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1. Introduction

The monotone inclusion problem is to find an element x ∈ H such that

0 ∈ B(x),

where B : H → 2H is a multi-valued operator and H is a real Hilbert space.
This problem is very important in many areas such as convex optimization and
monotone variational inequality problems. It is worth mentioning that every
monotone operator on Hilbert spaces can be regularized into single-valued,
nonexpansive, Lipschitz continuous monotone operator by means of Yosida
approximation notion. The inclusion problem can also be defined in terms of
sum of two monotone operators M and B, where one of these operators is
α-inverse strongly monotone which is 1

α -Lipschitz continuous.

Let E be a real Banach space with ||.||, dual space E∗ and 〈f, x〉 the value
of f ∈ E∗ at x ∈ E. Let B : E → 2E

∗
be a maximal monotone operator and

M : E → E∗ be a Lipschitz continuous monotone operator.

In this paper, we consider the following inclusion problem: find x ∈ E such
that

0 ∈ (M +B)x. (1.1)

We denote by (M +B)−1(0) the solution set of (1.1).

Based on a series of studies in the past years, the splitting method has been
known to be a popular method for solving (1.1). The splitting methods for
linear equations were introduced by Peaceman and Rashford [27]. Extensions
to nonlinear equations in Hilbert spaces were carried out by Lions and Mercier
[22]. Since then, many authors have considered approximating solutions of
variational inclusion (1.1) using this method, (see [2, 3, 12, 18, 20, 21, 31, 36]
and the references contained in).

Recently, Zhang and Jiang [42] proved the following strong convergence
theorem for approximating solutions for a common zero point of the sum of
two monotone operators which is also a fixed point of a family of countable
quasi-nonexpansive mapping in the framework of Hilbert spaces as follows:

Theorem 1.1. ([42]) Let C be a nonempty, closed and convex subset of a real
Hilbert space H, A : C → H be an α-inverse strongly monotone operator and
B be a maximal monotone operator on H such that Dom(B) is included in
C. Let {Sn} : C → C be a family of countable quasi-nonexpansive mappings
which are uniformly closed. Assume that

Γ := F (Sn) ∩ (A+B)−1(0) 6= ∅.
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Let {rn} be a positive real number sequence and {αn} be a real number sequence
in [0,1). Let {xn} be a sequence of C generated by

x1 ∈ C1 = C, chosen arbitrarily;

zn = Jrn(xn − rnAxn);

yn = αnzn + (1− αn)Snzn;

Cn+1 = {z ∈ Cn : ||zn − z|| ≤ ||yn − z|| ≤ ||xn − z||};
xn+1 = PCn+1x1, n ≥ 1;

where Jrn = (I+rnB)−1, lim infn→∞ rn > 0, rn ≤ 2α and lim supn→∞ αn < 1.
Then the sequence {xn} converges strongly to q = PΓx0.

Very recently, Shehu [31] considered splitting method for finding zeros of
the sum of maximal monotone operator and Lipschitz continuous monotone
operator in Banach spaces. He proved weak and strong convergence results
and give some applications of his main result.

The split feasibility problem (SFP) introduced by Censor and Elfving [10]
is to find an element

x∗ ∈ C such that Ax∗ ∈ Q, (1.2)

where C and Q are nonempty, closed and convex subsets of real Banach spaces
E1 and E2 respectively, and A : E1 → E2 is a bounded linear operator.
The SFP arises from phase retrievals and in medical image reconstruction to
mention a few. For more details on SFP, we refer readers to (see [1, 2, 3, 11,
19, 23, 25, 26, 37] and other references therein).

In 2018, Ma et al. [23] introduced an iterative algorithm to solve the SFP
(1.2) and fixed point problem of quasi-φ-nonexpansive mappings in Banach
spaces. They proved a strong convergence result to a common solution of
the aforementioned problems and apply their result to convexly constrained
inverse problem and split null point problem.

Remark 1.2.

(1) We observe that the inclusion problem considered in [42] is quite dif-
ferent from the one in (1.1) in the sense that one of the operators is a
Lipschitz continuous monotone operator.

(2) The iterative algorithm employed in this article does not require prior
knowledge of operator norm as the ones employed in [23] requires prior
knowledge of operator norm which gives difficulties in computation.

(3) We extend the result of [42] from Hilbert spaces to a more general
Banach spaces.

(4) The split feasibility problem considered in this paper finds its applica-
tions in signal processing, image reconstruction and medical care.
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Motivated by the works of Shehu [31], Zhang and Jiang [42] and Ma et
al. [23], we introduced a shrinking iterative algorithm for finding zeros of
the sum of maximal monotone operators and Lipschitz continuous monotone
operators, which is also a common fixed point of a finite family of relatively
quasi-nonexpansive mappings and split feasibility problem in Banach spaces.
We prove a strong convergence result for approximating solutions of the afore-
mentioned problems and give applications of our main result to minimization
problem and convexly constrained linear inverse problem. The result present
in this paper extends the result of Ma et al. [23], Zhang and Jiang [42] and
other related results in literature.

2. Preliminaries

We give some definitions and important results which will be useful in estab-
lishing our main results. In the sequel, we denote strong and weak convergence
by ”→” and ”⇀”, respectively.

Throughout this paper, we assume C to be a nonempty, closed and convex
subset of a real Banach space with norm || · ||, J : E → 2E

∗
be the normalized

duality mapping defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2, ∀x ∈ E}.

Consider the Lyapunov functional φ : E × E → [0,∞) defined [4, 5] by

φ(x, y) = ||x||2 − 2〈x, Jy〉+ ||y||2, ∀x, y ∈ E.

Alber [4] introduced a generalized projection operator ΠC : E → C which
is an analogue of the metric projection defined as follows:

ΠC(x) = argminy∈Cφ(y, x), x ∈ E.
That is, ΠC(x) = x, where x is the unique solution to the minimization prob-
lem φ(x, x) = infy∈C φ(y, x). In real Hilbert space, we observe that ΠC(x) ≡
PC(x) and φ(x, y) = ||x−y||2. It is obvious from the definition of the functional
φ that

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x||+ ||y||)2. (2.1)

Apart from inequality (2.1), the Lyapunov functional φ also satisfy the
following inequalities:

(A1) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉;
(A2) 2〈x− y, Jz − Jw〉 = φ(x,w) + φ(y, z)− φ(x, z)− φ(y, w);
(A3) φ(x, y) ≤ ||x||||Jx− Jy||+ ||y||||x− y||.

Note: If E is a reflexive, strictly convex, and smooth Banach space, then for
x, y ∈ E, φ(x, y) = 0 if and only if x = y, see [35].
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We are also concerned with the functional V : E×E∗ → R which is defined
by

V (x, x∗) = ||x||2 − 2〈x, x∗〉+ ||x∗||2 (2.2)

for all x ∈ E and x∗ ∈ E∗. Observe that, V (x, x∗) = φ(x, J−1x∗), if E is a
reflexive, strictly convex and smooth Banach space and

V (x, x∗) ≤ V (x, x∗ + y∗)− 2〈J−1x∗ − x, y∗〉 (2.3)

for all x ∈ E and all x∗, y∗ ∈ E∗, see [30].

Let C be a closed and convex subset of E and T : C → C be a mapping.
Then, x ∈ C is called a fixed point of T, if x = Tx. We denote the set of
fixed points of T by F (T ). A point p ∈ C is called an asymptotic fixed point
of T , if C contains a sequence {xn} such that xn ⇀ p and ||xn − Txn|| → 0

as n → ∞. We denote by F̂ (T ) the set of asymptotic fixed points of T. A
mapping T : C → C is said to be relatively nonexpansive (see [24]) if the
following conditions are satisfied:

(L1) F (T ) 6= ∅;
(L2) φ(p, Tx) ≤ φ(p, x), ∀ x ∈ C, p ∈ F (T );

(L3) F (T ) = F̂ ix(T ).

If T satisfies (L1) and (L2), then T is said to be relatively quasi-nonexpansive.
It is easy to see that the class of relative quasi- nonexpansive mappings contains
the class of relatively nonexpansive mappings. Many authors have considered
the relative quasi-nonexpansive mappings, (see [33, 38]).

Definition 2.1. Let X ⊂ E be a nonempty subset. Then a mapping A : X →
E∗ is called

(i) γ-strongly monotone with modulus γ > 0 on X if

〈Ax−Ay, x− y〉 ≥ γ||x− y||2, ∀ x, y ∈ X;
(ii) monotone on X if

〈Ax−Ay, x− y〉 ≥ 0, ∀ x, y ∈ X;
(iii) Lipschitz continuous on X if there exists a constant L > 0 such that

||Ax−Ay|| ≤ L||x− y||, ∀ x, y ∈ X.

Below is an example of a monotone operator in quantum mechanics.

Example 2.2. ([31]) Let the operator

Au := −b2∆u+ (f(x) + c)u(x) + u(x)

∫
R3

u2(y)

|x− y|
dy,

where ∆ :=
∑3

i=1
∂2

∂x2i
is the Laplacian in R3, b and c are constants, f(x) =

f0(x) + f1(x), where f0(x) ∈ L∞(R3) and f1(x) ∈ L2(R3). Let A := L + B,
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where the operator L which is the schrödinger operator is the linear part of A
and B defined by the last term. It is known that B is a monotone operator
on L2(R3), (see p.23 of [6]) which also implies that A : L2(R3) → L2(R3) is
also a monotone operator.

Definition 2.3. A multi-valued operatorB : E → 2E
∗

with domainDom(B) =
{x ∈ E : Bx 6= 0} and the range R(B) = {Bx : x ∈ D(B)} is said to be mono-
tone if for x, y ∈ D(B), a ∈ Bx, b ∈ By, the following inequality holds:

〈x− y, a− b〉 ≥ 0.

A monotone operator B is said to be maximal if its graph Gra(B) = {(x, y) :
y ∈ Bx} is not properly contained in the graph of any other monotone oper-
ator.

If E is a strictly convex, reflexive and smooth Banach space and B : E →
2E

∗
is a maximal monotone operator. Then, for any positive real number λ,

we can define a nonexpansive single-valued operator JBλ : E → E by

JBλ (x) := (J + λB)−1J(x), x ∈ E.
This operator is called the resolvent of B for λ > 0. It is well known that
B−1(0) = F (JBλ ) for all λ > 0 and B−1(0) is a closed and convex subset of E.

For a real Banach space E, the modulus of convexity of E is the function
δE : [0, 2]→ [0, 1] defined as

δE(ε) = inf

{
1− 1

2
||x+ y|| : ||x|| = ||y|| = 1, ||x− y|| ≥ ε

}
. (2.4)

Recall that E is said to be uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2]. E is

said to be strictly convex if
||x+ y||

2
< 1 for all x, y ∈ E with ||x|| = ||y|| = 1

and x 6= y. Also, E is p-uniformly convex if there exists a constant cp > 0 such
that δE(ε) > cpε

p for any ε ∈ (0, 2].

The modulus of smoothness of E is the function ρE : R+ → R+ defined by

ρE(t) = sup

{
1

2
(||x+ ty|| − ||x− ty||)− 1 : ||x|| = ||y|| = 1

}
. (2.5)

E is said to be uniformly smooth if lim
t→0

ρE(t)

t
= 0. Let 1 < q ≤ 2. Then E

is q-uniformly smooth if there exists cq > 0 such that ρE(t) ≤ cqt
q for t > 0.

It is known that E is p-uniformly convex if and only if E∗ is q-uniformly
smooth, where p−1 + q−1 = 1. It is also known that every q-uniformly smooth
Banach space is uniformly smooth. It is also widely known that if E is uni-
formly smooth, then the duality mapping J is norm-to-norm continuous on
each bounded subset of E.
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The following are some important and useful properties of duality mapping
J, for further details see [35]:

• For every x ∈ E, Jx is nonempty, closed, convex and bounded subset
of E∗.
• If E is smooth or E∗ is strictly convex, then J is single-valued. Also,

If E is reflexive, then J is onto.
• If E is strictly convex, then J is strictly monotone, that is

〈x− y, Jx− Jy〉 > 0, x 6= y ∀ x, y ∈ E.

• If E is smooth, strictly convex and reflexive and J∗ : E∗ → 2E is the
normalized duality mapping on E∗, then J−1 = J∗, JJ∗ = IE∗ and
J∗J = IE , where IE and IE∗ are the identity mappings on E and E∗

respectively.
• If E is uniformly convex and uniformly smooth, then J is uniformly

norm-to-norm continuous on bounded subsets of E and J∗ = J−1 is
also uniformly norm-to-norm continuous on bounded subsets of E∗.

We now state the following results which will be useful to prove our main
result.

Lemma 2.4. ([8]) Let 1
p+ 1

q = 1, for p, q > 1. Then, the space E is q-uniformly

smooth if and only if its dual space E∗ is p-uniformly convex.

Lemma 2.5. ([39]) Let E be a 2-uniformly smooth Banach space with the best
smoothness constant k > 0. Then, the following inequality holds:

||x+ y||2 ≤ ||x||2 + 2〈y, Jx〉+ 2||ky||2, ∀ x, y ∈ E.

Lemma 2.6. ([39]) Given a number r > 0, a real Banach space E is uniformly
convex if and only if there exists a continuous strictly increasing function g :
[0,∞)→ [0,∞) with g(0) = 0 such that

||λx+ (1− λ)y||2 ≤ λ||x||2 + (1− λ)||y||2 − λ(1− λ)g(||x− y||);

for all x, y ∈ E with ||x|| ≤ r and ||y|| ≤ r and λ ∈ [0, 1].

Lemma 2.7. ([5]) Let E be a smooth, strictly convex and reflexive Banach
space and C be a nonempty closed convex subset of E. Then, the following
conclusions hold:

(i) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀ x ∈ C, y ∈ E.
(ii) If x ∈ E and z ∈ C, then z = ΠCx if and only if

〈z − y, Jx− Jz〉 ≥ 0, ∀ y ∈ C.
(iii) For x, y ∈ E, φ(x, y) = 0 if and only if x = y.
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Lemma 2.8. ([17]) Let E be a uniformly convex and smooth Banach space,
and let {xn}, {yn} be two sequences of E. If φ(xn, yn)→ 0 and either of {xn}
or {yn} is bounded. Then, ||xn − yn|| → 0.

Lemma 2.9. ([7]) Let E be a real uniformly convex, smooth Banach space.
Then, the following identities hold:

(i) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, ∀ x, y ∈ E;
(ii) φ(x, y) + φ(y, x) = 2〈x− y, Jx− Jy〉, ∀ x, y ∈ E.

Lemma 2.10. ([35]) Let E be a smooth, strictly convex, and reflexive Banach
space. Let C be a nonempty, closed and convex subset of E and let x1 ∈ E
and z ∈ C. Then, the following conclusions hold:

(i) z = PCx1,
(ii) 〈z − y, J(x1 − z)〉 ≥ 0, ∀ y ∈ C.

Lemma 2.11. ([9]) Let B : E → 2E
∗

be a maximal monotone operator and
M : E → E∗ be a Lipschitz continuous monotone operator. Then the operator
M +B is a maximal monotone operator.

Lemma 2.12. ([31]) Let B : E → 2E
∗

be a maximal monotone operator and
M : E → E∗ be an operator. Define an operator

Tλx := JBλ ◦ J−1(J − λM), x ∈ E, λ > 0.

Then F (Tλ) = (M +B)−1(0).

3. Main result

We suppose that E is p-uniformly convex and uniformly smooth, which
implies that it dual space E∗ is q-uniformly smooth and uniformly convex.
Throughout this section, we assume that E1 is a 2-uniformly convex real Ba-
nach space which is also 2-uniformly smooth and E2 is a smooth, strictly
convex and reflective Banach space, E∗1 is a 2-uniformly smooth real Banach
space which is also uniformly convex. Furthermore, we suppose that J1 and
J2 represent the normalized duality mapping of E1 and E2 respectively and
J1 = (J∗1 )−1, where J∗1 is the normalized duality mapping of E∗1 .

Theorem 3.1. Let E1 be 2-uniformly convex and 2-uniformly smooth real
Banach space with the best smoothness constant 0 < k ≤ 1√

2
, E2 be a smooth,

strictly convex and reflective Banach space. Let {Si}Ni=1 : E1 → E1 be a finite
family of closed relatively quasi-nonexpansive mapping, A : E1 → E2 be a
bounded linear operator with adjoint A∗ and Q be a nonempty, closed and
convex subset of E2. Suppose that B : E1 → 2E

∗
1 is a maximal monotone

operator and M : E1 → E∗1 is monotone and L-Lipschitz continuous. Assume
that

Γ := {x ∈ ∩Ni=1F (Si) ∩ (B +M)−1(0) : Ax ∈ Q} 6= ∅.
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Let x1 ∈ E1, C1 = E1, and {xn} be a sequence generated by

wn = J−1
1 (J1xn + γnA

∗J2(PQ − I)Axn);

yn = JBλn ◦ J
−1
1 (J1wn − λnMwn);

un = J−1
1 (J1yn − λn(Myn −Mxn));

tn = J−1
1 [(1− αn)J1un + αnJ1Siun];

Cn+1 = {v ∈ Cn : φ(v, tn) ≤ φ(v, xn)};
xn+1 = ΠCn+1x1; n ≥ 1;

(3.1)

where PQ is the metric projection of E2 onto Q and ΠCn+1 is the generalized
projection of E1 onto Cn+1. Suppose {αn}∞n=1 is a sequence in (0, 1) such that

lim inf
n→∞

αn(1− αn) > 0,

and the step size γn is chosen in such a way that for ε > 0,

γn ∈
(
ε,

||(PQ − I)Axn||2

||A∗k2J2(PQ − I)Axn||2
− ε
)
,

for all PQAxn 6= Axn, γn = γ otherwise (γ being any nonnegative real number)
with {λn}∞n=1 satisfying the following condition:

0 < d ≤ λn ≤ e <
1√

2µρL
,

where µ is the 2-uniform convexity constant of E1, ρ is the 2-uniform smooth-
ness constant of E∗1 , and L is the Lipschitz constant of M . Then, {xn} con-
verges strongly to a point x = ΠΓx1.

Proof. We divide our proof into several steps:

Step 1: We prove using Theorem 3.1 that Cn is closed and convex for each
n ≥ 1. We obtain from Theorem 3.1 that C1 = E1, therefore C1 is closed and
convex. Now assume that Cn is closed and convex, then we have

φ(v, tn) ≤ φ(v, xn).

It means that

||v||2 − 2〈v, J1tn〉+ ||tn||2 ≤ ||v||2 − 2〈v, J1xn〉+ ||xn||2.

Hence we obtain that

2〈v, J1xn − J1tn〉 ≤ ||xn||2 − ||tn||2. (3.2)

We have from (3.2) that Cn+1 is closed and convex subset of E1. Therefore,
ΠCn+1 is well-defined.
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Step 2: We show that Γ ⊆ Cn for all n ≥ 1. Let x∗ ∈ Γ ⊆ Cn, for some
n ≥ 1. Then we have from (3.1) and Lemma 2.6 that

φ(x∗, tn) = φ(x∗, J−1
1 ((1− αn)J1un + αnJ1Siun))

= ||x∗||2 − 2〈x∗, (1− αn)J1un + αnJ1Siun〉
+ ||(1− αn)J1un + αnJ1Siun||2

≤ ||x∗||2 − 2(1− αn)〈x∗, J1un〉 − 2αn〈x∗, J1Siun〉+ (1− αn)||un||2

+ αn||Siun||2 − αn(1− αn)g(||J1un − J1Siun||)
= (1− αn)φ(x∗, un) + αnφ(x∗, Siun)

− αn(1− αn)g(||J1un − J1Siun||)
≤ (1− αn)φ(x∗, un) + αnφ(x∗, un))

− αn(1− αn)g(||J1un − J1Siun||)
= φ(x∗, un)− αn(1− αn)g(||J1un − J1Siun||)
≤ φ(x∗, un)

= φ(x∗, J−1
1 (J1yn − λn(Myn −Mwn)))

= ||x∗||2 − 2〈x∗, (J1yn − λn(Myn −Mwn))〉
+ ||J−1

1 (J1yn − λn(Myn −Mwn))||2

= ||x∗||2 − 2〈x∗, J1yn − λn(Myn −Mwn)〉
+ ||(J1yn − λn(Myn −Mwn))||2

= ||x∗||2 − 2〈x∗, J1yn〉+ 2λn〈x∗,Myn −Mwn〉
+ ||J1yn − λn(Myn −Mwn)||2. (3.3)

But from Lemma 2.5, we have that

||J1yn − λn(Myn −Mwn)||2 ≤ ||J1yn||2 − 2λn〈Myn −Mwn, yn〉
+ 2k2||λn(Myn −Mwn)||2. (3.4)

On substituting (3.4) into (3.3), we obtain

φ(x∗, un) ≤ ||x∗|| − 2〈x∗, J1yn〉+ 2λn〈x∗,Myn −Mwn〉+ ||J1yn||2

− 2λn〈Myn −Mwn, yn〉+ 2k2||λn(Myn −Mwn)||2

= ||x∗||2 − 2λn〈Myn −Mwn, yn − x∗〉 − 2〈x∗, J1yn〉
+ 2k2||λn(Myn −Mwn)||2 + ||yn||2

= φ(x∗, yn)− 2λn〈Myn −Mwn, yn − x∗〉
+ 2k2||λn(Myn −Mwn)||2. (3.5)
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Observe from Lemma 2.9 (i) that

φ(x∗, yn) = φ(x∗, wn) + φ(wn, yn) + 2〈x∗ − wn, J1wn − J1yn〉
= φ(x∗, wn) + φ(wn, yn) + 2〈wn − x∗, J1yn − J1wn〉. (3.6)

Also, using Lemma 2.9 (ii), we get

φ(wn, yn) = 2〈yn − wn, J1yn − J1wn〉 − φ(yn, wn). (3.7)

On substituting (3.6) and (3.7) into (3.5), we obtain that

φ(x∗, un) = φ(x∗, wn) + φ(wn, yn) + 2〈wn − x∗, J1yn − J1wn〉
− 2λn〈Myn −Mwn, yn − x∗〉+ 2k2||λn(Myn −Mwn)||2

= φ(x∗, wn) + φ(wn, yn)− 2〈yn − wn, J1yn − J1wn〉
+ 2〈yn − x∗, J1yn − J1wn〉 − 2λn〈Myn −Mwn, yn − x∗〉
+ 2k2||λn(Myn −Mwn)||2

≤ φ(x∗, wn)− φ(yn, wn) + 2〈yn − x∗, J1yn − J1wn〉
− 2λn〈Myn −Mwn, yn − x∗〉+ 2k2||λn(Myn −Mwn)||2

= φ(x∗, wn)− φ(yn, wn) + 2k2||λn(Myn −Mwn)||2

− 2〈J1wn − J1yn − λn(Mwn −Myn), yn − x∗〉. (3.8)

Using (3.1), it is clear that

J1wn − λnMwn ∈ (J1 + λnB)yn.

Also, using the fact that B is a maximal monotone, there exists rn ∈ Byn such
that

J1wn − λnMwn = J1wn + λnrn.

Hence

rn =
1

λn
(J1wn − J1yn − λnMwn). (3.9)

Since M +B is maximal monotone and Myn + rn ∈ (M +B)yn, we obtain

〈Myn + rn, yn − x∗〉 ≥ 0. (3.10)

On substituting (3.9) into (3.10), we have

〈J1wn − J1yn − λn(Mwn −Myn), yn − x∗〉 ≥ 0. (3.11)

Using (3.11) in (3.8), we obtain that

φ(x∗, un) ≤ φ(x∗, wn)− φ(yn, wn) + 2k2||λn(Myn −Mwn)||2

≤ φ(x∗, wn)− φ(yn, wn) + 2k2λ2
nL

2µφ(yn, wn)

≤ φ(x∗, wn)− (1− 2k2λ2
nL

2µ)φ(yn, wn). (3.12)
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By applying the condition on λn, (3.6), we have that

φ(x∗, un) ≤ φ(x∗, yn)

≤ φ(x∗, wn)

= φ(x∗, J−1
1 (J1xn + γnA

∗J2(PQ − I)Axn))

= ||x∗||2 − 2〈x∗, J1xn + γnA
∗J2(PQ − I)Axn〉

+ ||J1xn + γnA
∗J2(PQ − I)Axn||2

≤ ||x∗||2 − 2〈x∗, J1xn〉 − 2〈x∗, γnA∗J2(PQ − I)Axn〉
+ ||xn||2 + 2γn〈Axn, J2(PQ − I)Axn〉+ 2||kγnA∗J2(PQ − I)Axn||2

≤ φ(x∗, xn)− 2γn〈Ax∗ −Axn, J2(PQ − I)Axn〉
+ 2k2γ2

n||A∗J2(PQ − I)Axn||2. (3.13)

But, from Lemma 2.10, we have that

〈Ax∗ −Axn, J2(PQ − I)Axn〉
= 〈Ax∗ − PQAxn + PQAxn −Axn, J2(PQ − I)Axn〉
= 〈Ax∗ − PQAxn, J2(PQ − I)Axn〉

+ 〈(PQ − I)Axn, J2(PQ − I)Axn〉
= 〈Ax∗ − PQAxn, J2(PQ − I)Axn〉+ ||(PQ − I)Axn||2

≥ ||(PQ − I)Axn||2. (3.14)

On substituting (3.14) into (3.13), we obtain that

φ(x∗, wn)

≤ φ(x∗, xn)− 2γn||(PQ − I)Axn||2 + 2k2γ2
n||A∗J2(PQ − I)Axn||2

≤ φ(x∗, xn)− 2γn
[
||(PQ − I)Axn||2 − k2γn||A∗J2(PQ − I)Axn||2

]
. (3.15)

By applying the condition on γn in Theorem 3.1 we have that

φ(x∗, un) ≤ φ(x∗, wn) ≤ φ(x∗, xn), (3.16)

and hence

φ(x∗, tn) ≤ φ(x∗, xn). (3.17)

We therefore conclude that x∗ ∈ Cn+1. This implies that Γ ⊆ Cn for all n ≥ 1.
Hence, (3.1) is well-defined.

Step 3: We show that {xn} is a Cauchy sequence. Let x∗ ∈ Γ, by using
the definition of Cn, we have that xn = ΠCnx1 for all n ≥ 1. It follows from
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Lemma 2.7, we have that

φ(xn, x1) = φ(ΠCnx1, x1)

≤ φ(x∗, x1)− φ(x∗,ΠCnx1)

≤ φ(x∗, x1), ∀ n ≥ 1.

This implies that {φ(xn, x1)} is bounded. More so, since xn = ΠCnx1 and
xn+1 = ΠCn+1x1 ∈ Cn+1 ⊆ Cn, we have that

φ(xn, x1) ≤ φ(xn+1, x1), ∀ n ≥ 1. (3.18)

Therefore, {φ(xn, x1)} is non-decreasing. So, the limit also exists. From
Lemma 2.7, we obtain that

φ(xn+1, xn) = φ(xn+1,ΠCnx1)

≤ φ(xn+1, x1)− φ(ΠCnx1, x1)

= φ(xn+1, x1)− φ(xn, x1), (3.19)

thus, we have that

lim
n→∞

φ(xn+1, xn) = 0. (3.20)

Applying Lemma 2.8, we obtain that

lim
n→∞

||xn+1 − xn|| = 0. (3.21)

Suppose xn = ΠCnx1 ⊆ Cm, for some positive integers m,n with m ≤ n,
then applying Lemma 2.7 and using the same approach as in (3.19), we obtain
that

φ(xm, xn) = φ(xm,ΠCnx1)

≤ φ(xm, x1)− φ(ΠCnx1, x1)

= φ(xm, x1)− φ(xn, x1). (3.22)

Since limn→∞ φ(xn, x1) exists, it follows from (3.22) and Lemma 2.8 that
limn→∞ ||xn − xm|| = 0. Hence, we conclude that {xn} is a Cauchy sequence.

Step 4: Let {xn} be a sequence generated by (3.1). Then we have the follow-
ings.

(i) limn→∞ ||(PQ − I)Axn|| = 0.
(ii) limn→∞ ||Siun − un|| = 0.
(iii) limn→∞ ||yn − wn|| = 0.

Since xn+1 = ΠCn+1 ∈ Cn+1 ⊆ Cn, by the definition of Cn+1, (3.18) and (3.20),
we have that

φ(xn+1, tn) ≤ φ(xn+1, xn)→ 0, (n→∞). (3.23)
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It follows from Lemma 2.8 that

lim
n→∞

||xn+1 − tn|| = 0. (3.24)

Also, from (3.21) and (3.24), we have that

lim
n→∞

||tn − xn|| = 0. (3.25)

From (3.3), (3.12) and (3.15), we have that

φ(x∗, tn) ≤ φ(x∗, xn)− αn(1− αn)g(||J1un − Siun||)
− 2γn

[
||(PQ − I)Axn||2 − k2γn||A∗J2(PQ − I)Axn||2

]
− (1− 2k2λ2

nL
2µ)φ(yn, wn). (3.26)

It then follows that

αn(1− αn)g(||J1un − Siun||)
≤ φ(x∗, xn)− φ(x∗, tn)

= ||x∗||2 − 2〈x∗, J1xn〉+ ||xn||2 − ||x∗||2 + 2〈x∗, J1tn〉 − ||tn||2

= 2〈x∗, J1tn − J1xn〉+ ||xn||2 − ||tn||2

≤ 2||x∗|| ||J1tn − J1xn||+ ||xn − tn|| (||xn||+ ||tn||). (3.27)

Since E1 is 2-uniformly convex and uniformly smooth Banach space, J1 is
uniformly continuous from norm-to-norm. Then, we obtain from (3.25) that

lim
n→∞

||J1tn − J1xn|| = 0. (3.28)

By applying the condition lim infn→∞ αn(1−αn) > 0 and (3.28) in (3.26), we
obtain that

lim
n→∞

g(||J1un − J1Siun||) = 0. (3.29)

Using the property of g in Lemma 2.6, we have that

lim
n→∞

||J1un − J1Siun|| = 0. (3.30)

Since J−1
1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

||un − Siun|| = 0. (3.31)

Also, from (3.26) and following the same approach in (3.27), we have that

φ(yn, wn) = 0. (3.32)

Applying Lemma 2.8 in (3.32), we have

lim
n→∞

||yn − wn|| = 0. (3.33)



Sum of maximal monotone and Lipschitz continuous monotone operator 465

From (3.26), condition on γn in (3.1) and following the approach in (3.27), we
get that

lim
n→∞

||(PQ − I)Axn|| = 0. (3.34)

From (3.1), we have

J1(tn)− J1(un) = αn(J1Siun − J1(un)),

it implies that

||J1tn − J1un|| = αn||J1Siun − J1un||.

Thus, from (3.30), we have that

lim
n→∞

||J1tn − J1un|| = 0. (3.35)

Since E1 is 2-uniformly convex and uniformly smooth real Banach space and
J−1

1 is uniformly norm-to-norm weakly continuous on bounded subset of E∗1 ,
we obtain that

lim
n→∞

||tn − un|| = 0. (3.36)

From (3.24) and (3.36), we get that

lim
n→∞

||xn+1 − un|| = 0. (3.37)

Also, from (3.25) and (3.36), we obtain that

lim
n→∞

||un − xn|| = 0. (3.38)

More so, from (3.37) and (3.38), we get

||un+1 − un|| ≤ ||un+1 − xn+1||+ ||xn+1 − un|| → 0 as n→∞. (3.39)

We also have that

||un − Si+lun|| ≤ ||un − un+l||+ ||un+l − Si+lun+l||
+ ||Si+lun+l − Si+lun||,

for all l = 1, 2, ..., N. Using the assumption of Sl, we know that Sl is uniformly
continuous. It then follows from (3.31) and (3.39) that

lim
n→∞

||un − Si+lun|| = 0, ∀ l = 1, 2, ..., N. (3.40)

Thus, we have

lim
n→∞

||un − Slun|| = 0, ∀ l = 1, 2, ..., N. (3.41)

Since Sl is closed for each l = 1, 2, ..., N and {xn}⇀ x, we have that

x ∈ ∩Ni=1F (Si).
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Step 5: We show that x ∈ (M + B)−1(0). Since {xn} is bounded, there
exists a subsequence {xnk

} of {xn} and x ∈ E1 such that xnk
⇀ x. Suppose

(v, u) ∈ Gra(M +B). This implies that

J1u−Mv ∈ Bv.

More so, we obtain from (3.1) that

ynk
= (J1 + λnk

B)−1J1 ◦ J−1
1 (J1wnk

− λnk
Mwnk

),

which implies

(J1 − λnk
M)wnk

∈ (J1 + λnk
B)ynk

,

and thus

1

λnk

(J1wnk
− J1ynk

− λnk
Mwnk

) ∈ Bynk
.

Using the fact that B is maximal monotone, we obtain

〈v − ynk
, J1u−Mv − 1

λnk

(J1wnk
− J1ynk

− λnk
Mwnk

)〉 ≥ 0.

Hence, we have

〈v − ynk
, J1u〉 ≥ 〈v − ynk

,Mv +
1

λnk

(J1wnk
− J1ynk

− λnk
Mwnk

)〉

= 〈v − ynk
,Mv −Mwnk

〉

+ 〈v − ynk
,

1

λnk

(J1wnk
− J1ynk

)〉

= 〈v − ynk
,Mv −Mynk

〉
+ 〈v − ynk

,Mynk
−Mwnk

〉

+ 〈v − ynk
,

1

λnk

(J1wnk
− J1ynk

)〉

≥ 〈v − ynk
,Mynk

−Mwnk
〉

+ 〈v − ynk
,

1

λnk

(J1wnk
− J1ynk

)〉.

Applying (3.33) and using the fact that M is Lipschitz continuous, we obtain
that

lim
n→∞

||Mynk
−Mwnk

|| = 0.

More so, we obtain that 〈v − x, J1u〉 ≥ 0. By the maximal monotonicity of
M +B, we obtain that 0 ∈ (M +B)x. Therefore, we conclude that

x ∈ (M +B)−1(0).
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Step 6: We show that Ax ∈ Q. Using Lemma 2.7, we have that

||(I − PQ)Ax||2 = 〈J2(Ax− PQ(Ax)), Ax− PQ(Ax)〉
= 〈J2(Ax− PQ(Ax)), Ax−Axn +Axn

− PQ(Axn) + PQ(Axn)− PQ(Ax)〉
= 〈J2(Ax− PQ(Ax)), Ax−Axn〉

+ 〈J2(Ax− PQ(Ax)), Axn − PQ(Axn)〉
+ 〈J2(Ax− PQ(Ax)), PQ(Axn)− PQ(Ax)〉
≤ 〈J2(Ax− PQ(Ax)), Ax−Axn〉

+ 〈J2(Ax− PQ(Ax)), Axn − PQ(Axn)〉. (3.42)

Using the fact that A is a bounded linear operator and (3.34), we have that

lim
n→∞

||Axn −Ax|| = 0,

this implies that ||(I − PQ)Ax|| = 0, and hence

Ax ∈ Q.

From the Step 5 and Step 6, we conclude that x ∈ Γ.

Step 7: We prove that {xn} converges strongly to x. Let x = ΠΓx1 and
x ∈ Γ. Then, from xn = ΠCnx1 and x ∈ Γ ⊆ Cn, we have

φ(xn, x1) ≤ φ(x, x1), (3.43)

which implies that

φ(x, x1) ≤ lim inf
n→∞

φ(xn, x1)

≤ φ(x, x1). (3.44)

From the definition of x = ΠΓx1, we have that x∗ = x. Hence

lim inf
n→∞

xn = x = ΠCx1.

We therefore conclude that {xn} converges strongly to x ∈ Γ, where x = ΠΓx1.
This completes the proof. �

Corollary 3.2. Suppose that E1, and C be as defined in Theorem 3.1 and
S : E1 → E1 be a nonexpansive mapping. Suppose that B : E1 → 2E

∗
1 is a

maximal monotone operator and M : E1 → E∗1 is monotone and L-Lipschitz
continuous. Assume that

Γ := {x ∈ C : x ∈ F (S) ∩ (B +M)−1(0)} 6= ∅.

Let x1 ∈ E1 and C = E1, and {xn} be a sequence generated by
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yn = JBλn ◦ J
−1
1 (J1xn − λnMxn);

un = J−1
1 (J1yn − λn(Myn −Mxn));

tn = J−1
1 [(1− αn)J1un + αnJ1Sun];

Cn+1 = {v ∈ Cn : φ(v, tn) ≤ φ(v, xn)};
xn+1 = ΠCn+1x1; n ≥ 1;

(3.45)

where ΠCn+1 is the generalized projection of E1 onto Cn+1. Suppose {αn}∞n=1

is a sequence in (0, 1) such that lim infn→∞ αn(1 − αn) > 0, with {λn}∞n=1

satisfying the following condition:

0 < d ≤ λn ≤ e <
1√

2µρL
,

where µ is the 2-uniform convexity constant of E1, ρ is the 2-uniform smooth-
ness constant of E∗1 , and L is the Lipschitz constant of M . Then the sequence
{xn} converges strongly to a point x = ΠΓx1.

Corollary 3.3. Let C and Q be nonempty, closed and convex subsets of real
Hilbert spaces H1 and H2, respectively. Let M : H1 → H1 be an α-inverse
strongly monotone operator with α > 0 and B : H1 → 2H1 be a maximal
monotone operator on H1 such that Dom(B) is included in H1. Let {Sn} :
H1 → H1 be a family of countable quasi-nonexpansive mappings which are
uniformly closed, and A : H1 → H2 be a bounded linear operator with its
adjoint A∗. Assume that

Γ := {x ∈ C : x ∈ F (Sn) ∩ (M +B)−1(0) and Ax ∈ Q} 6= ∅.

Let {rn} be a positive real number sequence and {αn} be a real number sequence
in [0,1). Let {xn} be a sequence in C generated by

x1 ∈ C1 = C, chosen arbitrarily;

wn = xn + γnA
∗(PQ − I)Axn;

zn = Jrn(wn − rnAwn);

yn = αnzn + (1− αn)Snzn;

Cn+1 = {z ∈ Cn : ||zn − z|| ≤ ||yn − z|| ≤ ||xn − z||};
xn+1 = PCn+1x1, n ≥ 1;

where PQ is the metric projection on H2, Jrn = (I+ rnB)−1, lim infn→∞ rn >
0, rn ≤ 2α, lim supn→∞ αn < 1. and and the step size γn is chosen in such a
way that for ε > 0,

γn ∈
(
ε,
||(PQ − I)Axn||2

||A∗(PQ − I)Axn||2
− ε
)
,
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for all PQAxn 6= Axn, γn = γ otherwise (γ being any nonnegative real number).
Suppose {αn}∞n=1 is a sequence in (0, 1) such that lim infn→∞ αn(1− αn) > 0.
Then the sequence {xn} converges strongly to q = PΓx1.

Remark 3.4. We observe that Corollary 3.3 coincide with the main result of
[42]. Just that a new problem (split feasibility problem) was added to their
iterative algorithm.

4. Applications

1. Convexly Constrained Linear Inverse Problem: Consider the con-
vexly constrained linear inverse problem (see [13]) which is defined by{

Ax = b,

x ∈ C,
(4.1)

where H1 and H2 are two real Hilbert spaces, C,Q are closed convex subset of
H1 and H2 respectively, A : H1 → H2 is a bounded linear operator and b ∈ Q.
We denote by Ω the solution set of (4.1).

Landweber introduced the following iterative algorithm to approximate the
solution of (4.1) (see [14]) as follows:{

x1 ∈ C,
xn+1 = PC(xn − γA∗(Axn − b)), n ≥ 1,

where A∗ is the adjoint of A, 0 < γ < 2α with α = 1
||A||2 , then {xn} converges

weakly to a solution of (4.1).

Now, we introduce an iterative algorithm to approximate (4.1) and prove
the following strong convergence result.

Theorem 4.1. Let H1 and H2 be two real Hilbert spaces. Let C,Q be a
nonempty, closed and convex subsets of a real Hilbert space H1 and H2 respec-
tively. Let M : H1 → H1 be an α-inverse strongly monotone operator with
α > 0 and B : H1 → 2H1 be a maximal monotone operator on H1 such that
Dom(B) is included in H1. Let {Sn} : H1 → H1 be a family of countable
quasi-nonexpansive mappings which are uniformly closed, and A : H1 → H2

be a bounded linear operator with its adjoint A∗. Assume that

Γ := {x ∈ C : x ∈ F (Sn) ∩ (M +B)−1(0) ∩ Ω} 6= ∅.

Let {rn} be a positive real number sequence and {αn} be a real number sequence
in [0,1). Let {xn} be a sequence in C generated by
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x1 ∈ C1 = C, chosen arbitrarily;

wn = xn − γA∗(Axn − b);
zn = Jrn(wn − rnMwn);

yn = αnzn + (1− αn)Snzn;

Cn+1 = {z ∈ Cn : ||zn − z|| ≤ ||yn − z|| ≤ ||xn − z||};
xn+1 = PCn+1x1, n ≥ 1;

where Jrn = (I + rnB)−1, lim infn→∞ rn > 0, rn ≤ 2α, lim supn→∞ αn < 1.
and γ is a positive constant satisfying 0 < γ < 1

||A||2 . Suppose {αn}∞n=1 is a

sequence in (0, 1) such that lim infn→∞ αn(1 − αn) > 0. Then the sequence
{xn} converges strongly to q = PΓx1.

Proof. This is a a consequence of Corollary 3.3 by taking PQ(Axn) = b. �

2. Minimization Problem:

Definition 4.2. Let Q be a convex subset of a vector space X and f : Q →
R ∪ {+∞} be a map. Then,

(i) f is calleed convex if for each λ ∈ [0, 1] and x, y ∈ Q, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y);

(ii) f is called proper if there exists at least one x ∈ Q such that

f(x) 6= +∞;

(iii) f is called lower semi-continuous at x0 ∈ Q if

f(x0) ≤ lim inf
x→x0

f(x).

Let E be a real Banach space, we consider the following minimization of
composite objective function of the type:

min
x∈E

f(x) + g(x), (4.2)

where f : E → R ∪ {+∞} is a proper, convex and lower semi-continuous
function and g : E → R is a convex function. In this setting, we assume that
g is the smooth part of the functionals, while f is assumed to be non-smooth.

Precisely, we assume that g is Gâteaux-differentiable with derivative 5g
which is Lipschitz continuous with constant L. It is easy to see from Theorem
3.13 ([28]) that

〈5g(x)−5g(y), x− y〉 ≥ 1

L
|| 5 g(x)−5g(y)||2, ∀ x, y ∈ E.
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Hence, 5g is monotone and Lipschitz continuous. It can be seen that (4.2) is
equivalent to finding x ∈ E such that

0 ∈ ∂f(x) +5g(x). (4.3)

Problem (4.3) is a special case of (1.1) with M := 5g and B = ∂f .
We denote by Ω the solution set of (4.3). Also, for fixed r > 0 and z ∈ E,

it has been shown in [31] that the resolvent of ∂f which is denoted as J∂fr is
defined as

J∂fr (z) = arg min
y∈E

{
f(y) +

1

2r
||y||2 − 1

r
〈y, Jz〉

}
.

This can be re-written using (3.1) as

yn = arg min
y∈E

{
f(y) +

1

2λn
||y||2 − 1

λn
〈y, Jwn − λn 5 g(wn)

}
.

Theorem 4.3. Let E1, E2, A,A
∗, and Q be as defined in Theorem 3.1 and

suppose that

Γ := {x ∈ C : x ∈ ∩Ni=1F (Si) ∩ Ω : Ax ∈ Q} 6= ∅.
Let x1 ∈ E1 and C1 = E1, and {xn} be a sequence generated by

wn = J−1
1 (J1xn + γnA

∗J2(PQ − I)Axn);

yn = argminy∈E
{
f(y) + 1

2λn
||y||2 − 1

λn
〈y, J1wn − λn 5 g(wn)};

un = J−1
1 (J1yn − λn(5g(yn)−5g(xn));

tn = J−1
1 [(1− αn)J1un + αnJ1Siun];

Cn+1 = {v ∈ Cn : φ(v, tn) ≤ φ(v, xn)};
xn+1 = ΠCn+1x1; n ≥ 1;

(4.4)

where PQ is the metric projection of E2 onto Q and ΠCn+1 is the generalized
projection of E1 onto Cn+1. Suppose {αn}∞n=1 is a sequence in (0, 1) such that
lim infn→∞ αn(1− αn) > 0, and the step size γn is chosen in such a way that
for ε > 0,

γn ∈
(
ε,

||(PQ − I)Axn||2

||A∗k2J2(PQ − I)Axn||2
− ε
)
,

for all PQAxn 6= Axn, γn = γ otherwise (γ being any nonnegative real number)
with {λn}∞n=1 satisfying the following condition:

0 < d ≤ λn ≤ e <
1√

2µρL
,

where µ is the 2-uniform convexity constant of E1, ρ is the 2-uniform smooth-
ness constant of E∗1 , and L is the Lipschitz constant of 5g. Then, {xn}
converges strongly to a point x = ΠΓx1.
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