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Abstract. In this paper, we study the analytical and approximate solutions for a fractional
quadratic integral equation involving Katugampola fractional integral operator. The exis-
tence and uniqueness results obtained in the given arrangement are not only new but also
yield some new particular results corresponding to special values of the parameters p and .
The main results are obtained by using Banach fixed point theorem, Picard Method, and
Adomian decomposition method. An illustrative example is given to justify the main results.

1. INTRODUCTION

The subject of fractional order of differential equations has newly developed
as an interesting field of research. In fact, fractional derivatives types supply
an excellent tool for the description of memory and hereditary properties of
different materials and processes. More authors have found that fractional
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order differential equations play important roles in many research fields, such
as chemical technology, physics, biotechnology, population dynamics, and eco-
nomics see [7, 19, 22].

On the other hand, fractional calculus and its applications have also a fun-
damental role in the theory of differential equations and applied mathematics.
We refer the readers to [12, 31, 32, 33, 34, 35].

Picard Method (PM) [10] generates a sequence of increasingly precise alge-
braic approximations of the curtained exact solution of the first order differ-
ential equation with an initial value. The PM of successive approximations is
applied to the proof of the existence of a solution of such equations.

The Adomian decomposition method (ADM) is an analytical method for
solving broad types of functional equations. In ongoing decades, there has
been a lot of enthusiasm for the ADM. The technique was effectively applied
to a lot of utilizations in applied sciences. For additional insights concerning
the technique and its application, see [1, 2, 3, 8, 9, 29].

The PM was first contrasted with the ADM by [29] and [5] on a variety of
examples. In [18] the author indicated that the ADM for a linear differential
equation was equivalent to the PM. Nonetheless, this equivalence doesn’t hold
for nonlinear differential equations (DEs). The authors in [16] contrasted the
two techniques for a quadratic integral equation (QIE).

The QIEs can be very applicable in many applications such as the theory of
radiative exchange, the traffic theory, the dynamic theory of gases, etc. The
QIEs have been concentrated in sundry papers and monographs, see [4, 13,
14, 15, 16, 17, 23, 24, 25, 26, 27]. For instance, in [16] the authors discussed
the Picard method and the Adomian method with proving the existence and
uniqueness of solution for

2(t) = a(t) + g(t, z(t)) /0 §(r, x(r))dr.

In [17] the authors concerned with Picard and Adomian methods and the
existence of the solution to the fractional order QIE

t(p_ 01
z(t) = a(t) + g(t,x(t))/ (tf‘(ﬁ)) S(r,z(7))dr, 9 > 0.

0

In this work, we give the analytical and approximate solutions for the frac-
tional quadratic integral equation (FQIE)

2(t) = a(t) + g(t, z(t))PI0 F(t,z(t), t € J =[0,1], ¥ >0, (1.1)
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where jgf is the Katugampola fractional integral (KFI) defined in the follow-
ing form:

3% x b tTfl -\ T,2(T))dT
30 E(L, (t))_w)/o ’ ( 5 > §(r,z(7))dr.

Moreover, we obtain the existence and uniqueness theorem for equation (1.1).

The paper is composed as follows. In Section 2, we give notations and defi-
nitions utilized all through the paper. In Section 3, we prove the existence and
uniqueness results for FQIE (1.1) involving Katugampola fractional integral.
Moreover, we discuss the analytical and approximate solution of the proposed
equation by using Picard and Adomian methods.

2. PRELIMINARIES
Let J =[0,1] € Rt and C(J) be the Banach space of all continuous func-
tions on J. For z € C(J), we have
Izl = supflz(¥)] : t € J}.
teJ

For a < b, c € R and 1 < p < oo, define the function space
1

b dt\»
XP(a,b) = Z3J—>R3HZ||X;{?:</ \tcz(t)|pt> <00y,

for p = oo,
[zl xz = ess sup [[t°(¢)[] .
a<t<T

Definition 2.1. ([20]) Let ¥ > 0, p > 0, ¢ € RT and z € X% (a,b). Then the
Katugampola fractional integral of order ¥ with a parameter p is defined by

5704(t) = / t li‘;; (T))M +(r)dr. (2.1)

Definition 2.2. (21]) Letn—1<d<n,(n=[J]+1),p>0,ceR" and
2z € XP(a,b). Then the Katugampola and Caputo-Katugampola fractional
derivative of order ¥ with a parameter p are defined by

. _d\" v
DYPx(t) = <t1 ﬂdt> TP (L) (2.2)
and
DYPx(t) = 30770 A (t), (2.3)
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: (n) _ (+1—p d\T
respectively, where z," (t) = (177 %) 2(¢).
Lemma 2.3. ([20]) Let 9,6,3 >0 and z € XE(a,b). Then
(i) Jgf is bounded on the function space X¥(a,b).
(i) Tp¥3,02(t) = T 702(2).
5—1 G451
T tP—qP ) tP—aP
(i) 7,% (7pa ) = T(+9) ( N ) :
Theorem 2.4. ([6]) Let (X,d) be a nonempty complete metric space and

Q: X — X be a contraction mapping. Then the mapping QQ has a fixzed point
mn X.

For further properties of generalized fractional integral operator (see [19,
20, 21)).

3. MAIN RESULTS

The FQDE (1.1) will be investigated under the following hypotheses:

(i) a: J — R is continuous on J.
(ii) §,9:J x R — R are continuous and bounded with

k1 = sup( )esxr [8(t, )| and k2 = sup( ,)cyxr IS¢, 2)] .
(iii) There exist two constants ¢1,f2 > 0 such that

lg(t,z) —a(t, y)| < bi ]z —y|
and

St @) =Sty < lolz—yl,
forallt € J and z,y € R.

Define the operator 9t as
tpp—1 (t" — 7P

MNx)(t) = alt) + g(t, z(t / —_—

O)(0) = alt) + att.2(0) | T (=

Theorem 3.1. (Uniqueness Theorem) Assume (i), (ii) and (iii) hold. If

A= <%%%;“1) p~? < 1, then the nonlinear FQIE (1.1) has a unique solution

zeC(J).

Proof. 1t is obvious that 91: C(J) — C(J). Now, let By C C(J) such that
By = {z(t) € C(J) : |z(t) —a(t)] < A, for t € J}.

Then B) is a closed subset of C'(J) and for A\ = Fﬁ;i?l)p*ﬂ, the operator

9 : By — B). Indeed, for x € By, we have

-1
> S(r,z(r))dr, t€ J, 9 >0.
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tp_Tp

t7_—1 -1
(1) — a(t)] < lg(t, 2(1))] /0 rw)( ; ) §(r,2(r))|dr

trp=1 f4p _ 1p 9—1
< kik / ( ) dr
R YR

Now we prove that 91 is a contraction. Since

(9) () — (My)(¢)
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ko (tp

9
<ok p) (1) — y(0)

T e e

< F(f,}ffl)p—” () — y(t)]
t Tpfl P — P J—1
e e G B R

which implies that

() () — (MNy) ()| = sup () () — (My) ()]
l1ko

<22 57—
ST+’ |z =yl
trp=l s o\ V1
+ loky ||z — / <> dr
Uky bk _y
< — —
=Allz—y|.

Since A < 1, 9t is a contraction. Hence, Theorem 2.4 shows that FQIE (1.1)
has a unique solution z € C(J). O

3.1. Picard method: Applying the Picard method to the FQEI (1.1), the
solution is structured by the sequence

t p—1 PP -1
{ rp(t) = a(t) + g(t, zn-1(t)) J, TW (t ;T ) S(1, xp—1(7))dr, n=1,2,...,

xo(t) = a(t).
(3.1)
Then the functions {z,(t)},, are continuous and z, can be written as

n
Ty = Lo+ Z [:Uj — .’Ej,ﬂ .
j=1
If the infinite series ) [z; — xj_1] converges, then the sequence {z,(t)} will
converge to z(t). Thus, the solution will be

z(t) = lim x,(t).

n—oo
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Now, we show that {z,(t)},,~; is uniform convergence. Consider the infinite
series -

[e.9]

[2n(t) — 2n-1(t)].

n=1

By (3.1) for n = 1, we obtain

tp—1 p_ b v—1
nt) = an(0) = a(tan(0) [ T (T ) st

Thus

t o=l fyp o\ V1 k1ko
t) — zo(t)| < kik - dr < —— 172 =00 2
) = a0 < bk [ o (7)< (Rt a2

Now, we estimate the express z,(t) —z,—1(t), for n > 2 as follows:

Tp(t) — zp—1(t)
b1 _ e\ V-1
~a(t.ona0) [ T (tp> §(r, 21 (7))dr

~attrna) [ o (V) s st

0 P

t T —1 — T
+g(t, xn—l(t»/o pr(ﬁ) <tppp

top PPN
~ st 0) [ T (tp) 37, 2na(r))dr

t o=l /40 _ 2o\ 91
= attna) [ T <t> §(r, 201 (7)) — (7, 2na(r)] dr

0 P

t p-1 _ o\ -1
ot () - tzaa0] [ 1o (CST) et

0 P

9—1
) S(7, xp—o(7))dT

Using hypotheses (ii) and (iii), we obtain

|20 (t) = 2n—1(t)]

top=1 /o _ 2o\ P
< lalt. 0 ()] [ m)(tp) §(rs 201 (7)) — (7, 2na(r)| dr

t p-1 N
ot - st [ o (C57) Bmalar
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t Tpfl P — P v—1
< Uk _ — n— — Ty d
< £ 1/0 F(ﬁ)( P ) |Tn—1(T) — Tp—2(7)| dT
p=1 /40 _ p\ Y91
+ l1kg |xp—1(t) — zp—af ]/ T <t T > dr.

Imposing n = 2, then utilizing (3.2), we obtain

top—1 e\ P-1
at) ~ (0] < tabs [ T (t) (a2 (r) — ol dr

p=1 /40 _ p\ V-1
+€1/€2|{L‘1 |/ T (t T) dr

2 1 v—1
< ki / T ( Tp) " dr
twrn’ T\

k3R
ro+1)” " T+
fgk‘%k‘g p,lg F('ﬁ + 1) pfﬁtQpﬂ
STW+1)" T@9+1)
flkgkl p7219t2p19
LW+ 1)+ 1)

klk‘g F(ﬂ + 1) —929 Zle —29 | ;2p0
lok P2 29| 200,
ST@O+1) [2 T+’ TW+1)”

+

Similarly, for n = 3

t p—1 _\?!
23(t) — 2a(t)] < bk / rw> (tp> 2a(t) — a1 (1) dr

0

¢ Tp_l tr—7p\"t

k1ks Ok L'+ 1 —29 liky oy
T(W+1) r(219+1 red+1)” T(O+1)
F(219 + 1) Ele —39 3[0,19
. (er(w ¥ 1)p ro+n” )"
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Repeating this process, we get

kik rw+1) Ok -
|0 (t) — 2n1 ()] < F(ﬁljl) (f k1 p(2§+ r2o+1)” " ﬁ 279)
(20 +1) biky
x (Ml RET ) A e 30)

F((n — 1)79 + 1) —nd £1k2 —nd npv
. (Ml rw+1) © Trosn” )!

k1ko F(l? + 1) 9 f1ko 9
< e S
=TW+1) (Ezklr(ﬁ T’ Trwrn’

rQ0+1) _y  fke
. (Ml T+ " "Tw+’

C(n—1)9+1) _, ks
x (er((n—wﬂ)p e 19)
ks

< T ((52161 + l1ks) p‘ﬂ) X ((ﬁgk‘l + L1k2) P_ﬁ>

X <(£2]€1 + £1k2) p7ﬂ>
k1ko _9\"
< e
ST+ 1) <(€2k¢1 + l1kg2) p )
l1ko+02k

Since ( EES ) p~? < 1, the series 3°° [#,(t) — ¥,,—1(t)] and the sequence
{zy(t)} are uniformly convergent.
Due to §(t,z) and g(¢,z) are continuous in z, it follows that

t p-1 _ o\ 91
o) = Jim altalt) [T (P57) Saar

“stta) [ T (M) s

This proves the existence of a solution.

Now we need to prove that the solution is unique. In order to get this, let
y(t) be a continuous solution of (1.1), that is,

t -1 PPN
y() = a(t) + ot y(t) /0 Fiﬂ) (tppp) S(ry(P))dr, te[0.1], 9> 0.
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= stale) [ T (t‘)ﬁ §(r,y(r))dr

p
t p-1 _ o\ 91
~sttna®) [ T (C2T) S

tpp-l <tp — 7P

ot y(1)) /0 (=

et [ T () st

t p-1 _ o\ V-1
—att®) [ T (“57) B - Srnaatar
trp—1 (tp — 7P

+ [g(t, y(t) — g(t,azn—l(t)]/ w p

0
By utilizing suppositions (ii) and (iiii), we obtain

ly(t) — zn(t)]

t -l _ o\ Pl
<latto®)l [ T (tp) [§(r,4(r)) — §(rs 2r (7)) dr
t T —1 — TP
lottatt) —attans) [ 1o (U
t 7_pfl R 9—1
<om [ T () Y(r) = s (7)) dr

0
A
(”) dr. (3.3)
p

kika 9,00
rWw+1) '

v—1
> S(7m, xp—1(7))dr

v—1
) S(7,xp—1(7))dT.

I—1
) [§(rs s () dr

t T —1
) = 2] [

But we have

ly(t) —a(t)] <
Hence with using (3.3), we get

k1ko

9™

ly(t) — zn(t)] <

Consequently
lim z,(t) = y(t) = z(t).

n—oo

Hence, we have the desired result.
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Corollary 3.2. Under the assumptions of Theorem 3.1. If p — 1, then the
FQEI (1.1) reduces to

o 7_)19—1

t
x(t) =a(t)+9(t,m(t))/0 (tf(m

§(7, z(7))dr,

which has a unique solution ([17]).

Corollary 3.3. Under the assumptions of Theorem 3.1. If ¥, p — 1, then the
FQEI (1.1) reduces to

t
o(t) = a(®) + a(t. (1) | S(r.a(r)ar,
0
which has a unique solution ([16]).
In particular, if g(t,z(¢t)) = 1, we get the Picard Theorem ([10, 11]).
Corollary 3.4. Under the assumptions of Theorem 3.1 with g(t,z(t)) = 1,
a(t) = xo(t) and ¥, p — 1. If bo < 1, then the FQEI (1.1) reduces to

t
x(t) = zo(t) +/ (1, z(7))dr.
0
which has a unique solution ([11]).

3.2. AD method (ADM). In this part, we will study ADM for the FQEI
(1.1). The solution algorithm of the FQEI (1.1) using ADM is

zo(t) = a(t), (3.4)

() = Agy () T Be_1y (1), (3.5)

where Ay and By, are Adomian polynomials of the nonlinear terms g(¢, z) and
§(7, ), respectively, which takes the following form

1 [ an > ]
L k=0 1 =0
1| dn > ]
B, =— |— £y A\ 3.7
Here we will express the solution as
2(t) =Y . (3.8)
k=0
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3.3. Convergence analysis:

Theorem 3.5. Let x(t) is a solution of FQIE (1.1) and there exists a positive
constant M such that |x1(t)] < M. Then the series solution (3.8) of FQIE
(1.1) using ADM converges.

Proof. Set {S,} be a sequence such that S, = Y~/ is a sequence of partial
sums from the series (3.8) and we have

g(t,x) = ZAk and F(t,x) = ZBk'
k=0

k=0

Let S, and S: be two arbitrary partial sums with v > e. Now, we go ahead
to demonstrate that {S,} is a Cauchy sequence in C(J).

k=0 k=0
€ £
19.
=D Aw-1(®) <50f > By (t)>
k=0 k=0
Y € 9 Y
= Z Ag—1)(t) — Z A(kl)(t)] (%f Z B(kl)(t)>
k=0 k=0 k=0
€ 5 5 €
+ > Aw—n(t) (3010 Z B—1(t) — Z B(kz—l)(t)]>
k=0 k=0 k=0

Hence we have
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18y = S|
-
<
< max ZA(kl ( ZBkl )‘
k=e+1
€
+max ZA(k—l)(t) <3§f > B(k—u(t))‘
k=e+1
9 Y
< max Z Ap(t)| (37 Z Br-1)(t)
k=0
€ -1
+ max D> Apeny O] D Br(t)
k=0 k=¢e

Y

p

t T —1 v—1
< maxlot,5,0) — (e S0l [ T [T sl

Pl e — P01
+max|g t S ’/ |:P:| |g(7—a S’yfl)_g(ﬂssfl”dT

=1 [gp — o]V 1
< _ _ [ I
~ Elkg I?GEJ:IX |S7—1 SE 1’ /0 1_‘(79) |: P ] dr

t Tpfl —— v—1
+ ZQk’l I{lea}( ‘S -1 — S€_1| / w |:p:| dr
1

L —
=TW+1)
< A|IS,_1 — S-1]|.

(£2k'1 + €1k2) ] rilax|57 1—S._ 1|

Let vy =e¢+ 1. Then
ISes1 = Sell < AlISe = Sem1]] < A% [[Semt = Secal| < -+ S A1~ Soll -

Therefore, we have

1—A

1Sy = Sell < 118er1 = Sell + 1Se2 = Seall + - - - + 1Sy = Sy
< [ATHATT 4 AT IS = S
< A[L4+A+- 4+ A= IS = Sl
1— AT
< o Al
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The assumptions 0 < A < 1, and v > ¢ lead to (1 — A7~¢) < 1. Hence,

AE
1—-A

A nax e (8)]
< pogmein )l

155 = Se| (et

Since |z1(t)| < M and as € — oo, ||Sy — Sc|| = 0 and hence, {S,} is a Cauchy

sequence in C'(J) and the series Y-, zx(t) converges.

4. NUMERICAL EXAMPLE

g

In this section, we apply the Picard method and the ADM method through

a numerical example.
Example 4.1. Consider the following nonlinear FQIE,

19
204t5\ 1, 11
x(t) = <t2 ~ Trol ) + Z:):(t)Jg 2303’(75),

which has the exact solution z(t) = 2.
Applying Picard method to Eq. (4.1), we get

19
204t 2 1 1.1
T (t) = <t2 - - ) + a1 (632220 (1), n=1,2--

1501

1.1
zi(t) = =i (DIZZ A (1), i=1,2,- -,

where A; are Adomian polynomials of the nonlinear term 3, and the solution

will be
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