Nonlinear Functional Analysis and Applications Vol. 26, No. 3 (2021), pp. 553-563

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2021.26.03.07 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2021 Kyungnam University Press

NEW SUBCLASS OF MEROMORPHIC MULTIVALENT FUNCTIONS ASSOCIATED WITH HYPERGEOMETRIC FUNCTION

Mohamed A. Khadr¹, Ahmed M. Ali² and F. Ghanim³

¹Department of Mathematics, College of Computer Science and Mathematics University of Mosul, Mosul, Iraq e-mail: Mohamed2019ahmad2020@gmail.com

²Department of Mathematics, College of Computer Science and Mathematics University of Mosul, Mosul, Iraq e-mail: ahmedgraph@uomosul.edu.iq

> ³Department of Mathematics, College of Sciences University of Sharjah, Sharjah, UAE e-mail: fgahmed@sharjah.ac

Abstract. As hypergeometric meromorphic multivalent functions of the form

$$L_{\varpi,\sigma}^{t,\rho}f(\zeta) = \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \quad . \quad \frac{(\rho - (\kappa + 2\rho)t)}{\rho} a_{\kappa+\rho} \zeta^{\kappa+\rho}$$

contains a new subclass in the punctured unit disk $\Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$ for $-1 \leq D < S \leq 1$, this paper aims to determine sufficient conditions, distortion properties and radii of starlikeness and convexity for functions in the subclass $L_{\varpi,\sigma}^{t,\rho}f(\zeta)$.

1. Introduction

Let Σ_{ρ} denote the class of meromorphic multivalent functions $f(\zeta)$ normalized by

$$f(\zeta) = \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} a_{\kappa+\rho} \zeta^{\kappa+\rho} \; ; \rho \in \mathbb{N} \setminus \{0\}$$
 (1.1)

⁰Received December 10, 2020. Revised March 7, 2021. Accepted March 11, 2021.

⁰2010 Mathematics Subject Classification: 30C45, 30C50.

 $^{^{0}}$ Keywords: Meromorphic multivalent hypergeometric functions, starlike functions, convex functions, Hadamard product.

⁰Corresponding author: F. Ghanim(fgahmed@sharjah.ac).

which are analytic in the punctured unit disk

$$\mathbb{U}^* = \{ \zeta : \zeta \in \mathbb{C} \text{ and } 0 < |\zeta| < 1 \} = \mathbb{U} \setminus \{0\},\$$

where \mathbb{C} is the set of complex numbers.

The starlike and convex functions are most important subclass of meromorphic functions, as they have very useful characteristics. See for example (Aouf et al. [4], Ghanim and Darus [8], Srivastava [12], Kulkarni et al. [13], Morga [17], Owa et al. [18], Srivastava and Owa [19], Uralegaddi and Somantha [20], and Yang [21]).

The functions $f_v(\zeta)$, (v=1,2) are defined by:

$$f_v(\zeta) = \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} a_{\kappa+\rho,v} \zeta^{\kappa+\rho}, (v=1,2).$$

The convolution (or Hadamard product) of $f_1(\zeta)$ and $f_2(\zeta)$ are defined by :

$$(f_1 * f_2)(\zeta) = \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} a_{\kappa+\rho,1} a_{\kappa+\rho,2} \zeta^{\kappa+\rho} = (f_2 * f_1)(\zeta)$$
.

Let the function $\rho(\varpi, \sigma; \zeta)$ be defined by:

$$\widetilde{\rho}(\varpi,\sigma;\zeta) = \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \zeta^{\kappa+\rho}, (\sigma \in \mathbb{C}/(\mathbb{Z}^{-} \bigcup \{0\}); \varpi \in \mathbb{C}), (1.2)$$

where $(\tau)_{\kappa}$ is defined by:

$$(\tau)_{\kappa} := \frac{\Gamma(\tau + \kappa)}{\Gamma(\tau)} = \left\{ \begin{array}{ll} \tau(\tau + 1)...(\tau + \kappa - 1), & (\kappa = n \in \mathbb{N}; \tau \in \mathbb{C}) \\ 1, & (\kappa = 0; \tau \in \mathbb{C} \setminus \{0\}), \end{array} \right.$$

 $(\tau)_{\kappa}$ is called the Pochhammer symbol and Γ is Gamma function.

The meromorphic functions with the generalized hypergeometric functions were considered recently by Al-Janaby and Ghanim [2], Al-Janaby *et. al.* [3], Cho and Kim [5], Dziok and Srivastava [6], El-Ashwah [7], Ghanim and Darus [9-11], Liu [14], and Liu and Srivastava [15].

Let the function f which is defined in (1.1) belong to the subclass Σ_{ρ} , we start by reintroducing $c^{t}f(\zeta)$ which was studied by [16]:

$$c^{t} f(\zeta) = (1 - t) f(\zeta) + \frac{t \zeta(-f(\zeta))'}{\rho}$$

$$= \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\rho - (\kappa + 2\rho)t)}{\rho} a_{\kappa + \rho} \zeta^{\kappa + \rho}, (t \ge 0).$$
(1.3)

Using the convolution between (1.2) and (1.3), we will introduce a new function $L_{\varpi,\sigma}^{t,\rho}$ defined on Σ_{ρ} by:

$$L_{\varpi,\sigma}^{t,\rho}f(\zeta) = {}^{\sim}_{\rho}(\varpi,\sigma;\zeta) * c^{t}f(\zeta)$$

$$= \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (\kappa+2\rho)t)}{\rho} a_{\kappa+\rho}\zeta^{\kappa+\rho}, (\zeta \in \mathbb{U}^{*}).$$
(1.4)

For all $\zeta \in \mathbb{U}^*$ and $-1 \leq D < S \leq 1$, the function $f \in \Sigma_{\rho}$ is said to be a member of the subclass $\Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$ if it satisfies:

$$\left| \frac{\zeta \left(L_{\varpi,\sigma}^{t,\rho} f(\zeta) \right)' + \rho L_{\varpi,\sigma}^{t,\rho} f(\zeta)}{D\zeta \left(L_{\varpi,\sigma}^{t,\rho} f(\zeta) \right)' + S\rho \left(L_{\varpi,\sigma}^{t,\rho} f(\zeta) \right)} \right| < 1. \tag{1.5}$$

See for example [1] and [8].

2. Coefficient estimates and distortion theorems

In this section, our first result will be concerning the coefficient estimates and distortion theorem for the subclass $\Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$.

Theorem 2.1. Let the function f be defined by (1.4) and satisfies (1.5). Then

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (\kappa + 2\rho) \ t)}{\rho} \right| \left[(\kappa + 2\rho) - (\ (\kappa + \rho)D + S\rho) \right] |a_{\kappa+\rho}|$$

$$\leq \rho (S - D), \tag{2.1}$$

where $-1 \le D < S \le 1$.

Proof. Suppose that (1.5) holds. Let

$$M = \zeta \left(\frac{-\rho}{\zeta^{\rho+1}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (\kappa + 2\rho)t)}{\rho} (\kappa + \rho) a_{k+\rho} \zeta^{k+\rho-1} \right),$$

$$N = \frac{\rho}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (k+2\rho)t)}{\rho} \rho a_{\kappa+\rho} \zeta^{\kappa+\rho},$$

$$P = D\zeta \left(\frac{-\rho}{\zeta^{\rho+1}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (\kappa + 2\rho)t)}{\rho} (\kappa + \rho) \right) a_{\kappa+\rho} \zeta^{\kappa+\rho-1}$$

and

$$Q = S\rho \left(\frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} a_{\kappa+\rho} \zeta^{\kappa+\rho} \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \right).$$

Then

$$\left|\frac{M+N}{P+Q}\right| \le 1,$$

it implies that

$$\left| \frac{\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \left\{ \kappa + 2\rho \right\} a_{\kappa+\rho} \zeta^{\kappa+\rho}}{\frac{S\rho - \rho D}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \left\{ (\kappa + \rho)D + S\rho \right\} a_{\kappa+\rho} \zeta^{\kappa+\rho}} \right| \le 1.$$

Thus we have

$$\left| \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \left\{ \kappa + 2\rho \right\} a_{\kappa+\rho} \zeta^{\kappa+\rho} \right| - \left| \frac{S\rho - \rho D}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \left\{ (\kappa + \rho)D + S\rho \right\} a_{\kappa+\rho} \zeta^{\kappa+\rho} \right| \le 0.$$

Therefore,

$$\left| \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \left\{ \kappa + 2\rho \right\} \ a_{\kappa+\rho} \zeta^{k+2\rho} \right|$$

$$- \left| S\rho - \rho D + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \frac{(\rho - (k+2\rho)t)}{\rho} \left\{ (k+\rho)D + S\rho \right\} a_{\kappa+\rho} \zeta^{\kappa+2\rho} \right| \le 0.$$

Hence we have

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{k+2}} \left| \frac{\rho - (\kappa + 2\rho) t}{\rho} \right| (\kappa + 2\rho) |a_{\kappa+\rho}| |\zeta^{\kappa+2\rho}|$$

$$- S\rho + \rho D - \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{\rho - (\kappa + 2\rho)t}{\rho} \right| ((\kappa + \rho)D + S\rho) |a_{\kappa+\rho}| |\zeta^{\kappa+2\rho}| \le 0.$$

If $|\zeta| = r \to 1$, then we have

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{k+2}}{(\sigma)_{k+2}} \left| \frac{(\rho - (\kappa + 2\rho) \ t)}{\rho} \right| \left[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho) \right] |a_{\kappa+\rho}| \le \rho(S - D).$$

Hence it follows from (1.5) that $f \in \Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$ and the intended result is achieved.

Corollary 2.2. Let the function f be defined by (1.4). If $f \in \Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$, then

$$|a_{\kappa+\rho}| \le \frac{\rho^2 (\sigma)_{\kappa+2} (S-D)}{(\varpi)_{\kappa+2} |(\rho - (\kappa+2\rho)t)| [(\kappa+2\rho) - ((\kappa+\rho)D + S\rho)]}, (\kappa \ge 0).$$
(2.2)

Our assertion in Theorem 2.1 is sharp for functions of the form:

$$f_{\kappa}(\zeta) = \frac{1}{\zeta^{\rho}} + \frac{\rho^{2}(\sigma)_{k+2}(S-D)}{(\varpi)_{\kappa+2} \left| (\rho - (\kappa+2\rho)t) \right| \left[(\kappa+2\rho) - ((\kappa+\rho)D + S\rho) \right]} \zeta^{\kappa+\rho}. \tag{2.3}$$

Corollary 2.3. Let S = 1 and D = -1 in Theorem 2.1. Then we have

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \right| (\kappa + \rho) |a_{\kappa+\rho}| \le \rho$$

and therefore the function $L^{t,\rho}_{\varpi,\sigma}f(\zeta)$ is starlike in \mathbb{U}^* .

Corollary 2.4. If t = 0, S = 1 and D = -1 in Theorem 2.1, then $f \in \Sigma_{\rho}$ satisfying the following condition:

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} (\kappa + \rho) |a_{\kappa+\rho}| \le \rho$$

and it is starlike in \mathbb{U}^* .

Corollary 2.5. For S = 1 and D - 1 in Theorem 2.1, we have:

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (\kappa + 2\rho) t)}{\rho} \right| (\kappa + \rho)^2 |a_{\kappa+\rho}| \le \rho$$

and therefore the function $L^{t,\rho}_{\varpi,\sigma}f(\zeta)$ is convex in \mathbb{U}^* .

Corollary 2.6. If t = 0, S = 1 and D = -1 in Theorem 2.1, then $f \in \Sigma_{\rho}$ satisfies the following condition:

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} (\kappa + \rho)^2 |a_{\kappa+\rho}| \le \rho$$

and it is convex in \mathbb{U}^* .

A distortion property for functions in the subclass $\Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$ is given in the following result:

Theorem 2.7. If the function f is defined by (1.4) in the subclass $\Sigma_{\varpi,\sigma}^{E,S}(t,\kappa,\rho)$, then for $0 < |\zeta| = r < 1$, we have

$$\frac{1}{r^{\rho}} - r^{\rho} \frac{(S-D)}{[2-(S+D)]} \le |f(\zeta)| \le \frac{1}{r^{\rho}} + r^{\rho} \frac{(S-D)}{[2-(S+D)]}$$
 (2.4)

and

$$\frac{\rho}{r^{\rho+1}} - \frac{\rho(S-D)}{[2-(S+D)]} r^{\rho-1} \le |f'(\zeta)| \le \frac{\rho}{r^{\rho+1}} + \frac{\rho(S-D)}{[2-(S+D)]} r^{\rho-1}$$
 (2.5)

with equality for

$$f(\zeta) = \frac{1}{\zeta^{\rho}} + \frac{(S-D)}{[2-(D+S)]} \zeta^{\rho}.$$

Proof. Let $f \in \Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$. Then

$$|f(\zeta)| \leq \frac{1}{|\zeta^{\rho}|} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \right| |a_{\kappa+\rho}| |\zeta|^{\kappa+\rho}$$
$$\leq \frac{1}{r^{\rho}} + r^{\rho} \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (k+2\rho)t)}{\rho} \right| |a_{\kappa+\rho}|.$$

Theorem 2.1 readily yields the inequality:

$$\sum_{k=0}^{\infty} \frac{(\varpi)_{k+2}}{(\sigma)_{k+2}} \left| \frac{(\rho - (\kappa + 2\rho) \ t)}{\rho} \right| |a_{\kappa+\rho}| \le \frac{\rho(S-D)}{[(\kappa + 2\rho) - ((\kappa + \rho) \ D + S\rho)]}$$
(2.6)

thus, for $0 < |\zeta| = r < 1$, we have

$$|f(\zeta)| \le \frac{1}{r^{\rho}} + r^{\rho} \frac{\rho(S-D)}{[(\kappa+2\rho) - ((\kappa+\rho)D + S\rho)]}, (\kappa \ge 0).$$

Hence, we have

$$|f(\zeta)| \le \frac{1}{r^{\rho}} + r^{\rho} \frac{(S-D)}{[2-(S+D)]}$$
 (2.7)

and the other side of the inequality in (2.4) can be obtained using similar procedure. For (2.5),

$$|f'(\zeta)| \le \frac{\rho}{|\zeta^{\rho+1}|} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \right| (\kappa + \rho) |a_{\kappa+\rho}| |\zeta|^{\kappa+\rho-1}.$$

It follows from Theorem 2.1 that

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{k+2}}{(\sigma)_{k+2}} \left| \frac{(\rho - (\kappa + 2\rho) \ t)}{\rho} \right| (\kappa + \rho) |a_{\kappa+\rho}| \le \frac{(\kappa + \rho)\rho(SD)}{[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho)]}$$
(2.8)

thus, for $0 < |\zeta| = r < 1$, we have

$$\left|f'(\zeta)\right| \leq \frac{\rho}{r^{\rho+1}} + \frac{(\kappa + \rho)\rho(S - D)}{\left[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho)\right]} r^{\kappa + \rho - 1}, (\kappa \geq 0).$$

Hence, we have

$$|f'(\zeta)| \le \frac{\rho}{r^{\rho+1}} + \frac{\rho(S-D)}{[2-(S+D)]} r^{\rho-1}$$
 (2.9)

By similarity, the other side of the inequality follows and the proof is complete.

3. Starlikeness and Radii of Convexity

Theorem 3.1. If the function f is in the subclass $\Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$, then f is meromorphically starlike of order $\chi(0 \le \chi < 1)$ in $|\zeta| < r_1$,

$$r_{1} = r_{1}(S, D, \kappa, \rho) = \inf_{\kappa \geq 0} \left\{ \frac{(\rho - \chi)[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho)]}{(\kappa + 3\rho - \chi)\rho(S - D)} \right\}^{\frac{1}{\kappa + 2\rho}}, \quad (3.1)$$

where the result is sharp for the function f_{κ} given by (2.3).

Proof. It suffices to prove that

$$\left| \frac{\zeta(L_{\varpi,\sigma}^{t,\rho}f(\zeta))'}{L_{\varpi,\sigma}^{t,\rho}f(\zeta)} + \rho \right| \le \rho - \chi, \tag{3.2}$$

for $|\zeta| < r_1$. We note that

$$\frac{\left|\frac{\zeta(L_{\varpi,\sigma}^{t,\rho}f(\zeta))'}{L_{\varpi,\sigma}^{t,\rho}f(\zeta)} + \rho\right|}{L_{\varpi,\sigma}^{t,\rho}f(\zeta)} + \rho$$

$$= \frac{\left|\frac{-\rho}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (\kappa+2\rho)t)}{\rho} (\kappa+\rho) \ a_{\kappa+\rho}\zeta^{\kappa+\rho}}{a_{\kappa+\rho}\zeta^{\kappa+\rho}} + \rho\right|$$

$$= \frac{\left|\frac{-\rho}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (\kappa+2\rho)t)}{\rho} a_{\kappa+\rho}\zeta^{\kappa+\rho}} \right| + \rho$$

$$= \frac{\left|\frac{\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (\kappa+2\rho)t)}{\rho} \ a_{\kappa+\rho}\zeta^{\kappa+\rho} (\kappa+2\rho)}{\frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \cdot \frac{(\rho - (\kappa+2\rho)t)}{\rho} \ a_{\kappa+\rho}\zeta^{\kappa+\rho}}\right|$$

$$\leq \frac{\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left|\frac{(\rho - (\kappa+2\rho)t)}{\rho} \ a_{\kappa+\rho}| \ (\kappa+2\rho) |\zeta|^{\kappa+\rho}}{\frac{1}{|\zeta|^{\rho}} - \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left|\frac{(\rho - (\kappa+2\rho)t)}{\rho} \ a_{\kappa+\rho}| \ (\kappa+2\rho) |\zeta|^{\kappa+\rho}}{\frac{1}{\rho}}$$

$$\leq \frac{\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left|\frac{(\rho - (\kappa+2\rho)t)}{\rho} \ a_{\kappa+\rho}| \ (\kappa+2\rho) |\zeta|^{\kappa+2\rho}}{\frac{1}{\rho}}$$

$$\leq \frac{\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left|\frac{(\rho - (\kappa+2\rho)t)}{\rho} \ a_{\kappa+\rho}| \ (\kappa+2\rho) |\zeta|^{\kappa+2\rho}}{\frac{1}{\rho}}$$

$$\leq \frac{\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left|\frac{(\rho - (\kappa+2\rho)t)}{\rho} \ a_{\kappa+\rho}| \ (\kappa+2\rho) |\zeta|^{\kappa+2\rho}}{\frac{1}{\rho}}$$

$$\leq \frac{\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left|\frac{(\rho - (\kappa+2\rho)t)}{\rho} \ a_{\kappa+\rho}| \ (\kappa+2\rho) |\zeta|^{\kappa+2\rho}}{\frac{1}{\rho}}$$

$$\leq \frac{\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left|\frac{(\rho - (\kappa+2\rho)t)}{\rho} \ a_{\kappa+\rho}| \ (\kappa+2\rho) |\zeta|^{\kappa+2\rho}}{\frac{1}{\rho}}$$

Hence, if

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (\kappa + 2\rho) t)}{\rho} \right| |a_{\kappa+\rho}| (\kappa + 2\rho) |\zeta|^{\kappa+2\rho}$$

$$\leq (\rho - \chi) \left[1 - \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \right| |a_{\kappa+\rho}| |\zeta|^{\kappa+2\rho} \right]$$
(3.4)

or

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (\kappa + 2\rho)t)}{\rho} \right| \left| a_{\kappa+\rho} \right| \left| \zeta \right|^{\kappa+2\rho} \left(\frac{\kappa + 3\rho - \chi}{\rho - \chi} \right) \le 1,$$

that is,

$$\frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (\kappa + 2\rho) \ t \)}{\rho} \right| \left| a_{\kappa+\rho} \right| \ \left| \zeta \right|^{\kappa+2\rho} \left(\frac{\kappa + 3\rho - \chi}{\rho - \chi} \right) \le 1, \ for \ \kappa \ge 0$$

$$(3.5)$$

with the aid of (2.2) and (3.5), for all $\kappa \geq 0$,

$$\frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left| \frac{(\rho - (\kappa + 2\rho) t)}{\rho} \right| |\zeta|^{\kappa+2\rho} \left(\frac{\kappa + 3\rho - \chi}{\rho - \chi} \right) \\
\leq \frac{(\varpi)_{\kappa+2} \left| (\rho - (\kappa + 2\rho)t) \right| \left[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho) \right]}{\rho^{2}(\sigma)_{\kappa+2} (S - D)}.$$
(3.6)

Solving (3.6) for $|\zeta|$, we obtain

$$|\zeta| \le \left\{ \frac{(\rho - \chi)[(\kappa + 2\rho) - ((\kappa + \rho) D + S\rho)]}{(\kappa + 3\rho - \chi)\rho(S - D)} \right\}^{\frac{1}{\kappa + 2\rho}}, \ \forall \kappa \ge 0.$$
 (3.7)

Theorem 3.2. If the function f is defined by (1.4) in the $\Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$, then f is meromorphically convex of order $\chi(0 \le \chi < 1)$ in $|\zeta| < r_2$, where

$$r_2 = r_2(S, D, \kappa, \rho) = \inf_{\kappa \ge 0} \left\{ \frac{(\rho - \chi)[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho)]}{(k + \rho)(k + 3\rho - \chi)(S - D)} \right\}^{\frac{1}{\kappa + 2\rho}}, (3.8)$$

the result is sharp for the function f_{κ} given by (2.3).

Proof. By using the technique employed in the proof of Theorem 3.2, we can show that

$$\left| \frac{\zeta \left(L_{\varpi,\sigma}^{t,\rho} f(\zeta) \right)''}{(L_{\varpi,\sigma}^{t,\rho} f(\zeta))'} + \rho + 1 \right| \le (\rho - \chi), \tag{3.9}$$

for $|\zeta| < r_2$, with the aid of Theorem 2.1. Thus, we have the assertion of Theorem 3.2.

4. Convex linear combinations

Our next results involve a linear combination of several functions of the type (2.3).

Theorem 4.1. Let

$$f_{\rho-1}(\zeta) = \frac{1}{\zeta^{\rho}} \tag{4.1}$$

and for $\kappa > 0$,

$$f_{\kappa+\rho}(\zeta) = \frac{1}{\zeta^{\rho}} + \frac{\rho^{2}(\sigma)_{k+2}(S-D)}{(\varpi)_{\kappa+2} \left| (\rho - (\kappa+2\rho)t) \right| \left[(\kappa+2\rho) - ((\kappa+\rho)D + S\rho) \right]} \zeta^{\kappa+\rho}. \tag{4.2}$$

Then $f \in \Sigma^{S,D}_{\varpi,\sigma}(t,\kappa,\rho)$ if and only if it can be expressed in the form

$$f(\zeta) = \sum_{\kappa=0}^{\infty} \eta_{\kappa+\rho-1} f_{\kappa+\rho-1}(\zeta)$$
 (4.3)

where $\eta_{\kappa+\rho-1} \geq 0$ and $\sum_{\kappa=0}^{\infty} \eta_{\kappa+\rho-1} = 1$.

Proof. From (4.1), (4.2) and (4.3), it is easily seen that

$$f(\zeta) = \sum_{\kappa=0}^{\infty} \eta_{\kappa+\rho-1} f_{\kappa+\rho-1}(\zeta)$$

$$= \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{\rho^{2} (\sigma)_{\kappa+2} (S-D) \eta_{\kappa+\rho}}{(\varpi)_{\kappa+2} |(\rho - (\kappa+2\rho)t)| [(\kappa+2\rho) - ((\kappa+\rho)D + S\rho)]} \zeta^{\kappa+\rho}$$

$$=: \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} d_{\kappa+\rho} \zeta^{\kappa+\rho}.$$
(4.4)

Since

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2} \left| (\rho - (\kappa + 2\rho)t) \right| \left[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho) \right]}{\varpi \rho^{2}(\sigma)_{\kappa+2}(S - D)}$$

$$\times \frac{\rho^{2}(\sigma)_{\kappa+2}(S - D)\eta_{\kappa+\rho}}{(\varpi)_{\kappa+2} \left| (\rho - (\kappa + 2\rho)t) \right| \left[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho) \right]}$$

$$= \sum_{\kappa=0}^{\infty} \eta_{\kappa+\rho} = 1 - \eta_{\rho-1} \le 1,$$

it follows from Theorem 2.1 that the function $f \in \Sigma^{S,D}_{\varpi,\sigma}(t,k,\rho)$. Conversely, suppose that $f \in \Sigma^{S,D}_{\varpi,\sigma}(t,k,\rho)$. Du to

$$|a_{\kappa+\rho}| \leq \frac{\rho^2(\sigma)_{\kappa+2} (S-D)}{(\varpi)_{\kappa+2} |(\rho-(\kappa+2\rho)t)| [(k+2\rho)-((k+\rho)D+S\rho)]}, (\kappa \geq 0).$$

Setting

$$\eta_{\kappa+\rho} \ = \ \frac{(\varpi)_{\kappa+2} \left| (\rho - (\kappa+2\rho)t) \right| \left[(\kappa+2\rho) - ((\kappa+\rho)D + S\rho) \right]}{\rho^2(\sigma)_{\kappa+2} \ (S-D)} \ \left| a_{\kappa+\rho} \right|, (\kappa \ge 0)$$

and

$$\eta_{\rho-1} = 1 - \sum_{\kappa=0}^{\infty} \eta_{\kappa+\rho},$$

it follows that $f(\zeta) = \sum_{\kappa=0}^{\infty} \eta_{\kappa+\rho-1} f_{\kappa+\rho-1}(\zeta)$.

Theorem 4.2. The subclass $\Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$ is closed under convex linear combinations.

Proof. Suppose that the functions $f_1(\zeta)$ and $f_2(\zeta)$ defined by

$$f_v(\zeta) = \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} a_{\kappa+\rho,v} \zeta^{\kappa+\rho}, (v = 1, 2; \zeta \in \mathbb{U}^*)$$
 (4.5)

are in the subclass $\Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$. Let

$$f(\zeta) = \mu f_1(\zeta) + (1 - \mu) f_2(\zeta), (0 \le \mu \le 1). \tag{4.6}$$

Then, from (4.5), we find that

$$f(\zeta) = \frac{1}{\zeta^{\rho}} + \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left(\frac{\rho - (\kappa + 2\rho)t}{\rho} \right) \left\{ \mu a_{\kappa+\rho,1} + (1-\mu)a_{\kappa+\rho,2} \right\} \zeta^{\kappa+\rho},$$

$$(0 < \mu < 1; \zeta \in \mathbb{U}^*).$$

$$(4.7)$$

In view of Theorem 2.1, we have

$$\sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left(\frac{(\rho - (\kappa + 2\rho)t}{\rho} \right) \left[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho) \right]$$

$$\times \left| (\mu a_{\kappa+\rho,1} + (1 - \mu)a_{\kappa+\rho,2}) \right|$$

$$\leq \mu \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left(\frac{(\rho - (\kappa + 2\rho)t}{\rho} \right) \left[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho) \right] |a_{\kappa+\rho,1}|$$

$$+ (1 - \mu) \sum_{\kappa=0}^{\infty} \frac{(\varpi)_{\kappa+2}}{(\sigma)_{\kappa+2}} \left(\frac{(\rho - (\kappa + 2\rho)t}{\rho} \right)$$

$$\times \left[(\kappa + 2\rho) - ((\kappa + \rho)D + S\rho) \right] |a_{\kappa+\rho,2}|$$

$$\leq \mu \rho (S - D) + (1 - \mu)\rho (S - D)$$

$$= \rho (S - D).$$

This means that $f \in \Sigma_{\varpi,\sigma}^{S,D}(t,\kappa,\rho)$.

Acknowledgments: This paper was supported by the College of Computer Sciences and Mathematics, University of Mosul, Republic of Iraq and College of Sciences, University of Sharjah, UAE.

References

- [1] M. Albehbah and M. Darus, New subclass of multivalent hypergeometric meromorphic functions, Kragujevac J. Math., 42(1) (2018), 83–95.
- [2] H.F. Al-Janaby, F. Ghanim and M.Z. Ahmad, Harmonic multivalent functions associated with an extended generalized linear operator of Noor-type, Nonlinear Funct. Anal. Appl., 24(2) (2019), 269–292.
- [3] H.F. Al-Janaby and F. Ghanim, A subclass of Noor-Type harmonic p-valent functions based on hypergeometric functions, Kragujevac J. Math., 45(4) (2021), 499–519.

- [4] M.K. Aouf, New criteria for multivalent meromorphic starlike functions of order α, Proc. Japan Acad. Ser. A. Math. Sci., 69 (1993), 66–70.
- N.E. Cho and I.H. Kim, Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 187 (2007), 115–121.
- [6] J. Dziok and H.M. Srivastava, Certain subclasses of analytic functions associated with the Generalized hypergeometric function, Integral Trans. Spec. Funct., 14(1) (2003), 7–18.
- [7] R.M. El-Ashwah, Some properties of certain subclasses of meromorphically multivalent functions, Appl. Math. and Comput., 204 (2008), 824–832.
- [8] F. Ghanim, M. Darus and S. Sivasubramanian, New subclass of hypergeometric meromorphic functions, Far East J. Math. Sci., 34(2) (2009), 245–256.
- [9] F. Ghanim and M. Darus, New subclass of multivalent hypergeometric meromorphic functions, Int. J. Pure Appl. Math., 61(3) (2010), 269–280.
- [10] F. Ghanim and M. Darus, Some properties of certain subclass of meromorphically multivalent functions defined by linear operator, J. Math. Stattis., 6 (1) (2010), 34–41.
- [11] F. Ghanim and Hiba F. Al-Janay, A certain subclass of univalent meromorphic functions defined by a linear operator associated with the Hurwitz-Lerch Zeta Function, Rad HAZU Matematicke Znanosti (Rad Hrvat. Akad. Znan. Umjet. Mat. Znan.), 23 (2019), 71–83.
- [12] S.B. Joshi and H.M. Srivastava, A certain family of meromorphically multivalent functions, Comput. Math. Appl., 38 (3-4) (1999), 201–211.
- [13] S.R. Kulkarni, U.H. Naik and H.M. Srivastava, A certain class of meromorphically p-valent quasi-convex functions, Pan Amer. Math. J., 8(1) (1998), 57–64.
- [14] J.L. Liu, A linear operator and its applications on meromorphic p-valent functions, Bull. Inst. Math. Acad. Sin., 31(1) (2003), 23–32.
- [15] J.L. Liu and H.M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259 (2001), 566–581.
- [16] A.K. Mishra, T. Panigrahi and R.K. Mishra, Subordination and inclusion theorems for subclasses of meromorphic functions with applications to electromagnetic cloaking, Math. Comput. Model., 57 (2013), 945-962.
- [17] M.L. Mogra, Meromorphic multivalent functions with positive coefficients I, Math. Japon., 35 (1990), 1–11.
- [18] S. Owa, H.E. Darwish and M.K. Aouf, Meromorphic multivalent functions with positive and fixed second coefficients, Math. Japan, 46 (1997), 231–236.
- [19] H.M. Srivastava and S. Owa, Editors, Current topics in analytic function theory, World Sci. Sing., 1992.
- [20] B.A. Uralegaddi and C. Somanatha, Certain classes of meromorphic multivalent functions, Tamkang J. Math., 23 (1992), 223–231.
- [21] D.G. Yang, On new subclasses of meromorphic p-valent functions, J. Math. Res. Exp., 15 (1995), 7–13.