references therein.

In 2001, Huang and Fang [7] first introduced the concept of a generalized m-
accretive mapping, which is a generalization of an m-accretive mapping, and
gave the definition and properties of the resolvent operator for the generalized
m-accretive mapping in Banach space. Further, Bi et al. [2], Huang [5] and
Huang et al. [8] introduced and studied some new class of nonlinear variational
inclusions involving generalized m-accretive mappings in Banach spaces, they
also obtained some new corresponding existence and convergence results (see,
for example, [2, 5, 8], respectively. Moreover, Huang, Lan, Zeng, Wang et
al. discussed stability of the iterative sequence generated by the algorithm for
solving what they studied (see [6, 9, 16, 17]).

On the other hand, Lan et al. [10, 11] introduces and studied a new sys-
tem of generalized nonlinear variational inclusions involving generalized m-
accretive mappings. By using the resolvent operator technique for generalized
m-accretive mapping due to Huang and Fang [7], we also prove the existence
theorems of the solution and convergence theorems of the generalized Mann
iterative procedures with mixed errors for this system of variational inclusions
in q-uniformly smooth Banach spaces.

Motivated and inspired by the above works, the main purpose of this pa-
per is to introduce and study the new system of strongly nonlinear quasi-
variational inclusions (1.1) involving generalized m-accretive mapping in Ba-
nach spaces. By using the resolvent operator technique for generalized m-
accretive mapping due to Huang and Fang, we prove the existence theorem
of the solution for this kind of variational inclusions in Banach spaces, and
discuss the convergence and stability of a new perturbed iterative algorithm
for solving this system of nonlinear variational inclusions in Banach spaces.
Our results improve and generalize the corresponding results of [3, 6, 9, 12].

2. Preliminaries

Throughout this paper, let X be a real Banach space with dual space X∗,
〈·, ·〉 the dual pair between X and X∗, and 2X denote the family of all the
nonempty subsets of X. The generalized duality mapping Jq : X → 2X∗

is
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defined by

Jq(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖q, ‖x∗‖ = ‖x‖q−1}, ∀x ∈ X,

where q > 1 is a constant. In particular, J2 is the usual normalized duality
mapping. It is well known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x 6= 0
and Jq is single-valued if X∗ is strictly convex (see, for example, [13]). If
X = H is a Hilbert space, then J2 becomes the identity mapping of H. In
what follows we shall denote the single-valued generalized duality mapping by
jq.

Definition 2.1. The mapping N : X ×X → X is said to be
(1) σ-strongly accretive with respect to the first argument, if for any x, y ∈

X, there exists jq(x− y) ∈ Jq(x− y) such that

〈N(x, ·)−N(y, ·), jq(x− y)〉 ≥ σ‖x− y‖q,

where σ > 0 is a constant;
(2) ε-Lipschitz continuous with respect to the first argument, if there exists

a constant ε > 0 such that

‖N(x, ·)−N(y, ·)‖ ≤ ε‖x− y‖, ∀x, y ∈ X.

Similarly, we can define the strongly accretivity and Lipschitz continuity in
the second argument of N(·, ·), respectively.

Definition 2.2. ([7]) Let η : X ×X → X∗ be a single-valued mapping and
A : X → 2X be a multi-valued mapping. Then A is said to be

(1) η-accretive if

〈u− v, η(x, y)〉 ≥ 0, ∀x, y ∈ X,u ∈ A(x), v ∈ A(y);

(2) generalized m-accretive if A is η-accretive and (I + λA)(X) = X for all
(equivalently, for some) λ > 0.

Remark 2.3. Huang and Fang gave one example of the generalized m-accretive
mapping in [7]. If X = X∗ = H is a Hilbert space, then (1) and (2)
of Definition 2.2 reduce to the definition of η-monotonicity and maximal η-
monotonicity respectively; if X is uniformly smooth and η(x, y) = J2(x − y),
then (1) and (2) of Definition 2.2 reduce to the definitions of accretivity and
m-accretivity in uniformly smooth Banach spaces, respectively (see [7, 8]).

Definition 2.4. The mapping η : X ×X → X∗ is said to be
(1) δ-strongly monotone, if there exists a constant δ > 0 such that

〈x− y, η(x, y)〉 ≥ δ‖x− y‖2, ∀x, y ∈ X;

(2) τ -Lipschitz continuous, if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀x, y ∈ X.
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The modules of smoothness of X is the function ρX : [0,∞) → [0,∞)
defined by

ρX(t) = sup{1
2
‖x + y‖+ ‖x− y‖ − 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.

A Banach space X is called uniformly smooth if limt→0
ρX(t)

t = 0 and X is
called q-uniformly smooth if there exists a constant c > 0 such that ρX ≤ ctq,
where q > 1 is a real number.

It is well known that Hilbert spaces, Lp (or lp) spaces, 1 < p < ∞, and the
Sobolev spaces Wm,p, 1 < p < ∞, are all q-uniformly smooth. In the study
of characteristic inequalities in q-uniformly smooth Banach spaces, Xu [13]
proved the following result:

Lemma 2.5. Let q > 1 be a given real number and X be a real uniformly
smooth Banach space. Then X is q-uniformly smooth if and only if there
exists a constant cq > 0 such that for all x, y ∈ X, jq(x) ∈ Jq(x), there holds
the following inequality

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ cq‖y‖q.

In [7], Huang and Fang show that for any ρ > 0, inverse mapping (I+ρA)−1

is single-valued, if η : X ×X → X∗ is strict monotone and A : X → 2X is a
generalized m-accretive mapping, where I is the identity mapping. Based on
this fact, Huang and Fang [7] gave the following definition:

Definition 2.6. Let A : X → 2X be a generalized m-accretive mapping.
Then the resolvent operator Jρ

A for A is defined as follows:

Jρ
A(z) = (I + ρA)−1(z), ∀z ∈ X,

where ρ > 0 is a constant and η : X×X → X∗ is a strictly monotone mapping.

Lemma 2.7 ([7, 8]). Let η : X × X → X∗ be τ -Lipschitz continuous and
δ-strongly monotone, and A : X → 2X be a generalized m-accretive mapping.
Then for any ρ > 0, the resolvent operator Jρ

A for A is τ
δ -Lipschitz continuous,

i.e.,
‖Jρ

A(x)− Jρ
A(y)‖ ≤ τ

δ
‖x− y‖, ∀x, y ∈ X.

3. Existence Theorem

In this section, we shall give the existence theorems of problem (1.1). The
solvability of the problem (1.1) depends on the equivalence between (1.1) and
the problem of finding the fixed point of the associated generalized resolvent
operator. It follows from Definition 2.6 that we can obtain the following
conclusion.
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Lemma 3.1. Let Mi : Xi → 2Xi be generalized m-accretive and Ni : X1 ×
X2 → Xi be any nonlinear mapping for i = 1, 2. Then the following statements
are mutually equivalent:

(i) An element (x, y) ∈ X1 ×X2 is a solution to the problem (1.1).
(ii) There is an (x, y) ∈ X1 ×X2 such that

x = Jρ
M1

[x− ρN1(x, y)],
y = Jλ

M2
[y − λN2(x, y)],

where Jρ
M1

= (I + ρM1)−1, Jλ
M2

= (I + λM2)−1, and ρ > 0 and λ > 0
are two constants.

(iii) For any given ρ > 0 and λ > 0, the map Fρ,λ : X1 ×X2 → X1 ×X2

defined by

Fρ,λ(u, v) = (Pρ(u, v), Qλ(u, v)), ∀(u, v) ∈ X1 ×X2

has a fixed point (x, y) ∈ X1 × X2, where maps Pρ : X1 × X2 → X1

and Qλ : X1 ×X2 → X2 defined by

Pρ(u, v) = Jρ
M1

[u− ρN1(u, v)], Qλ(u, v) = Jλ
M2

[v − λN2(u, v)].

Theorem 3.2. Let X1 be a q1-uniformly smooth Banach space with q1 > 1,
X2 be a q2-uniformly smooth Banach space with q2 > 1 and η1 : X1×X1 → X∗

1

be τ1-Lipschitz continuous and δ1-strongly monotone, η2 : X2 ×X2 → X∗
2 be

τ2-Lipschitz continuous and δ2-strongly monotone,. Suppose that and Mi :
Xi → 2Xi be generalized m-accretive for i = 1, 2, N1 : X1 × X1 → X1 is
σ1-strongly accretive and γ1-Lipschitz continuous in the first argument and ς2-
Lipschitz continuous in the second argument, N2 : X1×X1 → X2 is σ2-strongly
accretive and γ2-Lipschitz continuous in the second argument and ς1-Lipschitz
continuous in the first argument, respectively. If





τ1δ2
q1
√

1− q1ρσ1 + cq1ρ
q1γq1

1 + ς1δ1τ2 < δ1δ2,

δ1τ2
q2
√

1− q2λσ2 + cq2λ
q2γq2

2 + τ1ς2δ2 < δ1δ2,

(3.1)

where cq1, cq2 are the constants as in Lemma 2.5, then the problem (1.1) has
a unique solution (x∗, y∗).

Proof. For any given ρ > 0 and λ > 0, define Pρ : X1 × X2 → X1 and
Qλ : X1 ×X2 → X2 by

Pρ(u, v) = Jρ
M1

[u− ρN1(u, v)], Qλ(u, v) = Jλ
M2

[v − λN2(u, v)] (3.2)

for all (u, v) ∈ X1 ×X2. Now define ‖ · ‖∗ on X1 ×X2 by

‖(u, v)‖∗ = ‖u‖+ ‖v‖, ∀(u, v) ∈ X1 ×X2.
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It is easy to see that (X1 × X2, ‖ · ‖∗) is a Banach space. By (3.2), for any
given ρ > 0 and λ > 0, define Fρ,λ : X1 ×X2 → X1 ×X2 by

Fρ,λ(u, v) = (Pρ(u, v), Qλ(u, v)), ∀(u, v) ∈ X1 ×X2.

In the sequel, we prove that Fρ,λ is a contractive mapping. In fact, for any
(u1, v1), (u2, v2) ∈ X1 ×X2, it follows from (3.2) and Lemma 2.7 that

‖Pρ(u1, v1)− Pρ(u2, v2)‖
≤ ‖Jρ

M1
[u1 − ρN1(u1, v1)]− Jρ

M1
[u2 − ρN1(u2, v2)]‖

≤ τ1

δ1
‖u1 − u2 − ρ[N1(u1, v1)−N1(u2, v1)]‖

+
τ1

δ1
‖N1(u2, v1)−N1(u2, v2)‖ (3.3)

and

‖Qλ(u1, v1)−Qλ(u2, v2)‖
≤ ‖Jλ

M2
[v1 − λN2(u1, v1)]− Jλ

M2
[v2 − λN2(u2, v2)]‖

≤ τ2

δ2
‖v1 − v2 − λ[N2(u1, v1)−N2(u1, v2)]‖

+
τ2

δ2
‖N2(u1, v2)−N2(u2, v2)‖ (3.4)

By assumptions and Lemma 2.5, we have

‖u1 − u2 − ρ[N1(u1, v1)−N1(u2, v1)]‖q1

≤ ‖u1 − u2‖q1 − q1ρ〈N1(u1, v1)−N1(u2, v1), Jq1(u1 − u2)〉
+ρq1cq1‖N1(u1, v1)−N1(u2, v1)‖q1

≤ (1− q1ρσ1 + cq1ρ
q1γq1

1 )‖u1 − u2‖q1 , (3.5)

‖v1 − v2 − λ[N2(u1, v1)−N2(u1, v2)]‖q2

≤ (1− q2λσ2 + cq2λ
q2γq2

2 )‖v1 − v2‖q2 (3.6)

and

‖N1(u2, v1)−N1(u2, v2)‖ ≤ ς2‖v1 − v2‖, (3.7)
‖N2(u1, v2)−N2(u2, v2)‖ ≤ ς1‖u1 − u2‖. (3.8)

From (3.3)-(3.8), we obtain




‖Pρ(u1, v1)− Pρ(u2, v2)‖
≤ τ1

δ1
q1
√

1− q1ρσ1 + cq1ρ
q1γq1

1 ‖u1 − u2‖+ ς2τ1
δ1
‖v1 − v2‖,

‖Qλ(u1, v1)−Qλ(u2, v2)‖
≤ τ2

δ2
q2
√

1− q2λσ2 + cq2λ
q2γq2

2 ‖v1 − v2‖+ ς1τ2
δ2
‖u1 − u2‖.

(3.9)
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(3.9) implies that

‖Pρ(u1, v1)− Pρ(u2, v2)‖+ ‖Qλ(u1, v1)−Qλ(u2, v2)‖
≤ k(‖u1 − u2‖+ ‖v1 − v2‖), (3.10)

where

k = max{τ1

δ1

q1

√
1− q1ρσ1 + cq1ρ

q1γq1
1 +

ς1τ2

δ2
,

ς2τ1

δ1
+

τ2

δ2

q2

√
1− q2λσ2 + cq2λ

q2γq2
2 }.

By (3.1), we know that 0 ≤ k < 1. It follows from (3.10) that

‖Fρ,λ(u1, v1)− Fρ,λ(u2, v2)‖∗ ≤ k‖(u1, v1)− (u2, v2)‖∗.
This proves that Fρ,λ : X1 ×X2 ×X1 ×X2 is a contraction mapping. Hence,
there exists a unique (x∗, y∗) ∈ X1 ×X2 such that

Fρ,λ(x∗, y∗) = (x∗, y∗),

that is,

x∗ = Jρ
M1

[x∗ − ρN1(x∗, y∗)] and y∗ = Jλ
M2

[y∗ − λN2(x∗, y∗)].

By Lemma 3.1, (x∗, y∗) is the unique solution of problem (1.1). This completes
the proof. ¤

Remark 3.3. If X1 and X2 are 2-uniformly smooth Banach space and there
exists λ = ρ > 0 such that





h1 = δ1δ2−ς1δ1τ2
τ1δ2

< 1, h2 = δ1δ2−τ1ς2δ2
δ1τ2

< 1,

|ρ− σ1

c2γ2
1
| <

√
σ2
1−(1−h2

1)c2γ2
1

c2γ2
1

,

|ρ− σ2

c2γ2
2
| <

√
σ2
2−(1−h2

2)c2γ2
2

c2γ2
2

,

σ2
1 > (1− h2

1)c2γ
2
1 , σ2

2 > (1− h2
2)c2γ

2
2 ,

then (3.1) holds. We note that Hilbert space and Lp (or lp) (2 ≤ p < ∞)
spaces are 2-uniformly Banach spaces.

4. Perturbed Algorithm and Stability

In this section, by using the following definition and lemma, we construct a
new perturbed iterative algorithm with mixed errors for solving problem (1.1)
and prove the convergence and stability of the iterative sequence generated by
the algorithm.
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Definition 4.1. Let S be a selfmap of X, x0 ∈ X, and let xn+1 = h(S, xn)
define an iteration procedure which yields a sequence of points {xn}∞n=0 in X.
Suppose that {x ∈ X : Sx = x} 6= ∅ and {xn}∞n=0 converges to a fixed point
x∗ of S. Let {un} ⊂ X and let εn = ‖un+1 − h(S, un)‖. If lim εn = 0 implies
that un → x∗, then the iteration procedure defined by xn+1 = h(S, xn) is said
to be S-stable or stable with respect to S.

Lemma 4.2. Let {an}, {bn}, {cn} be three nonnegative real sequences satisfy-
ing the following condition: there exists a natural number n0 such that

an+1 ≤ (1− tn)an + bntn + cn, ∀n ≥ n0,

where tn ∈ [0, 1],
∑∞

n=0 tn = ∞, limn→∞ bn = 0,
∑∞

n=0 cn < ∞. Then an → 0
(n →∞).

Algorithm 4.3. Let Ni : X1 × X2 → Xi be single-valued mappings and
Mi : Xi → 2Xi be a generalized m-accretive mapping for all i = 1, 2. Then
for a given (x0, y0) ∈ X1 ×X2, the perturbed iterative sequence {(xn, yn)} is
defined by

{
xn+1 = (1− αn)xn + αnJρ

M1
[xn − ρN1(xn, yn)] + αnun + wn,

yn+1 = (1− αn)yn + αnJλ
M2

[yn − λN2(xn, yn)] + αnvn + en,
(4.1)

where n ≥ 0, {αn} is a sequence in [0, 1], {un}, {wn} ⊂ X1 and {vn}, {en} ⊂
X2 are errors to take into account a possible inexact computation of the re-
solvent operator point satisfying the following conditions:

(i) un = u′n + u′′n, vn = v′n + v′′n;
(ii) limn→∞ ‖u′n‖ = 0, limn→∞ ‖v′n‖ = 0;
(iii)

∑∞
n=0 ‖u′′n‖ < ∞,

∑∞
n=0 ‖wn‖ < ∞,

∑∞
n=0 ‖v′′n‖ < ∞,

∑∞
n=0 ‖en‖ < ∞.

Let {(zn, tn)} be any sequence in X1 ×X2 and define {(εn, εn)} by
{

εn = ‖zn+1 − {(1− αn)zn + αnJρ
M1

[zn − ρN1(zn, tn)] + αnun + wn}‖,
εn = ‖tn+1 − {(1− αn)tn + αnJλ

M2
[tn − λN2(zn, tn)] + αnvn + en}‖. (4.2)

Theorem 4.4. Suppose that X1, X2, η1, η2, N1, N2,M1 and M2 are the same as
in Theorem 3.2. If

∑∞
n=0 αn = ∞ and condition (3.1) holds, then the perturbed

iterative sequence {(xn, yn)} defined by (4.1) converges strongly to the unique
solution of problem (1.1). Moreover, if there exists a ∈ (0, αn] for all n ≥ 0,
then limn→∞(zn, tn) = (x∗, y∗) if and only if limn→∞(εn, εn) = (0, 0), where
(εn, εn) is defined by (4.2).

Proof. From Theorem 3.2, we know that problem (1.1) has a unique solution
(x∗, y∗) ∈ X1 × X2. It follows from (4.1) and the proof of (3.9) in Theorem
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3.2 that

‖xn+1 − x∗‖
≤ (1− αn)‖xn − x∗‖+ αn{τ1

δ1

q1

√
1− q1ρσ1 + cq1ρ

q1γq1
1 ‖xn − x∗‖

+
ς2τ1

δ1
‖yn − y∗‖}+ αn‖u′n‖+ (‖u′′n‖+ ‖wn‖), (4.3)

‖yn+1 − y∗‖
≤ (1− αn)‖yn − y∗‖+ αn{τ2

δ2

q2

√
1− q2λσ2 + cq2λ

q2γq2
2 ‖yn − y∗‖

+
ς1τ2

δ2
‖xn − x∗‖}+ αn‖v′n‖+ (‖v′′n‖+ ‖en‖), (4.4)

It follows from (4.3) and (4.4) that

‖xn+1 − x∗‖+ ‖yn+1 − y∗‖
≤ (1− αn)(‖xn − x∗‖+ ‖yn − y∗‖)

+αn{τ1

δ1

q1

√
1− q1ρσ1 + cq1ρ

q1γq1
1 +

ς1τ2

δ2
}‖xn − x∗‖

+αn{ ς2τ1

δ1
+

τ2

δ2

q2

√
1− q2λσ2 + cq2λ

q2γq2
2 }‖yn − y∗‖

+αn(‖u′n‖+ ‖v′n‖) + (‖u′′n‖+ ‖wn‖+ ‖v′′n‖+ ‖en‖)
≤ [1− αn(1− k)](‖xn − x∗‖+ ‖yn − y∗‖)

+αn(1− k) · 1
1− k

(‖u′n‖+ ‖v′n‖)
+(‖u′′n‖+ ‖wn‖+ ‖v′′n‖+ ‖en‖), (4.5)

where k is the same as in (3.10). Since
∑∞

n=0 αn = ∞, it follows from Lemma
4.2, (3.1) and (4.5) that ‖xn−x∗‖+ ‖yn− y∗‖ → 0 (n →∞). Hence, we know
that the sequence {(xn, yn)} converges to the unique solution (x∗, y∗) of the
problem (1.1).

Now we prove the second conclusion. By (4.2), we know

‖zn+1 − x∗‖ ≤ ‖(1− αn)zn

+αnJρ
M1

[zn − ρN1(zn, tn)] + αnun + wn − x∗‖+ εn,
‖tn+1 − y∗‖ ≤ ‖(1− αn)tn

+αnJλ
M2

[tn − λN2(zn, tn)] + αnvn + en − y∗‖+ εn.

(4.6)



10 Heng-you Lan

As the proof of inequality (4.5), we have

‖(1− αn)zn + αnJρ
M1

[zn − ρN1(zn, tn)] + αnun + wn − x∗‖
+‖(1− αn)tn + αnJλ

M2
[tn − λN2(zn, tn)] + αnvn + en − y∗‖

≤ [1− αn(1− k)](‖zn − x∗‖+ ‖tn − y∗‖)
+αn(1− k) · 1

1− k
(‖u′n‖+ ‖v′n‖)

+(‖u′′n‖+ ‖wn‖+ ‖v′′n‖+ ‖en‖). (4.7)

Since 0 < a ≤ αn, it follows from (4.6) and (4.7) that

‖zn+1 − x∗‖+ ‖tn+1 − y∗‖
≤ [1− αn(1− k)](‖zn − x∗‖+ ‖tn − y∗‖)
+αn(1− k) · 1

1− k
(‖u′n‖+ ‖v′n‖+

εn + εn

a
)

+(‖u′′n‖+ ‖v′′n‖+ ‖wn‖+ ‖en‖).
Suppose that lim(εn, εn) = (0, 0). Then from

∑∞
n=0 αn = ∞ and Lemma 4.2,

we have lim(zn, tn) = (x∗, y∗).
Conversely, if lim(zn, tn) = (x∗, y∗), then we get

εn = ‖zn+1 − {(1− αn)zn + αnJρ
M1

[zn − ρN1(zn, tn)] + αnun + wn}‖
≤ ‖zn+1 − x∗‖

+‖(1− αn)zn + αnJρ
M1

[zn − ρN1(zn, tn)] + αnun + wn − x∗‖,
εn = ‖tn+1 − {(1− αn)tn + αnJλ

M2
[tn − λN2(zn, tn)] + αnvn + en}‖

≤ ‖tn+1 − y∗‖
+‖(1− αn)tn + αnJλ

M2
[tn − λN2(zn, tn)] + αnvn + en − y∗‖,

and

εn + εn ≤ ‖zn+1 − x∗‖+ ‖tn+1 − y∗‖
+[1− αn(1− k)](‖zn − x∗‖+ ‖tn − y∗‖)
+αn(1− k) · 1

1− k
(‖u′n‖+ ‖v′n‖)

+(‖u′′n‖+ ‖v′′n‖+ ‖wn‖+ ‖en‖) → 0

as n →∞. This completes the proof. ¤

Remark 4.5. If un = 0 or vn = 0 or wn = 0 or en = 0 (n ≥ 0) in Algorithm
4.3, then the conclusions of Theorem 4.4 also hold. The results of Theorems
3.2 and 4.4 improve and generalize the corresponding results of [3, 6, 9, 12].
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