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Abstract. As hypergeometric meromorphic multivalent functions of the form

L2 f(C) = cjip + ; ((7:)):; ) (p— (F»: 2p)t) s O

contains a new subclass in the punctured unit disk Zi’g (t,k,p) for =1 < D < S < 1, this
paper aims to determine sufficient conditions, distortion properties and radii of starlikeness

and convexity for functions in the subclass L%’ f(¢).

1. INTRODUCTION

Let 3, denote the class of meromorphic multivalent functions f(¢) normal-
ized by

F(Q) =g+ X0Z0 anspC™P 5 p € N\ {0} (1.1)
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which are analytic in the punctured unit disk
Ur={C:¢eC and 0<|[(] <1} =U\{0},
where C is the set of complex numbers.

The starlike and convex functions are most important subclass of meromor-
phic functions, as they have very useful characteristics. See for example (Aouf
et al. [4], Ghanim and Darus [8], Srivastava [12], Kulkarni et al. [13], Morga
[17], Owa et al. [18], Srivastava and Owa [19], Uralegaddi and Somantha [20],
and Yang [21]).

The functions f,(¢), (v = 1,2) are defined by:
folQ) = = + Za,ﬁp,vg (v=1,2).
The convolution (or Hadamard product) of f1(¢) and f2((¢) are defined by :

(fix f2)(C) = = + Zaner,la&er,?C = (fax [1)(C) -

C
Let the function™,(w, o; () be defined by:

~(w,0;() +Z RHC’“”)(UG C/(z=|J{0})iw € C), (12)

where (7), is defined by:

()._M_{T(T—i—l)...(T—i-/f—l), (k=neN;7€C)
Tt = L(r) 1, (k = 0;7 € C\ {0}),

(1), is called the Pochhammer symbol and I' is Gamma function.

The meromorphic functions with the generalized hypergeometric functions
were considered recently by Al-Janaby and Ghanim [2], Al-Janaby et. al. [3],
Cho and Kim [5], Dziok and Srivastava [6], El-Ashwah [7], Ghanim and Darus
[9-11], Liu [14], and Liu and Srivastava [15].

Let the function f which is defined in (1.1) belong to the subclass ¥,, we
start by reintroducing ¢’ f (¢) which was studied by [16]:

CFO) ==+ G
(1.3)

= C% + ZEO:O M:Qp)t)an+p<n+p, (t > O).

Using the convolution between (1.2) and (1.3), we will introduce a new
function Lfgf + defined on X, by:
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Lo f(Q) = H(w@,0:¢) = f(Q)
(1.4)

= G T G R (v, (e U

K= O(O'n+2 p

Forall ¢ € U*and -1 <D < S <1, the function f € X, is said to be
a member of the subclass Zf—}g(t, Kk, p) if it satisfies:

C (Lo f(Q)) +p L f(C)
D¢ (Lo f(Q) + Sp (L [(Q))

See for example [1] and [8].

<1 (1.5)

2. COEFFICIENT ESTIMATES AND DISTORTION THEOREMS

In this section, our first result will be concerning the coefficient estimates
and distortion theorem for the subclass E%g(t, Ky p).

Theorem 2.1. Let the function f be defined by (1.4) and satisfies (1.5). Then
i (@)s2 | (p = (5 +2p) t)
= (0)rt2 p
< p(§-D), (2.1)

where —1 < D < S <1.

Proof. Suppose that (1.5) holds. Let

[(k+2p) = ((k+p)D + Sp)] |ax+,|

M = C <<p+1 +§% w fi+2 <K+2p) )(H+p)ak+ka+p_1) ’

U H+2 P
P~ — (k+2p)t)
=2 4 n+2 pa C,H_p,
¢P HZO U )42 P e

P = DQ <’0 _|_Z w n+2 (K_‘_zp) )(,{_’_p) ar{—i—pCHerl)

¢rt 0 (0)k+2 P
and
o (1 @)tz (P (5 +20)0)
Q‘*”’(@ F 2 (o , )
Then
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it implies that

Dl (@)nt2 (p—(’@;‘%)t) { K+ 2p} an-i—PCHp

( )~+2
Sp—pD (@urz (o129 | =t
cP + ZH 0 (0)kt2 ° 0 {(H +p)D + SP} an—&—pc P
Thus we have
2 (@), — (k4 2p)t .
Z( )r+2 . (p—( p)t) {5+ 20} Qs C 1p
Sp—pD < (@)rt2 (p— (K +2p)t) +
+ K+ p)D + Sp}ax,LP| <0.
Cp ,;) (O-)N+2 P {( ) } +p
Therefore,
(@ . —(k+2p)t
Z( ) +2 (p ( p) ) {H—l—?p} an+pck+2p
k=0 (U)N‘FZ p
W)k — (k+2p)t .
~|sp-pp+ Y J)) - G (p P (k4 p)D + Sp} anynctt?| <0
xk=0 K

Hence we have

— (@)na [p— (K +2p) t "
E:%;H ( >‘(K+%ﬂ%ﬂuc“ﬂ
= (0)k+2 p
= (@)ess [p= (i + 20 :
—Sp-l-PD_Z(J +2 | P <p P) ((/@'—i-p)D*l—SPHaHerHC +2p‘ = 0.
k=0 K42

If || =r — 1, then we have

[e.e]

2 i

U k+2

—(k+2p) 1)
p

]Mm+mn—«m+mn+smn%ﬂ4sms—Dy

Hence it follows from (1.5) that f € ng(t k,p) and the intended result is
achieved. O

Corollary 2.2. Let the function f be defined by (1.4). If f € Z%,,D,(t,m,p),
then

,(k>0).
(2.2)

| < > (@)usa (8= D)
S @2 (0= G+ 2001 (4 20) — (4 9)D + 5p)]
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Our assertion in Theorem 2.1 is sharp for functions of the form:

B i p2(0)k+2(S—D) K+
I = G @l — e+ 200 (4 20) — (s 4 DT 5]

(2.3)
Corollary 2.3. Let S =1 and D = —1 in Theorem 2.1. Then we have
i (@)rt2 | (p — (5 + 2p)t)

k=0 (J) K42

and therefore the function Lfgjg (€) is starlike in U*.

(k+p) |am+p’ <p

Corollary 2.4. Ift = 0,5 =1 and D = —1 in Theorem 2.1, then f € X,
satisfying the following condition:

= (@) nt2
NZ:O (O_)N+2 ("i + p) |a/€+,0| S P

and it is starlike in U*.

Corollary 2.5. For S =1 and D — 1 in Theorem 2.1, we have:

— (@)ya [(p — (K+2p) 1)
k=0 (U) K42 p

(k+ 9)2 |an+p’ <p

and therefore the function Ly f(C) is convex in U* .

Corollary 2.6. Ift = 0,5 =1 and D = —1 in Theorem 2.1, then f € X,
satisfies the following condition:

ZOO (@)

+2
(0,) ’:_2 ("{ + p)2 ‘al‘ﬁ-l” S P
k=0 K

and it s convex in U*.

A distortion property for functions in the subclass Eg}g(t, K, p) is given in
the following result:

Theorem 2.7. If the function f is defined by (1.4) in the subclass Eg’fg(t, Ky p),
then for 0 < |¢| =r < 1, we have

1 (S - D) 1 (S — D)
il o ey I F O R ro s (2.4)
and
p p(S — D) - / p p(S — D) -
rot+l B [2 — (S —|—D)] r? ' S ‘f (C)| < rp+l [2 _ (S+ D)] (s ! (2'5)
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with equality for
1 (S- D)
¢ 2=(D+S5)]

Proof. Let f € Z%Q(t %, p). Then

f(Q) = ¢r.

~ (@)et2 [(p — (K+2p)t) Ktp
OIS G+ 2 (e 2000 o 1l
rP n+2 P — (k+2p)t)‘ a
Z H+2 D | f-c+p‘
Theorem 2.1 readily yields the inequality:
— (@2 [ (p— (5 +2p) ) ‘ p(S—D)
syl < 2.6
2 o o el S e () Dy S Y
thus, for 0 < || =7 < 1, we have
1 p(S — D)
< —+4+7f (k20
A (PR (CERDT R M
Hence, we have
1 (S—D)
< — [ — 2.

and the other side of the inequality in (2.4) can be obtained using similar
procedure. For (2.5),

+Z n+2 '(p—(ﬁ+2p)t) (K_Fp)‘a,ﬁ_p”d/i#»p*l'

p

701 < o

K+2

It follows from Theorem 2.1 that

— (@)t | (p—(s+2p) 1) o) la (k+p)p(SD)
) e I LGl ey vy e o)
(2.8)
thus, for 0 < |¢| =7 < 1, we have
/ p (k + p)p(S — D) o
‘f(C)‘ < | [(’i+2p)—((/€+p)D—|—5’p)]r o=l (k> 0).
Hence, we have
S—D
OIS i+ 2.9)

By similarity, the other side of the 1nequality follows and the proof is complete.
O



New subclass of meromorphic multivalent functions 559
3. STARLIKENESS AND RADII OF CONVEXITY

Theorem 3.1. If the function [ is in the subclass Eg}g(t,ﬁ,p), then f is
meromorphically starlike of order x(0 < x < 1) in |{| <1,

1
o [ (p=2)(k +2p) — (( + p)D + Sp)] | ~+%
= D — inf 3.1
1 Tl(Sa aﬁ’p) /120{ (H+3p—x)p(S—D) 3 ( )
where the result is sharp for the function f. given by (2.3).

Proof. Tt suffices to prove that

C(LEsf(Q))
S et o S e (3.2)
Lo f(C)
for || < 1. We note that
(( Lo F ()
t,p + P
Laf(€)
)k K+2, K
_ gp L+ 0(0' ij'(p (:p)t)(ﬁ‘i‘p) et pC TP
B (@) w+2 (p—(Kk+2p)t) K+p tr
D e S
| Ze e “"“;”””) G (P (R + 2p)
- K — (k+2 K
C%’ + o, a),i:j (e (p+ﬂ)t) (e pCETP
So g |l | al(k + 2p) ¢
o] W)k — ( k+2p)
B - T tgme (L=l ) o jcst
_ TXoe [eega) ram\m + 2p) ¢+ s
- 00 W)k — ( K+2 K )
1 o— S G |lem e ) g )¢
Hence, if
= wn 2 [(p = (K+2p)t .
> ( D | lonpCn -+ 20) i
— U H+2 P
(@)it2 | (p— (K +2p)t) %
Z B o [C[FF% (3.4)
— (0)r+2
or
— (@)nt2 |[(p— (5 +2p)t wi2p (K1 3p— X
S Ehia 0= G220 | e (23020
=0 (0)r+2 P pP—X
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that is,
w K — (K 2 t K K 30 —
ekt e (52) e
(3.5)
with the aid of (2.2) and (3.5), for all k > 0,
(@rr2 |(p = (K+2p) 1) |2 </€+3p—x>
(0)rt2 p pP—X
< (@s2|(p = (8 +20)t)| [(% + 2p) — ((k + p)D + Sp)]. (3.6)

N p*(0)r+2 (5= D)
Solving (3.6) for |(|, we obtain

(p—)[(5+2p) — (5 +p) D +Sp )] | =
= (S ey e 6

g

Theorem 3.2. If the function f is defined by (1.4) in the E%g(t,/{, p), then
f is meromorphically convex of order x(0 < x < 1) in || < ra, where

ro = 7'2(57D7’%7p) = an

(p = )[(5+2p) = (5 + p)D + Sp)] | =%
k>0 { } ’ (38)

(k+p)(k+3p—x)(S = D)
the result is sharp for the function f. given by (2.3).

Proof. By using the technique employed in the proof of Theorem 3.2, we can
show that

¢ (LEaf ()"
T 4 pt1 [ < (p— ), (3.9)
(Lo fQ))
for || < ro, with the aid of Theorem 2.1. Thus, we have the assertion of
Theorem 3.2. U

4. CONVEX LINEAR COMBINATIONS

Our next results involve a linear combination of several functions of the
type (2.3).

Theorem 4.1. Let )

fo-1(Q) = G (4.1)
and for k >0,
1 p?(0)k+2(S — D) g

FeolO) = G ¥ na o= (w2000 (5 + 2) — (5 + 9D + 5p)

(4.2)
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Then f € ESD(t K, p) if and only if it can be expressed in the form

= Znn—&-p—lffﬁ—p—l(o (4-3)

where Nyrp—1 >0 and Y27 Nutp—1 = 1.

Proof. From (4.1), (4.2) and (4.3), it is easily seen that

()= Z 77ff+p—1fn+p—1(o

k=0

P2 (0)k+2 (S - D)77rs+p Kt
*Z a1 2p0] (R 5 20) — (e D51

=: 47 + Z Ay pCFP. (4.4)
k=0

Since
oo

Z(W)HH\( —(n+2p)0)[[(k+2p) = (K +p) D + Sp)]
@p*(0)xt2(S — D)

k=0

2(0)n+2(s )77n+p
(@)w+2 |(p = (£ + 2p))| [(Kk + 2p) = ((k + p)D + Sp)]

= an-eer =1-n1 <1,
k=0

X

it follows from Theorem 2.1 that the function f € ZSD(t k,p).
Conversely, suppose that [ € ESD(t k,p). Du to

p2(0)n+2 (S - D)
ezl (m + 20| [k +29) — (kT oD 5o * = 0

‘a/{+p| < (

Setting
(@)rt2 |(p — (5 +2p)t)| [(k + 2p) — (5 + p)D + Sp)]

K = a’ﬂ ) R Z 0
et 2@z (S - D) sl (5 2 0)
and
Np—1 = 1- Zﬁmp,
k=0
it follows that f (¢) = Y02 Mt p—1Srtp—1(C). O

Theorem 4.2. The subclass E%g(t, K, p) is closed under convex linear com-
binations.
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Proof. Suppose that the functions f1(¢) and f2(¢) defined by

folQ) = Clp + Zawvc T (v=1,2;¢ € UY) (4.5)
are in the subclass E%g(t, K, p). Let
f(Q) = ufi(Q) + (1 —p)fa(C), (0 < p <1). (4.6)

Then, from (4.5), we find that

+Z Jret? < mﬂp)t) {Htp1 + (1= @)ansp2} 7

n+2 1Y

(0<pu<L;(el).
In view of Theorem 2.1, we have
W<wnﬁ2<@—wm+2mt
= (0)xt2 P
X [(Hantp1 + (1 = p)antp2)|
o (@)t2 ((p — (k4 2p)t

<py

)Kn+m»—«n+mD+sm1

)Kn+mn—«m+mD+smu%ﬂﬂ

0 (0)w+2 P
+(1—p) Z ((?:)::22 <(p - (I;Jr 2p)t>
X [(k + 2p) ((k+p)D + Sp)] |an+p.2]
< jip(S = D) + (1 - p)p(S - D)
=p(S—D,).
This means that f € Ewg(t Ky ). O
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