STABILITY OF PERTURBED ITERATIVE ALGORITHM FOR SOLVING A SYSTEM OF GENERALIZED NONLINEAR EQUATIONS

Heng-you Lan
Department of Mathematics, Sichuan University of Science \& Engineering, Zigong, Sichuan 643000, P. R. China e-mail: hengyoulan@163.com

Abstract

In this paper, we introduce and study a new system of strongly nonlinear quasivariational inclusions involving generalized m-accretive mappings in Banach spaces. By using the resolvent operator technique for generalized m-accretive mapping due to Huang and Fang, we prove the existence theorem of the solution for this system of variational inclusions in Banach spaces, and discuss the convergence and stability of a new perturbed iterative algorithm for solving this system of nonlinear variational inclusions in Banach spaces. Our results improve and generalize the corresponding results of $[3,6,9,12]$.

1. Introduction

In this paper, we introduce and study the following new system of strongly nonlinear quasi-variational inclusion involving generalized m-accretive mappings:

Find $(x, y) \in X_{1} \times X_{2}$ such that

$$
\begin{equation*}
0 \in N_{1}(x, y)+M_{1}(x), \quad 0 \in N_{2}(x, y)+M_{2}(y) \tag{1.1}
\end{equation*}
$$

where X_{1} and X_{2} are two real Banach spaces, $N_{1}: X_{1} \times X_{2} \rightarrow X_{1}$ and N_{2} : $X_{1} \times X_{2} \rightarrow X_{2}$ are single-valued mappings and for $i=1,2, M_{i}: X_{i} \rightarrow 2^{X_{i}}$ is a generalized m-accretive mapping, $2^{X_{i}}$ denotes the family of all the nonempty subsets of X_{i}.

[^0]We remark that for a suitable choice of the mappings $N_{1}, N_{2}, \eta_{1}, \eta_{2}, M_{1}, M_{2}$ and the spaces X_{1}, X_{2}, a number of known new classes variational inequalities, variational inclusions and corresponding optimization problems can be obtained as special cases of nonlinear quasi-variational inclusion problem (1.1). Moreover, these classes variational inclusions provide us a general and unified framework for studying a wide range of interesting and important problems arising in mathematics, physics, engineering sciences and economics finance, etc. See for more details $[1,3,4,6,9,14,15,17]$ and the references therein.

In 2001, Huang and Fang [7] first introduced the concept of a generalized m accretive mapping, which is a generalization of an m-accretive mapping, and gave the definition and properties of the resolvent operator for the generalized m-accretive mapping in Banach space. Further, Bi et al. [2], Huang [5] and Huang et al. [8] introduced and studied some new class of nonlinear variational inclusions involving generalized m-accretive mappings in Banach spaces, they also obtained some new corresponding existence and convergence results (see, for example, $[2,5,8]$, respectively. Moreover, Huang, Lan, Zeng, Wang et al. discussed stability of the iterative sequence generated by the algorithm for solving what they studied (see $[6,9,16,17]$).

On the other hand, Lan et al. [10, 11] introduces and studied a new system of generalized nonlinear variational inclusions involving generalized m accretive mappings. By using the resolvent operator technique for generalized m-accretive mapping due to Huang and Fang [7], we also prove the existence theorems of the solution and convergence theorems of the generalized Mann iterative procedures with mixed errors for this system of variational inclusions in q-uniformly smooth Banach spaces.

Motivated and inspired by the above works, the main purpose of this paper is to introduce and study the new system of strongly nonlinear quasivariational inclusions (1.1) involving generalized m-accretive mapping in Banach spaces. By using the resolvent operator technique for generalized m accretive mapping due to Huang and Fang, we prove the existence theorem of the solution for this kind of variational inclusions in Banach spaces, and discuss the convergence and stability of a new perturbed iterative algorithm for solving this system of nonlinear variational inclusions in Banach spaces. Our results improve and generalize the corresponding results of $[3,6,9,12]$.

2. Preliminaries

Throughout this paper, let X be a real Banach space with dual space X^{*}, $\langle\cdot, \cdot\rangle$ the dual pair between X and X^{*}, and 2^{X} denote the family of all the nonempty subsets of X. The generalized duality mapping $J_{q}: X \rightarrow 2^{X^{*}}$ is
defined by

$$
J_{q}(x)=\left\{x^{*} \in X^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{q},\left\|x^{*}\right\|=\|x\|^{q-1}\right\}, \quad \forall x \in X
$$

where $q>1$ is a constant. In particular, J_{2} is the usual normalized duality mapping. It is well known that, in general, $J_{q}(x)=\|x\|^{q-2} J_{2}(x)$ for all $x \neq 0$ and J_{q} is single-valued if X^{*} is strictly convex (see, for example, [13]). If $X=H$ is a Hilbert space, then J_{2} becomes the identity mapping of H. In what follows we shall denote the single-valued generalized duality mapping by j_{q}.

Definition 2.1. The mapping $N: X \times X \rightarrow X$ is said to be
(1) σ-strongly accretive with respect to the first argument, if for any $x, y \in$ X, there exists $j_{q}(x-y) \in J_{q}(x-y)$ such that

$$
\left\langle N(x, \cdot)-N(y, \cdot), j_{q}(x-y)\right\rangle \geq \sigma\|x-y\|^{q}
$$

where $\sigma>0$ is a constant;
(2) ϵ-Lipschitz continuous with respect to the first argument, if there exists a constant $\epsilon>0$ such that

$$
\|N(x, \cdot)-N(y, \cdot)\| \leq \epsilon\|x-y\|, \quad \forall x, y \in X
$$

Similarly, we can define the strongly accretivity and Lipschitz continuity in the second argument of $N(\cdot, \cdot)$, respectively.

Definition 2.2. ([7]) Let $\eta: X \times X \rightarrow X^{*}$ be a single-valued mapping and $A: X \rightarrow 2^{X}$ be a multi-valued mapping. Then A is said to be
(1) η-accretive if

$$
\langle u-v, \eta(x, y)\rangle \geq 0, \quad \forall x, y \in X, u \in A(x), v \in A(y)
$$

(2) generalized m-accretive if A is η-accretive and $(I+\lambda A)(X)=X$ for all (equivalently, for some) $\lambda>0$.

Remark 2.3. Huang and Fang gave one example of the generalized m-accretive mapping in [7]. If $X=X^{*}=H$ is a Hilbert space, then (1) and (2) of Definition 2.2 reduce to the definition of η-monotonicity and maximal η monotonicity respectively; if X is uniformly smooth and $\eta(x, y)=J_{2}(x-y)$, then (1) and (2) of Definition 2.2 reduce to the definitions of accretivity and m-accretivity in uniformly smooth Banach spaces, respectively (see [7, 8]).

Definition 2.4. The mapping $\eta: X \times X \rightarrow X^{*}$ is said to be
(1) δ-strongly monotone, if there exists a constant $\delta>0$ such that

$$
\langle x-y, \eta(x, y)\rangle \geq \delta\|x-y\|^{2}, \quad \forall x, y \in X
$$

(2) τ-Lipschitz continuous, if there exists a constant $\tau>0$ such that

$$
\|\eta(x, y)\| \leq \tau\|x-y\|, \quad \forall x, y \in X
$$

The modules of smoothness of X is the function $\rho_{X}:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\rho_{X}(t)=\sup \left\{\frac{1}{2}\|x+y\|+\|x-y\|-1:\|x\| \leq 1,\|y\| \leq t\right\}
$$

A Banach space X is called uniformly smooth if $\lim _{t \rightarrow 0} \frac{\rho_{X}(t)}{t}=0$ and X is called q-uniformly smooth if there exists a constant $c>0$ such that $\rho_{X} \leq c t^{q}$, where $q>1$ is a real number.

It is well known that Hilbert spaces, L_{p} (or l_{p}) spaces, $1<p<\infty$, and the Sobolev spaces $W^{m, p}, 1<p<\infty$, are all q-uniformly smooth. In the study of characteristic inequalities in q-uniformly smooth Banach spaces, Xu [13] proved the following result:
Lemma 2.5. Let $q>1$ be a given real number and X be a real uniformly smooth Banach space. Then X is q-uniformly smooth if and only if there exists a constant $c_{q}>0$ such that for all $x, y \in X, j_{q}(x) \in J_{q}(x)$, there holds the following inequality

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y, j_{q}(x)\right\rangle+c_{q}\|y\|^{q}
$$

In [7], Huang and Fang show that for any $\rho>0$, inverse mapping $(I+\rho A)^{-1}$ is single-valued, if $\eta: X \times X \rightarrow X^{*}$ is strict monotone and $A: X \rightarrow 2^{X}$ is a generalized m-accretive mapping, where I is the identity mapping. Based on this fact, Huang and Fang [7] gave the following definition:

Definition 2.6. Let $A: X \rightarrow 2^{X}$ be a generalized m-accretive mapping. Then the resolvent operator J_{A}^{ρ} for A is defined as follows:

$$
J_{A}^{\rho}(z)=(I+\rho A)^{-1}(z), \quad \forall z \in X
$$

where $\rho>0$ is a constant and $\eta: X \times X \rightarrow X^{*}$ is a strictly monotone mapping.
Lemma 2.7 ([7, 8]). Let $\eta: X \times X \rightarrow X^{*}$ be τ-Lipschitz continuous and δ-strongly monotone, and $A: X \rightarrow 2^{X}$ be a generalized m-accretive mapping. Then for any $\rho>0$, the resolvent operator J_{A}^{ρ} for A is $\frac{\tau}{\delta}$-Lipschitz continuous, i.e.,

$$
\left\|J_{A}^{\rho}(x)-J_{A}^{\rho}(y)\right\| \leq \frac{\tau}{\delta}\|x-y\|, \quad \forall x, y \in X
$$

3. Existence Theorem

In this section, we shall give the existence theorems of problem (1.1). The solvability of the problem (1.1) depends on the equivalence between (1.1) and the problem of finding the fixed point of the associated generalized resolvent operator. It follows from Definition 2.6 that we can obtain the following conclusion.

Lemma 3.1. Let $M_{i}: X_{i} \rightarrow 2^{X_{i}}$ be generalized m-accretive and $N_{i}: X_{1} \times$ $X_{2} \rightarrow X_{i}$ be any nonlinear mapping for $i=1,2$. Then the following statements are mutually equivalent:
(i) An element $(x, y) \in X_{1} \times X_{2}$ is a solution to the problem (1.1).
(ii) There is an $(x, y) \in X_{1} \times X_{2}$ such that

$$
\begin{aligned}
& x=J_{M_{1}}^{\rho}\left[x-\rho N_{1}(x, y)\right], \\
& y=J_{M_{2}}^{1}\left[y-\lambda N_{2}(x, y)\right],
\end{aligned}
$$

where $J_{M_{1}}^{\rho}=\left(I+\rho M_{1}\right)^{-1}, J_{M_{2}}^{\lambda}=\left(I+\lambda M_{2}\right)^{-1}$, and $\rho>0$ and $\lambda>0$ are two constants.
(iii) For any given $\rho>0$ and $\lambda>0$, the map $F_{\rho, \lambda}: X_{1} \times X_{2} \rightarrow X_{1} \times X_{2}$ defined by

$$
F_{\rho, \lambda}(u, v)=\left(P_{\rho}(u, v), Q_{\lambda}(u, v)\right), \quad \forall(u, v) \in X_{1} \times X_{2}
$$

has a fixed point $(x, y) \in X_{1} \times X_{2}$, where maps $P_{\rho}: X_{1} \times X_{2} \rightarrow X_{1}$ and $Q_{\lambda}: X_{1} \times X_{2} \rightarrow X_{2}$ defined by

$$
P_{\rho}(u, v)=J_{M_{1}}^{\rho}\left[u-\rho N_{1}(u, v)\right], \quad Q_{\lambda}(u, v)=J_{M_{2}}^{\lambda}\left[v-\lambda N_{2}(u, v)\right] .
$$

Theorem 3.2. Let X_{1} be a q_{1}-uniformly smooth Banach space with $q_{1}>1$, X_{2} be a q_{2}-uniformly smooth Banach space with $q_{2}>1$ and $\eta_{1}: X_{1} \times X_{1} \rightarrow X_{1}^{*}$ be τ_{1}-Lipschitz continuous and δ_{1}-strongly monotone, $\eta_{2}: X_{2} \times X_{2} \rightarrow X_{2}^{*}$ be τ_{2}-Lipschitz continuous and δ_{2}-strongly monotone,. Suppose that and M_{i} : $X_{i} \rightarrow 2^{X_{i}}$ be generalized m-accretive for $i=1,2, N_{1}: X_{1} \times X_{1} \rightarrow X_{1}$ is σ_{1}-strongly accretive and γ_{1}-Lipschitz continuous in the first argument and $\varsigma_{2}-$ Lipschitz continuous in the second argument, $N_{2}: X_{1} \times X_{1} \rightarrow X_{2}$ is σ_{2}-strongly accretive and γ_{2}-Lipschitz continuous in the second argument and ς_{1}-Lipschitz continuous in the first argument, respectively. If

$$
\left\{\begin{array}{l}
\tau_{1} \delta_{2} \sqrt[q_{1}]{1-q_{1} \rho \sigma_{1}+c_{q_{1}} \rho^{q_{1}} \gamma_{1}^{q_{1}}}+\varsigma_{1} \delta_{1} \tau_{2}<\delta_{1} \delta_{2} \tag{3.1}\\
\delta_{1} \tau_{2} \sqrt[q_{2}]{1-q_{2} \lambda \sigma_{2}+c_{q_{2}} \lambda^{q_{2}} \gamma_{2}^{q_{2}}}+\tau_{1} \varsigma_{2} \delta_{2}<\delta_{1} \delta_{2}
\end{array}\right.
$$

where $c_{q_{1}}, c_{q_{2}}$ are the constants as in Lemma 2.5, then the problem (1.1) has a unique solution $\left(x^{*}, y^{*}\right)$.

Proof. For any given $\rho>0$ and $\lambda>0$, define $P_{\rho}: X_{1} \times X_{2} \rightarrow X_{1}$ and $Q_{\lambda}: X_{1} \times X_{2} \rightarrow X_{2}$ by

$$
\begin{equation*}
P_{\rho}(u, v)=J_{M_{1}}^{\rho}\left[u-\rho N_{1}(u, v)\right], \quad Q_{\lambda}(u, v)=J_{M_{2}}^{\lambda}\left[v-\lambda N_{2}(u, v)\right] \tag{3.2}
\end{equation*}
$$

for all $(u, v) \in X_{1} \times X_{2}$. Now define $\|\cdot\|_{*}$ on $X_{1} \times X_{2}$ by

$$
\|(u, v)\|_{*}=\|u\|+\|v\|, \quad \forall(u, v) \in X_{1} \times X_{2} .
$$

It is easy to see that $\left(X_{1} \times X_{2},\|\cdot\|_{*}\right)$ is a Banach space. By (3.2), for any given $\rho>0$ and $\lambda>0$, define $F_{\rho, \lambda}: X_{1} \times X_{2} \rightarrow X_{1} \times X_{2}$ by

$$
F_{\rho, \lambda}(u, v)=\left(P_{\rho}(u, v), Q_{\lambda}(u, v)\right), \quad \forall(u, v) \in X_{1} \times X_{2} .
$$

In the sequel, we prove that $F_{\rho, \lambda}$ is a contractive mapping. In fact, for any $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in X_{1} \times X_{2}$, it follows from (3.2) and Lemma 2.7 that

$$
\begin{align*}
& \left\|P_{\rho}\left(u_{1}, v_{1}\right)-P_{\rho}\left(u_{2}, v_{2}\right)\right\| \\
& \leq\left\|J_{M_{1}}^{\rho}\left[u_{1}-\rho N_{1}\left(u_{1}, v_{1}\right)\right]-J_{M_{1}}^{\rho}\left[u_{2}-\rho N_{1}\left(u_{2}, v_{2}\right)\right]\right\| \\
& \leq \frac{\tau_{1}}{\delta_{1}}\left\|u_{1}-u_{2}-\rho\left[N_{1}\left(u_{1}, v_{1}\right)-N_{1}\left(u_{2}, v_{1}\right)\right]\right\| \\
& \quad+\frac{\tau_{1}}{\delta_{1}}\left\|N_{1}\left(u_{2}, v_{1}\right)-N_{1}\left(u_{2}, v_{2}\right)\right\| \tag{3.3}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|Q_{\lambda}\left(u_{1}, v_{1}\right)-Q_{\lambda}\left(u_{2}, v_{2}\right)\right\| \\
& \leq\left\|J_{M_{2}}^{\lambda}\left[v_{1}-\lambda N_{2}\left(u_{1}, v_{1}\right)\right]-J_{M_{2}}^{\lambda}\left[v_{2}-\lambda N_{2}\left(u_{2}, v_{2}\right)\right]\right\| \\
& \leq \frac{\tau_{2}}{\delta_{2}}\left\|v_{1}-v_{2}-\lambda\left[N_{2}\left(u_{1}, v_{1}\right)-N_{2}\left(u_{1}, v_{2}\right)\right]\right\| \\
& \quad+\frac{\tau_{2}}{\delta_{2}}\left\|N_{2}\left(u_{1}, v_{2}\right)-N_{2}\left(u_{2}, v_{2}\right)\right\| \tag{3.4}
\end{align*}
$$

By assumptions and Lemma 2.5, we have

$$
\begin{align*}
& \left\|u_{1}-u_{2}-\rho\left[N_{1}\left(u_{1}, v_{1}\right)-N_{1}\left(u_{2}, v_{1}\right)\right]\right\|^{q_{1}} \\
& \leq\left\|u_{1}-u_{2}\right\|^{q_{1}}-q_{1} \rho\left\langle N_{1}\left(u_{1}, v_{1}\right)-N_{1}\left(u_{2}, v_{1}\right), J_{q_{1}}\left(u_{1}-u_{2}\right)\right\rangle \\
& \quad+\rho^{q_{1}} c_{q_{1}}\left\|N_{1}\left(u_{1}, v_{1}\right)-N_{1}\left(u_{2}, v_{1}\right)\right\|^{q_{1}} \\
& \leq\left(1-q_{1} \rho \sigma_{1}+c_{q_{1}} \rho^{q_{1}} \gamma_{1}^{q_{1}}\right)\left\|u_{1}-u_{2}\right\|^{q_{1}}, \tag{3.5}\\
& \quad\left\|v_{1}-v_{2}-\lambda\left[N_{2}\left(u_{1}, v_{1}\right)-N_{2}\left(u_{1}, v_{2}\right)\right]\right\|^{q_{2}} \\
& \quad \leq\left(1-q_{2} \lambda \sigma_{2}+c_{q_{2}} \lambda^{q_{2}} \gamma_{2}^{q_{2}}\right)\left\|v_{1}-v_{2}\right\|^{q_{2}} \tag{3.6}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|N_{1}\left(u_{2}, v_{1}\right)-N_{1}\left(u_{2}, v_{2}\right)\right\| \leq \varsigma_{2}\left\|v_{1}-v_{2}\right\|, \tag{3.7}\\
& \left\|N_{2}\left(u_{1}, v_{2}\right)-N_{2}\left(u_{2}, v_{2}\right)\right\| \leq \varsigma_{1}\left\|u_{1}-u_{2}\right\| . \tag{3.8}
\end{align*}
$$

From (3.3)-(3.8), we obtain
(3.9) implies that

$$
\begin{align*}
& \left\|P_{\rho}\left(u_{1}, v_{1}\right)-P_{\rho}\left(u_{2}, v_{2}\right)\right\|+\left\|Q_{\lambda}\left(u_{1}, v_{1}\right)-Q_{\lambda}\left(u_{2}, v_{2}\right)\right\| \\
& \leq k\left(\left\|u_{1}-u_{2}\right\|+\left\|v_{1}-v_{2}\right\|\right) \tag{3.10}
\end{align*}
$$

where

$$
\begin{array}{r}
k=\quad \max \left\{\frac{\tau_{1}}{\delta_{1}} \sqrt[q_{1}]{1-q_{1} \rho \sigma_{1}+c_{q_{1}} \rho^{q_{1}} \gamma_{1}^{q_{1}}}+\frac{\varsigma_{1} \tau_{2}}{\delta_{2}}\right. \\
\left.\frac{\varsigma_{2} \tau_{1}}{\delta_{1}}+\frac{\tau_{2}}{\delta_{2}} \sqrt[q_{2}]{1-q_{2} \lambda \sigma_{2}+c_{q_{2}} \lambda^{q_{2}} \gamma_{2}^{q_{2}}}\right\}
\end{array}
$$

By (3.1), we know that $0 \leq k<1$. It follows from (3.10) that

$$
\left\|F_{\rho, \lambda}\left(u_{1}, v_{1}\right)-F_{\rho, \lambda}\left(u_{2}, v_{2}\right)\right\|_{*} \leq k\left\|\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)\right\|_{*} .
$$

This proves that $F_{\rho, \lambda}: X_{1} \times X_{2} \times X_{1} \times X_{2}$ is a contraction mapping. Hence, there exists a unique $\left(x^{*}, y^{*}\right) \in X_{1} \times X_{2}$ such that

$$
F_{\rho, \lambda}\left(x^{*}, y^{*}\right)=\left(x^{*}, y^{*}\right)
$$

that is,

$$
x^{*}=J_{M_{1}}^{\rho}\left[x^{*}-\rho N_{1}\left(x^{*}, y^{*}\right)\right] \quad \text { and } \quad y^{*}=J_{M_{2}}^{\lambda}\left[y^{*}-\lambda N_{2}\left(x^{*}, y^{*}\right)\right]
$$

By Lemma 3.1, $\left(x^{*}, y^{*}\right)$ is the unique solution of problem (1.1). This completes the proof.

Remark 3.3. If X_{1} and X_{2} are 2-uniformly smooth Banach space and there exists $\lambda=\rho>0$ such that

$$
\left\{\begin{array}{l}
h_{1}=\frac{\delta_{1} \delta_{2}-\varsigma_{1} \delta_{1} \tau_{2}}{\tau_{1} \delta_{2}}<1, \quad h_{2}=\frac{\delta_{1} \delta_{2}-\tau_{1} \varsigma_{2} \delta_{2}}{\delta_{1} \tau_{2}}<1 \\
\left|\rho-\frac{\sigma_{1}}{c_{2} \gamma_{1}^{2}}\right|<\frac{\sqrt{\sigma_{1}^{2}-\left(1-h_{1}^{2}\right) c_{2} \gamma_{1}^{2}}}{c_{2}^{2} \gamma_{1}^{2}} \\
\left|\rho-\frac{\sigma_{2}}{c_{2} \gamma_{2}^{2}}\right|<\frac{\sqrt{\sigma_{2}^{2}-\left(1-h_{2}^{2}\right) c_{2} \gamma_{2}^{2}}}{c_{2}^{2} \gamma_{2}^{2}} \\
\sigma_{1}^{2}>\left(1-h_{1}^{2}\right) c_{2} \gamma_{1}^{2}, \quad \sigma_{2}^{2}>\left(1-h_{2}^{2}\right) c_{2} \gamma_{2}^{2}
\end{array}\right.
$$

then (3.1) holds. We note that Hilbert space and L_{p} (or $\left.l_{p}\right)(2 \leq p<\infty)$ spaces are 2-uniformly Banach spaces.

4. Perturbed Algorithm and Stability

In this section, by using the following definition and lemma, we construct a new perturbed iterative algorithm with mixed errors for solving problem (1.1) and prove the convergence and stability of the iterative sequence generated by the algorithm.

Definition 4.1. Let S be a selfmap of $X, x_{0} \in X$, and let $x_{n+1}=h\left(S, x_{n}\right)$ define an iteration procedure which yields a sequence of points $\left\{x_{n}\right\}_{n=0}^{\infty}$ in X. Suppose that $\{x \in X: S x=x\} \neq \emptyset$ and $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to a fixed point x^{*} of S. Let $\left\{u_{n}\right\} \subset X$ and let $\epsilon_{n}=\left\|u_{n+1}-h\left(S, u_{n}\right)\right\|$. If $\lim \epsilon_{n}=0$ implies that $u_{n} \rightarrow x^{*}$, then the iteration procedure defined by $x_{n+1}=h\left(S, x_{n}\right)$ is said to be S-stable or stable with respect to S.

Lemma 4.2. Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ be three nonnegative real sequences satisfying the following condition: there exists a natural number n_{0} such that

$$
a_{n+1} \leq\left(1-t_{n}\right) a_{n}+b_{n} t_{n}+c_{n}, \quad \forall n \geq n_{0}
$$

where $t_{n} \in[0,1], \sum_{n=0}^{\infty} t_{n}=\infty, \lim _{n \rightarrow \infty} b_{n}=0, \sum_{n=0}^{\infty} c_{n}<\infty$. Then $a_{n} \rightarrow 0$ $(n \rightarrow \infty)$.

Algorithm 4.3. Let $N_{i}: X_{1} \times X_{2} \rightarrow X_{i}$ be single-valued mappings and $M_{i}: X_{i} \rightarrow 2^{X_{i}}$ be a generalized m-accretive mapping for all $i=1,2$. Then for a given $\left(x_{0}, y_{0}\right) \in X_{1} \times X_{2}$, the perturbed iterative sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is defined by

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} J_{M_{1}}^{\rho}\left[x_{n}-\rho N_{1}\left(x_{n}, y_{n}\right)\right]+\alpha_{n} u_{n}+w_{n} \tag{4.1}\\
y_{n+1}=\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} J_{M_{2}}^{\lambda}\left[y_{n}-\lambda N_{2}\left(x_{n}, y_{n}\right)\right]+\alpha_{n} v_{n}+e_{n}
\end{array}\right.
$$

where $n \geq 0,\left\{\alpha_{n}\right\}$ is a sequence in $[0,1],\left\{u_{n}\right\},\left\{w_{n}\right\} \subset X_{1}$ and $\left\{v_{n}\right\},\left\{e_{n}\right\} \subset$ X_{2} are errors to take into account a possible inexact computation of the resolvent operator point satisfying the following conditions:
(i) $u_{n}=u_{n}^{\prime}+u_{n}^{\prime \prime}, \quad v_{n}=v_{n}^{\prime}+v_{n}^{\prime \prime}$;
(ii) $\lim _{n \rightarrow \infty}\left\|u_{n}^{\prime}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|v_{n}^{\prime}\right\|=0$;
(iii) $\sum_{n=0}^{\infty}\left\|u_{n}^{\prime \prime}\right\|<\infty, \sum_{n=0}^{\infty}\left\|w_{n}\right\|<\infty, \sum_{n=0}^{\infty}\left\|v_{n}^{\prime \prime}\right\|<\infty, \sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty$.

Let $\left\{\left(z_{n}, t_{n}\right)\right\}$ be any sequence in $X_{1} \times X_{2}$ and define $\left\{\left(\epsilon_{n}, \varepsilon_{n}\right)\right\}$ by
$\left\{\begin{array}{l}\epsilon_{n}=\left\|z_{n+1}-\left\{\left(1-\alpha_{n}\right) z_{n}+\alpha_{n} J_{M_{1}}^{\rho}\left[z_{n}-\rho N_{1}\left(z_{n}, t_{n}\right)\right]+\alpha_{n} u_{n}+w_{n}\right\}\right\|, \\ \varepsilon_{n}=\left\|t_{n+1}-\left\{\left(1-\alpha_{n}\right) t_{n}+\alpha_{n} J_{M_{2}}^{\lambda}\left[t_{n}-\lambda N_{2}\left(z_{n}, t_{n}\right)\right]+\alpha_{n} v_{n}+e_{n}\right\}\right\| .\end{array}\right.$
Theorem 4.4. Suppose that $X_{1}, X_{2}, \eta_{1}, \eta_{2}, N_{1}, N_{2}, M_{1}$ and M_{2} are the same as in Theorem 3.2. If $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and condition (3.1) holds, then the perturbed iterative sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ defined by (4.1) converges strongly to the unique solution of problem (1.1). Moreover, if there exists $a \in\left(0, \alpha_{n}\right]$ for all $n \geq 0$, then $\lim _{n \rightarrow \infty}\left(z_{n}, t_{n}\right)=\left(x^{*}, y^{*}\right)$ if and only if $\lim _{n \rightarrow \infty}\left(\epsilon_{n}, \varepsilon_{n}\right)=(0,0)$, where $\left(\epsilon_{n}, \varepsilon_{n}\right)$ is defined by (4.2).

Proof. From Theorem 3.2, we know that problem (1.1) has a unique solution $\left(x^{*}, y^{*}\right) \in X_{1} \times X_{2}$. It follows from (4.1) and the proof of (3.9) in Theorem
3.2 that

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left\{\frac{\tau_{1}}{\delta_{1}} \sqrt[q_{1}]{1-q_{1} \rho \sigma_{1}+c_{q_{1}} \rho^{q_{1}} \gamma_{1}^{q_{1}}}\left\|x_{n}-x^{*}\right\|\right. \\
& \left.\quad+\frac{\varsigma_{2} \tau_{1}}{\delta_{1}}\left\|y_{n}-y^{*}\right\|\right\}+\alpha_{n}\left\|u_{n}^{\prime}\right\|+\left(\left\|u_{n}^{\prime \prime}\right\|+\left\|w_{n}\right\|\right), \tag{4.3}\\
& \left\|y_{n+1}-y^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|y_{n}-y^{*}\right\|+\alpha_{n}\left\{\frac{\tau_{2}}{\delta_{2}} \sqrt[q_{2}]{1-q_{2} \lambda \sigma_{2}+c_{q_{2}} \lambda q^{q_{2}} \gamma_{2}^{q_{2}}}\left\|y_{n}-y^{*}\right\|\right. \\
& \left.\quad+\frac{\varsigma_{1} \tau_{2}}{\delta_{2}}\left\|x_{n}-x^{*}\right\|\right\}+\alpha_{n}\left\|v_{n}^{\prime}\right\|+\left(\left\|v_{n}^{\prime \prime}\right\|+\left\|e_{n}\right\|\right), \tag{4.4}
\end{align*}
$$

It follows from (4.3) and (4.4) that

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\|+\left\|y_{n+1}-y^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left(\left\|x_{n}-x^{*}\right\|+\left\|y_{n}-y^{*}\right\|\right) \\
& +\alpha_{n}\left\{\frac{\tau_{1}}{\delta_{1}} \sqrt[q_{1}]{1-q_{1} \rho \sigma_{1}+c_{q_{1}} \rho^{q_{1}} \gamma_{1}^{q_{1}}}+\frac{\varsigma_{1} \tau_{2}}{\delta_{2}}\right\}\left\|x_{n}-x^{*}\right\| \\
& +\alpha_{n}\left\{\frac{\varsigma_{2} \tau_{1}}{\delta_{1}}+\frac{\tau_{2}}{\delta_{2}} \sqrt[q_{2}]{1-q_{2} \lambda \sigma_{2}+c_{q_{2}} \lambda^{q_{2}} \gamma_{2}^{q_{2}}}\right\}\left\|y_{n}-y^{*}\right\| \\
& +\alpha_{n}\left(\left\|u_{n}^{\prime}\right\|+\left\|v_{n}^{\prime}\right\|\right)+\left(\left\|u_{n}^{\prime \prime}\right\|+\left\|w_{n}\right\|+\left\|v_{n}^{\prime \prime}\right\|+\left\|e_{n}\right\|\right) \\
& \leq\left[1-\alpha_{n}(1-k)\right]\left(\left\|x_{n}-x^{*}\right\|+\left\|y_{n}-y^{*}\right\|\right) \\
& +\alpha_{n}(1-k) \cdot \frac{1}{1-k}\left(\left\|u_{n}^{\prime}\right\|+\left\|v_{n}^{\prime}\right\|\right) \\
& +\left(\left\|u_{n}^{\prime \prime}\right\|+\left\|w_{n}\right\|+\left\|v_{n}^{\prime \prime}\right\|+\left\|e_{n}\right\|\right), \tag{4.5}
\end{align*}
$$

where k is the same as in (3.10). Since $\sum_{n=0}^{\infty} \alpha_{n}=\infty$, it follows from Lemma 4.2 , (3.1) and (4.5) that $\left\|x_{n}-x^{*}\right\|+\left\|y_{n}-y^{*}\right\| \rightarrow 0(n \rightarrow \infty)$. Hence, we know that the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges to the unique solution $\left(x^{*}, y^{*}\right)$ of the problem (1.1).

Now we prove the second conclusion. By (4.2), we know

$$
\begin{align*}
\left\|z_{n+1}-x^{*}\right\| \leq & \|\left(1-\alpha_{n}\right) z_{n} \tag{4.6}\\
& \left.\quad+\alpha_{n} J_{M_{1}}^{\rho} z_{n}-\rho N_{1}\left(z_{n}, t_{n}\right)\right]+\alpha_{n} u_{n}+w_{n}-x^{*} \|+\epsilon_{n}, \\
\left\|t_{n+1}-y^{*}\right\| \leq & \|\left(1-\alpha_{n}\right) t_{n} \\
& +\alpha_{n} J_{M_{2}}^{\lambda}\left[t_{n}-\lambda N_{2}\left(z_{n}, t_{n}\right)\right]+\alpha_{n} v_{n}+e_{n}-y^{*} \|+\varepsilon_{n} .
\end{align*}
$$

As the proof of inequality (4.5), we have

$$
\begin{align*}
& \left\|\left(1-\alpha_{n}\right) z_{n}+\alpha_{n} J_{M_{1}}^{\rho}\left[z_{n}-\rho N_{1}\left(z_{n}, t_{n}\right)\right]+\alpha_{n} u_{n}+w_{n}-x^{*}\right\| \\
& \quad+\left\|\left(1-\alpha_{n}\right) t_{n}+\alpha_{n} J_{M_{2}}^{\lambda}\left[t_{n}-\lambda N_{2}\left(z_{n}, t_{n}\right)\right]+\alpha_{n} v_{n}+e_{n}-y^{*}\right\| \\
& \leq\left[1-\alpha_{n}(1-k)\right]\left(\left\|z_{n}-x^{*}\right\|+\left\|t_{n}-y^{*}\right\|\right) \\
& \quad+\alpha_{n}(1-k) \cdot \frac{1}{1-k}\left(\left\|u_{n}^{\prime}\right\|+\left\|v_{n}^{\prime}\right\|\right) \\
& \quad+\left(\left\|u_{n}^{\prime \prime}\right\|+\left\|w_{n}\right\|+\left\|v_{n}^{\prime \prime}\right\|+\left\|e_{n}\right\|\right) . \tag{4.7}
\end{align*}
$$

Since $0<a \leq \alpha_{n}$, it follows from (4.6) and (4.7) that

$$
\begin{aligned}
& \left\|z_{n+1}-x^{*}\right\|+\left\|t_{n+1}-y^{*}\right\| \\
& \leq\left[1-\alpha_{n}(1-k)\right]\left(\left\|z_{n}-x^{*}\right\|+\left\|t_{n}-y^{*}\right\|\right) \\
& +\alpha_{n}(1-k) \cdot \frac{1}{1-k}\left(\left\|u_{n}^{\prime}\right\|+\left\|v_{n}^{\prime}\right\|+\frac{\epsilon_{n}+\varepsilon_{n}}{a}\right) \\
& \quad+\left(\left\|u_{n}^{\prime \prime}\right\|+\left\|v_{n}^{\prime \prime}\right\|+\left\|w_{n}\right\|+\left\|e_{n}\right\|\right)
\end{aligned}
$$

Suppose that $\lim \left(\epsilon_{n}, \varepsilon_{n}\right)=(0,0)$. Then from $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and Lemma 4.2, we have $\lim \left(z_{n}, t_{n}\right)=\left(x^{*}, y^{*}\right)$.

Conversely, if $\lim \left(z_{n}, t_{n}\right)=\left(x^{*}, y^{*}\right)$, then we get

$$
\begin{aligned}
\epsilon_{n}= & \left\|z_{n+1}-\left\{\left(1-\alpha_{n}\right) z_{n}+\alpha_{n} J_{M_{1}}^{\rho}\left[z_{n}-\rho N_{1}\left(z_{n}, t_{n}\right)\right]+\alpha_{n} u_{n}+w_{n}\right\}\right\| \\
\leq & \left\|z_{n+1}-x^{*}\right\| \\
& +\left\|\left(1-\alpha_{n}\right) z_{n}+\alpha_{n} J_{M_{1}}^{\rho}\left[z_{n}-\rho N_{1}\left(z_{n}, t_{n}\right)\right]+\alpha_{n} u_{n}+w_{n}-x^{*}\right\|, \\
\varepsilon_{n}= & \left\|t_{n+1}-\left\{\left(1-\alpha_{n}\right) t_{n}+\alpha_{n} J_{M_{2}}^{\lambda}\left[t_{n}-\lambda N_{2}\left(z_{n}, t_{n}\right)\right]+\alpha_{n} v_{n}+e_{n}\right\}\right\| \\
\leq & \left\|t_{n+1}-y^{*}\right\| \\
& +\left\|\left(1-\alpha_{n}\right) t_{n}+\alpha_{n} J_{M_{2}}^{\lambda}\left[t_{n}-\lambda N_{2}\left(z_{n}, t_{n}\right)\right]+\alpha_{n} v_{n}+e_{n}-y^{*}\right\|,
\end{aligned}
$$

and

$$
\begin{aligned}
\epsilon_{n}+\varepsilon_{n} \quad \leq & \left\|z_{n+1}-x^{*}\right\|+\left\|t_{n+1}-y^{*}\right\| \\
& +\left[1-\alpha_{n}(1-k)\right]\left(\left\|z_{n}-x^{*}\right\|+\left\|t_{n}-y^{*}\right\|\right) \\
& +\alpha_{n}(1-k) \cdot \frac{1}{1-k}\left(\left\|u_{n}^{\prime}\right\|+\left\|v_{n}^{\prime}\right\|\right) \\
& +\left(\left\|u_{n}^{\prime \prime}\right\|+\left\|v_{n}^{\prime \prime}\right\|+\left\|w_{n}\right\|+\left\|e_{n}\right\|\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. This completes the proof.
Remark 4.5. If $u_{n}=0$ or $v_{n}=0$ or $w_{n}=0$ or $e_{n}=0(n \geq 0)$ in Algorithm 4.3 , then the conclusions of Theorem 4.4 also hold. The results of Theorems 3.2 and 4.4 improve and generalize the corresponding results of $[3,6,9,12]$.

References

[1] C. Baiocchi and A. Caopelo, Variational and Quasivariational Inequalities, Application to Free Boundary Problems, Wiley, New York, 1984.
[2] Z. S. Bi, Z. Han and Y. P. Fang, Sensitivity analysis for nonlinear variational inclusions involving generalized m-accretive mappings, J. Sichuan Univ. 40(2) (2003), 240-243.
[3] X. P. Ding, Existence and algorithm of solutions for generalized mixed implicit quasivariational inequalities, Appl. Math. Comput. 113 (2000), 67-80.
[4] F. Giannessi and A. Maugeri, Variational Inequalities and Network Equilibrium Problems, Plenum, New York, 1995.
[5] N. J. Huang, Nonlinear implicit quasi-variational inclusions involving generalized maccretive mappings, Arch. Inequal. Appl. 2(4) (2004), 413-425.
[6] N. J. Huang, M. R. Bai, Y. J. Cho and S. M. Kang, Generalized nonlinear mixed quasivariational inequalities, Comput. Math. Appl. 40 (2000), 205-215.
[7] N. J. Huang and Y. P. Fang, Generalized m-accretive mappings in Banach spaces, J. Sichuan Univ. 38(4) (2001), 591-592.
[8] N. J. Huang, Y. P. Fang and C. X. Deng, Nonlinear variational inclusions involving generalized m-accretive mappings, Proceedings of the Bellman Continum: International Workshop on Uncertain Systems and Soft Computing, Beijing, China, July 24-27, 2002, pp. 323-327.
[9] H. Y. Lan, J. K. Kim and N. J. Huang, On the generalized nonlinear quasi-variational inclusions involving non-monotone set-valued mappings, Nonlinear Funct. Anal. Appl. 9(3) (2004), 451-465.
[10] H. Y. Lan, Q. K. Liu and J. Li, Iterative approximation for a system of nonlinear variational inclusions involving generalized m-accretive mappings, Nonlinear Anal. Forum 9(1) (2004), 33-42.
[11] H. Y. Lan, N. J. Huang and Y. J. Cho, New iterative approximation for a system of generalized nonlinear variational inclusions with set-valued mappings in Banach spaces, Math. Inequal. Appl. 9(1) (2006), 175-187.
[12] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114-125.
[13] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(12) (1991), 1127-1138.
[14] G. X. Z. Yuan, KKM Theory and Applications, Marcel Dekker, 1999.
[15] H. L. Zeng, A fast learning algorithm for solving systems of linear equations and related problems, J. Adv. Modelling Anal. 29 (1995), 67-71.
[16] H. L. Zeng, Stability analysis on continuous neural networks with slowly synapse-varying structures, Proceedings of IEEE: International Sympostium on Circuits and Systems, United States of America, 1992, pp. 443-447.
[17] W. Wang, Z. Q. Liu, C. Feng and S. H. Kang, Three-step iterative algorithm with errors for generalized strongly nonlinear quasi-variational inequalithies, Adv. Nonlinear Var. Inequal. 7(2) (2004), 27-34.

[^0]: ${ }^{0}$ Received August 30, 2006. Revised October 1, 2008.
 ${ }^{0} 2000$ Mathematics Subject Classification: $49 \mathrm{~J} 40,47 \mathrm{H} 19,47 \mathrm{H} 10$.
 ${ }^{0}$ Keywords: Generalized m-accretive mapping, strongly nonlinear quasi-variational inclusion system, perturbed iterative algorithm, existence, convergence and stability.
 ${ }^{0}$ This work was supported by the Scientific Research Fund of Sichuan Provincial Education Department (2006A106).

