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Abstract. The main aim is to define a new class of generalized h-variational inequality

problems and its generalized h-variational inequality problems. We define the class of h-η-

invex set, h-η-invex function and H-pseudospace. Existence of the solution of the problems

are established in H-pseudospace with the help of H-KKM mapping theorem and HC∗-

condition of η associated with the function h.

1. Introduction

The theory of variational inequalities have turned out to be very useful
application in studying optimization problems, financial problems, physical
problems, computational applications, engineering problems and many more.

The concept of variational inequality problem was introduced by Stam-
pacchia [12] in 1964. Later the concept of the vector variational inequality
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problem was developed and studied by Giannessi [6, 7] in the setting of the
finite dimensional Euclidean spaces. Since then, a large number of results for
the vector variational inequality and vector complementarity problems have
been obtained. For details, we refer to Chen [3], Chen and Yang [4], Daniilidis
and Hadjisavvas [5] etc. In [2], Behera and Das introduced generalized vector
variational inequality problems, generalized vector complementarity problems
and several classes of generalized vector F -variational inequality problems,
generalized vector F -complementarity problems in ordered topological vector
spaces and H-spaces. Giannessi [6, 7], Chen [3, 4] and many other authors
have developed the vector variational inequality problems.

Bardaro and Ceppitelli (1988, [1]) have explored minimax inequalities in
H-spaces. Later Tarafdar (1990, [13]) has studied the fixed point theorems
in H-spaces. He applied the fixed point theorem to analyze the results on
variational inequalities on sets with H-convex sections, and also results on
minimax inequalities. Behera and Das [2] have studied various type of gener-
alized variational inequalities in H-spaces and H-differentiable manifolds.

1.1. H-Space and H-KKM Mapping Theorem. For our need, we recall
the notion of H-spaces, H-convex sets, H-compact set and H-KKM mapping.

Definition 1.1. ([1]) Let X be a topological space and {ΓA} be a given family
of nonempty contractible subsets of X, indexed by finite subsets of X. A pair
(X, {ΓA}) is said to be a H-space if A ⊂ B then ΓA ⊂ ΓB.

Definition 1.2. ([1]) Let (X, {ΓA}) be a H-space. A subset D ⊂ X is said
to be

(i) H-convex if ΓA ⊂ D for every finite subset A ⊂ D,
(ii) weakly H-convex if ΓA

⋂
D is nonempty and contractible for every

finite subset A ⊂ D, equivalent to say; the pair (D, {ΓA
⋂
D}) is a

H-space,
(iii) H-compact if there exist a compact and weakly H-convex set K ⊂ X

such that D
⋃
A ⊂ K for every finite subset A ⊂ X.

Definition 1.3. ([1]) Let (X, {ΓA}) be a H-space. A multifunction G : X →
2X (the set of subsets of X) is said to be H-KKM if for every finite subset
A ⊂ X, ΓA ⊂

⋃
x∈A

G(x).

Bardaro and Ceppitelli [1] have studies the existence of the fixed point
theorems in H-spaces.

Theorem 1.4. ([1], Theorem 1, p.486) Let (X, {ΓA}) be a H-space and F :
X → 2X be a H-KKM multifunction such that:



Study of some h-GVIPs in H-pseudospace 477

(a) for each x ∈ X, F (x) is compactly closed, that is, B ∩ F (x) is closed
in B, for every compact B ⊂ X,

(b) there is a compact set L ⊂ X and a H-compact set K ⊂ X, such
that for each weakly H-convex set D with K ⊂ D ⊂ X, we have⋂
x∈D
{F (x) ∩D} ⊂ L.

Then
⋂
x∈X

F (x) 6= ∅.

Theorem 1.5. ([1], Theorem 2, p.486) Let (X, {ΓA}) be a H-space and F,G :
X → 2X be two multifunctions such that:

(a) for each x ∈ X, G(x) is compactly closed and F (x) ⊂ G(x),
(b) x ∈ F (x) for every x ∈ X,
(c) for every x ∈ X, the set X − F−1(y) is H-convex where F−1(y) =
{x ∈ X : y ∈ F (x)} ,

(d) there is a compact set L ⊂ X and a H-compact set K ⊂ X, such that
for each weakly H-convex set D with K ⊂ D ⊂ X, we have⋂

x∈D
{G(x) ∩D} ⊂ L.

Then
⋂
x∈X

G(x) 6= ∅.

As an extension, Verma ([14]) has studied the following fixed point theorems
in generalized H-space using the RKKM mapping.

Lemma 1.6. ([14]) Let (X,H, {f}) be a generalized H-space and P : X → 2X

be a RKKM mapping such that:

(i) P (x) is compactly closed for all x in X;
(ii) there exists a compact subset L of X and a generalized H-compact

subset K of X such that for each weakly generalized H-convex subset
D of X with K ⊂ D we have⋂

x∈D
(P (x) ∩D) ⊂ L.

Then
⋂
x∈D

P (x) 6= ∅.

Lemma 1.7. ([15], Theorem 2.1, p.134) Let (X,H, {f}) be a generalized H-
space and P,N : X → 2X be multivalued mappings such that:

(i) N(x) is compactly closed for all x in X with P (x) ⊂ N(x);
(ii) P is RKKM mapping,
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(iii) there exists a compact subset L of X and a generalized H-compact
subset C of X such that for each generalized H-convex subset D of X
with C ⊂ D we have ⋂

x∈D
(P (x) ∩D) ⊂ L,

(iv) for every generalized H-convex subset D of X with K ⊂ D, we have⋂
x∈D

(N(x) ∩D) 6= ∅ if and only if
⋂
x∈D

(P (x) ∩D) 6= ∅.

Then
⋂
x∈D

P (x) 6= ∅.

2. The problems and corresponding H-KKM mapping theorems

In 1981, Hanson [8] has introduced the concept of invex function to study
the theory of optimization problem as a general approach. Later various types
of invex functions are defined and used to study the generalized convex opti-
mization problems as well as generalized variational inequality problems. We
study the existence of generalized variational inequality problems in the vector
spaces with a new approach h-invex with respect to η which is defined below:

For the nonzero elements set

X} = X − {0} = {x ∈ X : xi 6= 0, i = 1, 2, · · · } ,
the reciprocals of the elements set X} is

[X}]−1 =

{
x−1 ∈ X} : x−1 =

∞∑
i=1

x−1i ei

}
.

Throughout this paper X is considered as a separable Banach space with
Schauder basis. Assume that h : X ×X} → X is any fractional map defined
by h(v, z) ∈ X for all v ∈ X, 0 6= z ∈ X. Assume that the following com-
ponentwise properties in X hold: For x = (x1, x2, · · · ), y = (y1, y2, · · · ) and
z = (z1, z2, · · · ) in X, we have

xy = (xiyi) = (x1y1, x2y2, · · · )
and

h (z, xy) = h (zi, xiyi) = (h(z1, x1y1), h(z2, x2y2), · · · ).

Definition 2.1. For any set K ⊂ X, the set Kh(η) is said to be a h-η-invex
set if there exists a vector function η : K ×K → X such that

Kh(η) = {h (xy, y + λη(x, y)) ∈ X : x, y ∈ K, y + λη(x, y) ∈ K, λ ∈ [0, 1]} .

Definition 2.2. Let K ⊂ X be a nonempty set and f : K → Y be any
function.
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(i) The set K is said to be h-invex with respect to η (or h-η-invex set) if
Kh(η) = K.

(ii) The function f is said to be h-invex with respect to η (or h-η-function)
if there exists a vector function η : K × K → X such that for all
x, y ∈ K and λ ∈ [0, 1],

f ◦ h(xy, y + λη(x, y)) ≤Y λf(y) + (1− λ)f(x).

Theorem 2.3. Let X be a Banach space, φ : X → X be a r-convex function
on K, that is, φ satisfies

φ(y + rλ(x− y)) ≤ λφ(x) + (1− λ)φ(y)

for all x, y ∈ X, λ ∈ [0, 1] and r > 0. Let K be η-invex on X. Let f : X → R
be any map satisfies f(φ(x)) = αf(x) for some α ∈ R. Let f be a h-convex
function on X that satisfies

f ◦ h(xy, y + λη(x, y)) ≤ α1f(φ(y)) + α2f(φ(x))

for λ ∈ [0, 1], where α1 + α2 = 1. Then f is h-convex on X.

Proof. Let φ : X → X be a r-convex function on K, that is, φ satisfies

φ(y + rλ(x− y)) ≤ λφ(x) + (1− λ)φ(y)

for all x, y ∈ X, λ ∈ [0, 1] and r > 0. Since K is η-invex on X, y+tη(x, y) ∈ X
for all x, y ∈ X, η(x, y) ∈ X and t > 0. Let f : X → R be a convex function
on X and satisfies f(φ(x)) = αf(x) for some α ∈ R. Assume that

f ◦ h(xy, y + λη(x, y)) ≤ α1f(φ(y)) + α2f(φ(x)),

where α1 + α2 = 1. Then, we have

f ◦ h(xy, y + λη(x, y)) ≤ λf(φ(y)) + (1− λ)f(φ(x))

≤ λf(y) + (1− λ)f(x)

for all x, y ∈ X and λ ∈ [0, 1]. �

Example 2.4. Let X = R and Y = R. The set K = [a, b] is η-invex for a < b.
Let X be an affine space as y + tη(x, y) ∈ X for all x, y ∈ R, η(x, y) ∈ X and
t ∈ R. Taking x = y+ tη(x, y), then we have η(x, y) = t−1(x−y). We can find
a λ ∈ (0, 1) such that t−1λ ∈ (0, 1) and λx+ (1− λ)y = y + t−1λ(x− y) ∈ K.
Again taking h(xy, y + λη(x, y)) = 1

xy − ln(y + t−1λ(x− y)) and f(x) = x for

all x, y) ∈ X, λ ∈ [0, 1] and t > 0, we have

f ◦ h(xy, y + λη(x, y)) ≤ λf(y) + (1− λ)f(x).

Remark 2.5. The space X reduces to different type of spaces according to
definitions of h.
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(1) If Y = R, η(x, y) = x− y, and h(v, z) = z, then X is a convex set for
z = y + λ(x− y), λ ∈ [0, 1] which is well known.

(2) If Y = R and h(v, z) = z, then X is a invex set with respect to η for
z = y + λη(x, y), λ ∈ [0, 1] ([8]).

(3) If Y = R, η(x, y) = x − y and h(v, z) = v/z, then X is a harmonic
convex set for v = 1 and z = y + λ(x− y), λ ∈ [0, 1] ([11]).

(4) If Y = R, η(x, y) = x − y and h(v, z) = v/z, then X is a harmonic
convex set for v = xy and z = y + λ(x− y), λ ∈ [0, 1] ([9]).

(5) If h(v, z) = v/z, then X is a harmonic invex set with respect to η for
v = xy and z = y + λη(x, y), λ ∈ [0, 1] ([10]).

We need to define the concept of to study our results.

Definition 2.6. (i) A set D ⊂ X is said to be almost convex of X if
there exists a finite set A ⊂ D such that ΓA ' Ch(D), where Ch(D)
is convex hull of D and ' denotes the homotopical equivalence.

(ii) The space X = (X, {ΓA} ;Kh(η)) is said to be a H-pseudospace if
there exists a vector function η : X × X → X such that η satisfies
condition HC? on the h-η-invex set Kh(η) and (X, {ΓA ∩D}) is a H-
space for each almost convex set D ⊂ Kh(η).

Remark 2.7. The X = (X, {ΓA} ;Kh(η)) is a H-space if Kh(η) is a weakly
H-convex set.

2.1. The Problems. Let K ⊂ X be a nonempty subset of X, η : K×K → X
be a vector valued map. Assume that (X, {ΓA} ;Kh(η)) is a H-pseudospace.
Let T : K → X∗ be a nonlinear map. Let F : K → R} be any map.

(a) The generalized h-variational inequality problem (h-GVIP) is to find:
y ∈ K such that

〈T (y), h (xy, η(x, y))〉 ≥ 0 for all x ∈ K. (h-GVIP)

(b) The generalized dual h-variational inequality problem (h-GDVIP) is
to find: y ∈ K such that

〈T (x), h (xy, η(y, x))〉 ≤ 0 for all x ∈ K. (h-GDVIP)

The generalized h-variational inequalities of associated with F and ξ ∈
∂F (y) the subdifferential of F at y ∈ K are defined as follows:

(a) The generalized h-variational inequality problem associated with F
(h-GVIPF ) is to find: y ∈ K such that

〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0 for all x ∈ K. (h-GVIPF )
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(b) The generalized dual h-variational inequality problem associated with
F (h-GDVIPF ) is to find: y ∈ K such that

〈T (x), h (xy, η(y, x))〉+ F (x)− F (y) ≤ 0 for all x ∈ K. (h-GDVIPF )

In the following theorem we prove the H-KKM property of the multivalued
function P : K → 2X without using weakly H-convex set needed for contra-
diction. We recall the following result. The results are showing the relation
between h-variational inequality problems and dual problem in Kh(η),

Definition 2.8. Let K ⊂ X} be a h-η-invex set in X}. The bifunction
η : K × K → X is said to satisfy HC? with respect to h on Kh(η) if the
following conditions hold:

(a) η(y, x) = −η(x, y) for all x, y ∈ K, i.e., η is anti-symmetric on K,
(b) for all x, y ∈ K, yλ = h (xy, y + λη(x, y)) ∈ K for 0 < λ ≤ 1, we have

h (yλy, η (yλ, y)) = h (xy, (1− λ)η(x, y)) ,

(c) for all x, y ∈ K, yλ = h (xy, y + λη(x, y)) and λ > 0, we have

h (yλx, η (yλ, x)) = −h (xy, λη(x, y)) ,

(d) for all x, y ∈ K, xλ = h (xy, x+ λη(y, x)) and λ > 0, we have

h (xλy, η (xλ, y)) = −h (xy, λη(y, x)) ,

(e) for all x, y ∈ K, xλ = h (xy, x+ λη(y, x)) and λ > 0, we have

h (xλx, η (xλ, x)) = h (xy, (1− λ)η(y, x)) .

Proposition 2.9. If η : K ×K → X} satisfies the condition HC? on Kh(η)
and T : K → X∗, then for all x, y ∈ K, for any y = h (xy, y + λη(x, y)) ∈
Kh(η) and λ ∈ (0, 1), we have the following equalities:

(A) λ 〈T (y), h (xy, η(x, y))〉+ (1− λ) 〈T (y), h (yy, η(y, y))〉 = 0,
(B) λ 〈T (u), h (xy, η(x, y))〉+(1−λ) 〈T (u), h (yy, η(y, y))〉 = 0 for any u ∈

Kh(η),
(C) λ 〈T (x), h (xy, η(y, x))〉+ (1− λ) 〈T (y), h (yy, η(y, y))〉

= −〈T (x)− T (y), h (xy, η(x, y))〉 .

Proof. It is clear that the results (A), (B), (C) and (D) hold by Definition 2.8
because η satisfies the condition HC? with respect to h on Kh(η) and T (x) is
linear for each x ∈ K. �

Theorem 2.10. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Let T : K → X∗

be any continuous map. Assume that for each x ∈ Kh(η), 〈T (x), h (xx, η(x, x))〉
= 0. Then for each x ∈ Kh(η), the multivalued mapping P : K → 2X defined
by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉 ≥ 0}
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is a H-KKM mapping.

Proof. Since for each x ∈ Kh(η), 〈T (x), h (xx, η(x, x))〉 = 0, the set P (x) is
nonempty. Now to show P is a H-KKM mapping. If not, then there exists a
finite set A inKh(η) such that ΓA *

⋃
x∈A

P (x). If there exists a z ∈ ΓA such that

z /∈
⋃
x∈A

P (x), then z /∈ P (x) for all x ∈ A, that is, 〈T (z), h (xz, η(x, z))〉 < 0

for all x ∈ A. Similarly, we can say 〈T (z), h (yz, η(y, z))〉 < 0 for all y ∈ A.
Thus

(1− λ)〈T (z), h (xz, η(x, z))〉+ λ〈T (z), h (yz, η(y, z))〉 < 0

for all x, y ∈ A and z ∈ ΓA. Since Kh(η) is a h-η-invex set, replacing z by
z = h (xy, y + λη(x, y)), λ ∈ (0, 1) and using Proposition 2.9(B), we have

(1− λ) 〈T (u), h (xz, η(x, z))〉+ λ 〈T (u), h (yz, η(y, z))〉 = 0

for all x, y ∈ A and u ∈ Kh(η). Taking u = z, we have

(1− λ) 〈T (z), h (xz, η(x, z))〉+ λ 〈T (z), h (yz, η(y, z))〉 = 0

for all x, y ∈ A. From the above equation we obtain

0 = (1− λ) 〈T (z), h (xz, η(x, z))〉+ λ 〈T (z), h (yz, η(y, z))〉 < 0

which is a contradiction. Thus P is a H-KKM mapping. This completes the
proof. �

Theorem 2.11. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Let T : K → X∗

be any continuous map. Let the multivalued maps P,N : K → 2X be defined
by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉 ≥ 0, x ∈ Kh(η)}
and

N(x) = {y ∈ Kh(η) : 〈T (x), h (xy, η(y, x))〉 ≤ 0, x ∈ Kh(η)} .

Assume that

(a) for each x ∈ Kh(η), 〈T (x), h (xx, η(x, x))〉 = 0,
(b) T is h-η-monotone on Kh(η), that is,

〈T (x), h (xy, η(y, x))〉+ 〈T (y), h (xy, η(x, y))〉 ≤ 0

for all x, y ∈ K,
(c) for each y ∈ K, the set

P−1(y) = {x ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉 < 0}

is either H-convex or empty.

Then N is a H-KKM mapping.
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Proof. By (a), we have 〈T (x), h (xx, η(x, x))〉 = 0 for each x ∈ Kh(η), that is,
x ∈ P (x)∩N(x). Therefore P (x) and N(x) are nonempty for each x ∈ Kh(η).

Our aim is to prove that N is a H-KKM mapping, that is, to show that there
exists a finite set A in Kh(η) such that ΓA *

⋃
x∈A

N(x). On the contrary, if N

is not a H-KKM mapping, then there exists a z ∈ ΓA such that z /∈
⋃
x∈A

N(x),

this implies z /∈ N(x) for all x ∈ A, that is, 〈T (x), h (xz, η(z, x))〉 > 0 for all
x ∈ A. Since T is h-η-monotone on Kh(η), we have

〈T (x), h (xy, η(y, x))〉+ 〈T (y), h (xy, η(x, y))〉 ≤ 0

for all x, y ∈ A. At y = z, we have

〈T (x), h (xz, η(z, x))〉+ 〈T (z), h (xz, η(x, z))〉 ≤ 0

for all x ∈ A, that is,

〈T (z), h (xz, η(x, z))〉 ≤ −〈T (x), h (xz, η(z, x))〉
< 0

for all x ∈ A, i.e., x ∈ X − P−1(z) (X − Z denotes the setminus of Z from
X). Thus A ⊂ X − P−1(z). Since X − P−1(z) is a weakly H-convex set
for each z ∈ Kh(η), we have ΓA ⊂ X − P−1(z). Thus z ∈ X − P−1(z),
i.e., 〈T (z), h (zz, η(z, z))〉 < 0, which contradicts (a). Hence N is an H-KKM
mapping. �

Theorem 2.12. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Let T : K → X∗

be any continuous map and F : K → R} be any differentiable map. Assume
that

(a) for all x, y ∈ Kh(η), 〈T (y), h (xy, η(x, y))〉 ≥ 0,
(b) for each x ∈ Kh(η), 〈∇F (x), h (xx, η(x, x))〉 = 0,
(c) for each y ∈ K, the set

B(y) = {x ∈ Kh(η) : 〈∇F (y), h (xy, η(y, x))〉 < 0}
is either H-convex or empty.

Then for each x ∈ Kh(η), the multivalued mapping P : K → 2X defined by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0}
is a H-KKM mapping.

Proof. By (a), we have 〈T (x), h (xx, η(x, x))〉 = 0 for each y = x ∈ Kh(η), that
is, x ∈ P (x). Therefore P (x) is nonempty for each x ∈ Kh(η). Now to show
that P is a H-KKM mapping. If not, then there exists a finite set A in Kh(η)
such that ΓA *

⋃
x∈A

P (x). Let there exists a z ∈ ΓA such that z /∈
⋃
x∈A

P (x).

Then z /∈ P (x) for all x ∈ A, that is, 〈T (z), h (xz, η(x, z))〉+ F (x)− F (z) < 0
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for all x ∈ A, that is, F (x)−F (z) < −〈T (z), h (xz, η(x, z))〉 ≤ 0 for all x ∈ A.
Since Kh(η) is a h-η-invex set, replacing x by h (xz, x+ λη(z, x)), λ ∈ (0, 1),
we have F (h (xz, x+ λη(z, x)))− F (z) < 0 for all x ∈ A. Dividing both sides
by λ and letting λ→ 0 to obtain 〈∇F (z), h (xz, η(z, x))〉 < 0 for all x ∈ A, it
implies that x ∈ B(z). Thus A ⊂ B(z). Since B(z) is a weakly H-convex set,
we have ΓA ⊂ B(z). Therefore z ∈ B(z), that is, 〈∇F (z), h (zz, η(z, z))〉 < 0
which contradicts (b). Thus P is a H-KKM mapping. This completes the
proof. �

Proposition 2.13. If η : K × K → X} satisfies condition HC? on h-η-
invex set Kh(η) and T : K → X∗, then for all x, y ∈ K, for any y =
h (xy, x+ λη(y, x)) ∈ Kh(η) and λ ∈ [0, 1], we have

(A) (1− λ) 〈T (y), h (xy, η(x, y))〉+ λ 〈T (y), h (yy, η(y, y))〉 = 0,
(B) (1− λ) 〈T (u), h (xy, η(x, y))〉+ λ 〈T (u), h (yy, η(y, y))〉 = 0

for any u ∈ Kh(η),
(C) (1− λ) 〈T (x), h (xy, η(y, x))〉+ λ 〈T (y), h (yy, η(y, y))〉

= −〈T (x)− T (y), h (xy, η(x, y))〉 .

Proof. We have η satisfies condition HC? with respect to h on Kh(η). So the
results (A), (B) and (C) can be proved easily because T (x) is linear for each
x ∈ K. So the proofs of the results are omitted. �

Theorem 2.14. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Let T : K → X∗

be any continuous map and F : K → R − {0} be any differentiable map.
Assume that

(a) for each y = x ∈ Kh(η), 〈T (x), h (xx, η(x, x))〉 = 0,
(b) for each y ∈ K and λ ∈ (0, 1), the set

B(y) = {x ∈ Kh(η) : (1− λ)F (x) + λF (y) < F (h(xy, x+ λη(y, x)))}
is either H-convex or empty.

Then for each x ∈ Kh(η), the multivalued mapping P : K → 2X defined by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0}
is a H-KKM mapping.

Proof. By (a), we have 〈T (x), h (xx, η(x, x))〉 = 0 for each y = x ∈ Kh(η), that
is, x ∈ P (x). Therefore P (x) is nonempty for each x ∈ Kh(η). Now to show
that P is a H-KKM mapping. If not, then there exists a finite set A in Kh(η)
such that ΓA *

⋃
x∈A

P (x). Let there exists a z ∈ ΓA such that z /∈
⋃
x∈A

P (x),

then z /∈ P (x) for all x ∈ A, that is,

〈T (z), h (xz, η(x, z))〉+ F (x)− F (z) < 0
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for x ∈ A. Therefore

〈T (z), h (yz, η(y, z))〉+ F (y)− F (z) < 0

for x, y ∈ A. Thus

(1− λ) [〈T (z), h (xz, η(x, z))〉+ F (x)− F (z)]

+λ [〈T (z), h (yz, η(y, z))〉+ F (y)− F (z)] < 0

for x, y ∈ A and z ∈ ΓA, that is,

(1− λ) 〈T (z), h (xz, η(x, z))〉+ λ 〈T (z), h (yz, η(y, z))〉
+(1− λ)F (x) + λF (y)− F (z) < 0

for x, y ∈ A and z ∈ ΓA. Since Kh(η) is a h-η-invex set, replacing z by
z = h (xy, x+ λη(y, x)), λ ∈ (0, 1) and using Proposition 2.13(A), we have

(1− λ) 〈T (z), h (xz, η(x, z))〉+ λ 〈T (z), h (yz, η(y, z))〉 = 0

for x, y ∈ A, which follows that (1−λ)F (x)+λF (y)−F (z) < 0 for all x, y ∈ A
and z ∈ ΓA, that is,

(1− λ)F (x) + λF (y) < F (z) = F (h (xy, x+ λη(y, x)))

for all x, y ∈ A, λ ∈ (0, 1) and z ∈ ΓA. At y = z, we have

(1− λ)F (x) + λF (z) < F (h (xz, x+ λη(z, x)))

for all x ∈ A and λ ∈ (0, 1) which follows that x ∈ B(z), that is, A ⊂ B(z).
Since B(z) is a weakly H-convex set, we have ΓA ⊂ B(z). Thus z ∈ B(z),
that is,

(1− λ)F (z) + λF (z) < F (h (zz, z + λη(z, z))) = F (z).

Since η(z, z) = 0, F (z) < F (z) which leads to a contradiction. Hence P is a
H-KKM mapping. This completes the proof. �

Theorem 2.15. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Let T : K → X∗

be any continuous map. Let the multivalued map P : K → 2X be defined by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0, x ∈ Kh(η)} .

Assume that

(a) for each x ∈ Kh(η), 〈T (x), h (xx, η(x, x))〉 = 0,
(b) T satisfies 〈T (y), h (xy, η(x, y))〉 − 〈T (x), h (xy, η(y, x))〉 ≤ 0 for all

x, y ∈ Kh(η),
(c) for each y ∈ K, the set

P−1(y) = {x ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) < 0}

is either H-convex or empty.
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Then the multivalued map N : K → 2X defined by

N(x) = {y ∈ Kh(η) : 〈T (x), h (xy, η(y, x))〉+ F (x)− F (y) ≤ 0, x ∈ Kh(η)}

is a H-KKM mapping.

Proof. By (a), we have 〈T (x), h (xx, η(x, x))〉 = 0, for each x ∈ Kh(η), that is,
x ∈ P (x)∩N(x). Therefore P (x) and N(x) are nonempty for each x ∈ Kh(η).

Our aim is to prove that N is a H-KKM mapping, that is, to show that there
exists a finite set A in Kh(η) such that ΓA *

⋃
x∈A

N(x). On the contrary, if N

is not a H-KKM mapping, then there exists a z ∈ ΓA such that z /∈
⋃
x∈A

N(x),

implying z /∈ N(x) for all x ∈ A, that is, 〈T (x), h (xz, η(z, x))〉+F (x)−F (z) >
0 for all x ∈ A. Since T is h-η-monotone on Kh(η), we have

〈T (y), h (xy, η(x, y))〉 − 〈T (x), h (xy, η(y, x))〉 ≤ 0

for all x, y ∈ A. At y = z, we have

〈T (x), h (xz, η(z, x))〉 − 〈T (z), h (xz, η(x, z))〉 ≤ 0

for all x ∈ A, that is,

〈T (z), h (xz, η(x, z))〉+ F (x)− F (z) ≤ 〈T (x), h (xz, η(z, x))〉+ F (x)− F (z)

< 0

for all x ∈ A, that is, x ∈ X−P−1(z). Thus A ⊂ X−P−1(z). Since X−P−1(z)
is a weakly H-convex set for each z ∈ Kh(η), we have ΓA ⊂ X−P−1(z). Thus
z ∈ X − P−1(z), that is,

〈T (z), h (zz, η(z, z))〉+ F (z)− F (z) < 0.

It implies that 〈T (z), h (zz, η(z, z))〉 < 0, which contradicts (a). Hence N is a
H-KKM mapping. �

3. Existence theorems of solution

The following theorem establishes the existence of solution of the problem
h-GVIP without using the weak H-convexity.

Theorem 3.1. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Let T : K → X∗

be any continuous map. Assume that

(a) for each x ∈ Kh(η), 〈T (x), h (xx, η(x, x))〉 = 0,
(b) for each y ∈ Kh(η), the mapping y 7→ 〈T (y), h (xy, η(x, y))〉 is contin-

uous,
(c) for each y ∈ K, the set B(y) = {x ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉 < 0}

is either H-convex or empty,
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(d) there is a compact set L ⊂ X and a H-compact set C ⊂ X such that
for each weakly H-convex set D ⊂ Kh(η) with C ⊂ D, we have⋂

x∈D
{P (x) ∩D} ⊂ L.

Then there exists a y ∈ Kh(η) such that y ∈ Kh(η) solves the problem h-GVIP,
that is,

〈T (y), h (xy, η(x, y))〉 ≥ 0 for all x ∈ Kh(η).

Proof. By Theorem 2.10, the multivalued mapping P : K → 2X defined
by P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉 ≥ 0} is a H-KKM mapping for
each x ∈ Kh(η). To show the existence of the solution of the problem h-GVIP,
we only show that P is closed, that is, if {yn} ⊂ P (x) with yn → y, then
y ∈ P (x). Since for each y ∈ Kh(η), the mapping y 7→ 〈T (y), h (xy, η(x, y))〉
is continuous, we have

〈T (yn), h (xyn, η(x, yn))〉 → 〈T (y), h (xy, η(x, y))〉
for each x ∈ Kh(η). Since 〈T (yn), h (xyn, η(x, yn))〉 ≥ 0 for each x ∈ Kh(η)
and R+ is closed, we have 〈T (y), h (xy, η(x, y))〉 ≥ 0 for each x ∈ Kh(η). Thus
y ∈ P (x). Hence P is closed in Kh(η) ⊂ X. Since the multivalued map P
satisfied the followings:

(i) P is a H-KKM mapping,
(ii) for each x ∈ X, P (x) is compactly closed, that is, B ∩ F (x) is closed

in B, for every compact B ⊂ X,
(iii) there is a compact set L ⊂ X and a H-compact set K ⊂ X, such that

for each weakly H-convex set D with K ⊂ D ⊂ X, we have⋂
x∈D
{P (x) ∩D} ⊂ L

which are all the conditions of Theorem 1.4. Therefore by Theorem 1.4 we
have ⋂

x∈X
P (x) 6= ∅,

that is, there exists a y ∈ Kh(η) such that 〈T (y), h (xy, η(x, y))〉 ≥ 0 for all
x ∈ Kh(η). Hence y ∈ Kh(η) solves the problem h-GVIP. This completes the
proof. �

Theorem 3.2. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Let T : K → X∗

be any continuous map and F : K → R − {0} be any differentiable map. Let
for each x ∈ Kh(η), the multivalued mapping P : K → 2X defined by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0}
be any mapping. Assume that
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(a) for all x, y ∈ Kh(η), 〈T (y), h (xy, η(x, y))〉 ≥ 0,
(b) for each x ∈ Kh(η), 〈∇F (x), h (xx, η(x, x))〉 = 0,
(c) for each y ∈ K, the set

B(y) = {x ∈ Kh(η) : 〈∇F (y), h (xy, η(y, x))〉 < 0}

is either H-convex or empty,
(d) for each y ∈ Kh(η), the mapping

y 7→ 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y)

is continuous.

Then there exists a y ∈ Kh(η) such that y ∈ Kh(η) solves the problem h-
GVIPF , that is,

〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0 for all x ∈ Kh(η).

Proof. By Theorem 2.12, the multivalued mapping P : K → 2X defined by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0}

is a H-KKM mapping for each x ∈ Kh(η). To show the existence of the
solution of the problem h-GVIPF , we only show that P is closed, that is, if
{yn} ⊂ P (x) with yn → y, then y ∈ P (x). Since for each y ∈ Kh(η), the
mapping

y 7→ 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y)

is continuous, we have

〈T (yn), h (xyn, η(x, yn))〉+F (x)−F (yn)→ 〈T (y), h (xy, η(x, y))〉+F (x)−F (y)

for each x ∈ Kh(η). Since 〈T (yn), h (xyn, η(x, yn))〉 + F (x) − F (yn) ≥ 0 for
each x ∈ Kh(η) and R+ is closed, we have

〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0

for each x ∈ Kh(η). Thus y ∈ P (x). Hence P is closed in Kh(η) ⊂ X. Since
the multivalued map P satisfied the followings:

(i) P is a H-KKM mapping,
(ii) for each x ∈ X, P (x) is compactly closed, that is, B ∩ F (x) is closed

in B, for every compact B ⊂ X,
(iii) there is a compact set L ⊂ X and a H-compact set K ⊂ X, such that

for each weakly H-convex set D with K ⊂ D ⊂ X, we have⋂
x∈D
{P (x) ∩D} ⊂ L
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which are all the conditions of Theorem 1.4. Therefore by Theorem 1.4 we
have

⋂
x∈X

P (x) 6= ∅, that is, there exists a y ∈ Kh(η) such that

〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0

for all x ∈ Kh(η). Hence y ∈ Kh(η) solves the problem h-GVIPF . This
completes the proof. �

Theorem 3.3. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Let T : K → X∗

be any continuous map and F : K → R − {0} be any differentiable map. Let
for each x ∈ Kh(η), the multivalued mapping P : K → 2X defined by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0}
be any mapping. Assume that

(a) for each y = x ∈ Kh(η), 〈T (x), h (xx, η(x, x))〉 = 0,
(b) for each y ∈ K and λ ∈ (0, 1), the set

B(y) = {x ∈ Kh(η) : (1− λ)F (x) + λF (y) < F (h(xy, x+ λη(y, x)))}
is either H-convex or empty,

(c) for each y ∈ Kh(η), the mapping
y 7→ 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) is continuous,

(d) there is a compact set L ⊂ X and an H-compact set C ⊂ X such that
for each weakly H-convex set D ⊂ Kh(η) with C ⊂ D, we have⋂

x∈D
{P (x) ∩D} ⊂ L.

Then there exists a y ∈ Kh(η) such that y ∈ Kh(η) solves the problem h-
GVIPF , that is,

〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0 for all x ∈ Kh(η).

Proof. By Theorem 2.15, the multivalued mapping P : K → 2X defined by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0}
is a H-KKM mapping for each x ∈ Kh(η). To show the existence of the
solution of the problem h-GVIPF , we only show that P is closed, that is, if
{yn} ⊂ P (x) with yn → y, then y ∈ P (x). Since for each y ∈ Kh(η), the
mapping

y 7→ 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y)

is continuous, we have

〈T (yn), h (xyn, η(x, yn))〉+F (x)−F (yn)→ 〈T (y), h (xy, η(x, y))〉+F (x)−F (y)

for each x ∈ Kh(η). Since

〈T (yn), h (xyn, η(x, yn))〉+ F (x)− F (yn) ≥ 0
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for each x ∈ Kh(η) and R+ is closed, we have

〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0

for each x ∈ Kh(η). Thus y ∈ P (x). Hence P is closed in Kh(η) ⊂ X. Since
the multivalued map P satisfies

(i) P is a H-KKM mapping,
(ii) for each x ∈ X, P (x) is compactly closed, that is, B ∩ F (x) is closed

in B, for every compact B ⊂ X,
(iii) there is a compact set L ⊂ X and an H-compact set K ⊂ X, such

that for each weakly H-convex set D with K ⊂ D ⊂ X, we have⋂
x∈D
{P (x) ∩D} ⊂ L

which are all the conditions of Theorem 1.4. Therefore by Theorem 1.4 we
have ⋂

x∈X
P (x) 6= ∅,

that is, there exists a y ∈ Kh(η) such that

〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0

for all x ∈ Kh(η). Hence y ∈ Kh(η) solves the problem h-GVIPF . This
completes the proof. �

In the following theorem we apply Theorem 1.5 to show the existence of
solution of the problem h-GDVIP in a h-η-invex set.

Theorem 3.4. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Let T : K → X∗

be any continuous map. Let P,N : K → 2X be the multivalued closed maps
defined by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉 ≥ 0, x ∈ Kh(η)}

and

N(x) = {y ∈ Kh(η) : 〈T (x), h (xy, η(y, x))〉 ≤ 0}
for each x ∈ Kh(η). Assume that

(a) for each x ∈ Kh(η), P (x) is compactly closed in X,
(b) for each x ∈ Kh(η), 〈T (x), h (xx, η(x, x))〉 = 0,
(c) T is h-η-monotone on Kh(η),
(d) for each y ∈ K, the set P−1(y)={x ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉<0}

is either H-convex or empty,
(e) the map y 7→ 〈T (x), h (xy, η(y, x))〉 is continuous,
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(f) there is a compact set L ⊂ X and an H-compact set C ⊂ X such that
for each weakly H-convex set D ⊂ Kh(η) with C ⊂ D, we have⋂

x∈D
{N(x) ∩D} ⊂ L.

Then there exists a y ∈ Kh(η) such that y ∈ Kh(η) solves the problem h-
GDVIP, that is, 〈T (x), h (xy, η(y, x))〉 ≤ 0 for all x ∈ Kh(η).

Proof. As T is h-η-monotone on Kh(η), we have

〈T (x), h (xy, η(y, x))〉+ 〈T (y), h (xy, η(x, y))〉 ≤ 0

for all x, y ∈ Kh(η). If y ∈ P (x), then 〈T (y), h (xy, η(x, y))〉 ≥ 0 for all
x, y ∈ Kh(η), implying

〈T (x), h (xy, η(y, x))〉 ≤ − 〈T (y), h (xy, η(x, y))〉 ≤ 0

for all x, y ∈ Kh(η), that is, y ∈ N(x). Thus P (x) ⊂ N(x) for each x ∈
Kh(η) which is a condition of Theorem 1.5. Since for each x ∈ Kh(η),
〈T (x), h (xx, η(x, x))〉 = 0, we have x ∈ P (x) which is a condition of The-
orem 1.5. Since for each x ∈ Kh(η), the set

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉 ≥ 0, x ∈ Kh(η)}
is compactly closed in X, we have

P−1(y) = {x ∈ Kh(η) : y ∈ P (x)}
= {x ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉 ≥ 0}

is closed in X. By Theorem 2.11, N is a H-KKM mapping. Now to apply
Theorem 1.5, we need to show that N is closed, that is, if there exists a
sequence {yn} ∈ N(x) such that yn → y in Kh(η), then y ∈ N(x). For
{yn} ∈ N(x), we have 〈T (x), h (xyn, η(yn, x))〉 ≤ 0 for all x ∈ Kh(η). Since
the map which takes y to 〈T (x), h (xy, η(y, x))〉 is continuous, we have

〈T (x), h (xyn, η(yn, x))〉 → 〈T (x), h (xy, η(y, x))〉
for all x ∈ Kh(η) as yn → y in Kh(η). Since P (x) is compactly closed in X,
we have

〈T (yn), h (xyn, η(x, yn))〉 → 〈T (y), h (xy, η(x, y))〉 ≥ 0

for all x ∈ Kh(η) as yn → y. Since

〈T (x), h (xyn, η(yn, x))〉+ 〈T (yn), h (xyn, η(x, yn))〉
→ 〈T (x), h (xy, η(y, x))〉+ 〈T (y), h (xy, η(x, y))〉 ≤ 0

for all x ∈ Kh(η) as yn → y in Kh(η) and P (x) ⊂ N(x), we have

〈T (x), h (xy, η(y, x))〉 ≤ 0
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for all x ∈ Kh(η). Therefore y ∈ N(x), that is, N is closed in Kh(η). Since
all the conditions of Theorem 1.5 are satisfied, we obtain

⋂
x∈D

N(x) 6= ∅,

that is, there exists a y ∈ Kh(η) such that 〈T (x), h (xy, η(y, x))〉 ≤ 0 for
all x ∈ D ⊂ Kh(η). Hence y ∈ Kh(η) solves the problem h-GDVIP. This
completes the proof. �

Theorem 3.5. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Let T : K → X∗

be any continuous map. Let P : K → 2X and N : K → 2X be two multivalued
maps defined by

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0, x ∈ Kh(η)} ,

and

N(x) = {y ∈ Kh(η) : 〈T (x), h (xy, η(y, x))〉+ F (x)− F (y) ≤ 0, x ∈ Kh(η)} .

Assume that

(a) for each x ∈ Kh(η), 〈T (x), h (xx, η(x, x))〉 = 0,
(b) T satisfies 〈T (y), h (xy, η(x, y))〉 − 〈T (x), h (xy, η(y, x))〉 ≤ 0 for all

x, y ∈ Kh(η),
(c) for each y ∈ K, the set

P−1(y) = {x ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) < 0}

is either H-convex or empty,
(d) for each y ∈ Kh(η), the mapping

y 7→ 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) is continuous,
(e) there is a compact set L ⊂ X and a H-compact set C ⊂ X such that

for each weakly H-convex set D ⊂ Kh(η) with C ⊂ D, we have⋂
x∈D
{N(x) ∩D} ⊂ L.

Then there exists a y ∈ Kh(η) such that y ∈ Kh(η) solves the problem h-
GDVIPF , that is,

〈T (x), h (xy, η(y, x))〉+ F (x)− F (y) ≤ 0 for all x ∈ Kh(η).

Proof. As T satisfies 〈T (y), h (xy, η(x, y))〉 − 〈T (x), h (xy, η(y, x))〉 ≤ 0 for all
x, y ∈ Kh(η). If y ∈ P (x), then 〈T (y), h (xy, η(x, y))〉 + F (x) − F (y) ≥ 0 for
all x, y ∈ Kh(η) implying

〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≤ 〈T (x), h (xy, η(y, x))〉+ F (x)− F (y)

for all x, y ∈ Kh(η), that is, y ∈ N(x). Thus P (x) ⊂ N(x) for each x ∈
Kh(η) which is a condition of Theorem 1.5. Since for each x ∈ Kh(η),
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〈T (x), h (xx, η(x, x))〉 = 0, we have x ∈ P (x), which is a condition of The-
orem 1.5. Since for each x ∈ Kh(η), the set

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0, x ∈ Kh(η)}

is compactly closed in X, we have

P−1(y) = {x ∈ Kh(η) : y ∈ P (x)}
= {x ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0}

is closed in X. By Theorem 2.15, N is a H-KKM mapping. Now to apply
Theorem 1.5, we need to show that N is closed, that is, if there exists a
sequence {yn} ∈ N(x) such that yn → y in Kh(η), then y ∈ N(x). For
{yn} ∈ N(x), we have

〈T (x), h (xyn, η(yn, x))〉+ F (x)− F (y) ≤ 0

for all x ∈ Kh(η). Since the map which takes y to

〈T (x), h (xy, η(y, x))〉+ F (x)− F (y)

is continuous, we have

〈T (x), h (xyn, η(yn, x))〉+F (x)−F (yn)→ 〈T (x), h (xy, η(y, x))〉+F (x)−F (yn)

for all x ∈ Kh(η) as yn → y in Kh(η). Since P (x) is compactly closed in X,
we have

〈T (yn), h (xyn, η(x, yn))〉+ F (x)− F (yn)

→ 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0

for all x ∈ Kh(η) as yn → y. Since

〈T (yn), h (xyn, η(x, yn))〉 − 〈T (x), h (xyn, η(yn, x))〉
→ 〈T (y), h (xy, η(x, y))〉 − 〈T (x), h (xy, η(y, x))〉 ≤ 0

for all x ∈ Kh(η) as yn → y in Kh(η) and P (x) ⊂ N(x), we have

〈T (x), h (xy, η(y, x))〉+ F (x)− F (y) ≤ 0.

Hence,

〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0

for all x ∈ Kh(η). Therefore y ∈ N(x), that is, N is closed in Kh(η). Since all
the conditions of Theorem 1.5 are satisfied, we obtain

⋂
x∈D

N(x) 6= ∅, that is,

there exists a y ∈ Kh(η) such that

〈T (x), h (xy, η(y, x))〉+ F (x)− F (y) ≤ 0

for all x ∈ D ⊂ Kh(η). Hence y ∈ Kh(η) solves the problem h-GDVIPF . This
completes the proof. �
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In the following theorem, we modify the Lemma 1.7 to show the existence
of solution of the problems in a H-space.

Theorem 3.6. Let (X, {ΓA} ;Kh(η)) be a H-pseudospace. Assume that the
multivalued maps P : X → 2X and N : X → 2X satisfy the following condi-
tions:

(i) N(x) is compactly closed for all x in X with P (x) ⊂ N(x),
(ii) P is an H-KKM mapping,

(iii) there exists a compact subset L(x) of X and a H-compact subset C(x)
of X such that for each weakly H-convex subset D(x) of X with C(x) ⊂
D(x) we have

⋂
x∈D(x)

(P (x) ∩D(x)) ⊂ L(x),

(iv) for every H-convex subset D(x) of X with C(x) ⊂ D(x), we have⋂
x∈D(x)

(N(x) ∩D(x)) 6= ∅ if and only if
⋂

x∈D(x)

(P (x) ∩D(x)) 6= ∅.

Then
⋂

x∈D(x)

P (x) 6= ∅.

Proof. Since generalized H-space is a H-space, the proof of this theorem is
directly followed from the Lemma 1.7. If we can consider X is a H-space,
L = L(x), D = D(x) and C = C(x), then according to the result studied by
Verma (see [15], Theorem 2.1, p.134), we have⋂

x∈D(x)

P (x) 6= ∅.

This completes the proof. �

Theorem 3.7. Let Kh(η) be a h-η-invex set where η satisfies condition HC?.
Let T : K → X∗ be any continuous map and F : K → R− {0} be any differ-
entiable map. Assume that for x ∈ Kh(η), the following sets are nonempty:

P (x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0} ,
N(x) = {y ∈ Kh(η) : 〈T (x), h (xy, η(y, x))〉+ F (x)− F (y) ≤ 0} ,
K1(x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ 〈T (x), h (xy, η(y, x))〉 ≥ 0} ,
K2(x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉 = 〈T (x), h (xy, η(y, x))〉} ,
K3(x) = {y ∈ Kh(η) : 〈T (y), h (xy, η(x, y))〉+ 〈T (x), h (xy, η(y, x))〉

+ 2 (F (x)− F (y)) ≤ 0},
K4(x) = {y ∈ Kh(η) : 〈∇F (y), h (xy, η(y, x))〉 ≤ 0} ,
L(x) = {y ∈ Kh(η) : F (x) ≥ F (y)} .

Let P be a H-KKM mapping, N(x) be a compactly closed set, L(x) be a
compact set for each x ∈ K, K3(x) be a H-compact in K, N(x)∩K2(x)∩K4(x)
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be a weakly H-convex set. Then there exists a y ∈ Kh(η) such that y solves
the problem h-GVIPF on D(x) = N(x) ∩K2(x) ∩K4(x).

Proof. We consider C(x) = K3(x) and D(x) = N(x) ∩K2(x) ∩K4(x). Now
C(x) ⊂ D(x) for all x ∈ K1(x). For x ∈ D(x), we have F (x) − F (y) ≤ 0
and for x ∈ P (x) ∩ K4(x), we have F (x) − F (y) ≥ 0, therefore we obtain⋂
x∈D(x)

(N(x) ∩D(x)) 6= ∅ if and only if
⋂

x∈D(x)

(P (x) ∩D(x)) 6= ∅. Thus

(i) N(x) is compactly closed in Kh(η) and P (x) ⊂ N(x) for all x ∈ C(x),
(ii) P is an H-KKM mapping in Kh(η),
(iii) there exists a compact subset L(x) of X and a H-compact subset

C(x) of X such that for each weakly H-convex subset D(x) of X with
C(x) ⊂ D(x) we have⋂

x∈D(x)

(P (x) ∩D(x)) ⊂ L(x),

(iv) for every H-convex subset D(x) of X with C(x) ⊂ D(x), we have⋂
x∈D(x)

(N(x) ∩D(x)) 6= ∅ if and only if
⋂

x∈D(x)

(P (x) ∩D(x)) 6= ∅,

which are the conditions of Theorem 3.6. Therefore by Theorem 3.6,⋂
x∈D(x)

P (x) 6= ∅,

that is, there exists a y ∈ Kh(η) such that

〈T (y), h (xy, η(x, y))〉+ F (x)− F (y) ≥ 0

for all x ∈ D(x). Hence y ∈ Kh(η) solves the problem h-GVIPF on D(x).
This completes the proof. �
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