
Nonlinear Functional Analysis and Applications
Vol. 14, No. 1 (2009), pp. 13-24

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2009 Kyungnam University Press

INEQUALITIES FOR THE DERIVATIVE OF A
POLYNOMIAL WITH RESTRICTED ZEROS

A. Aziz1 and N. A. Rather2

1,2 Department of Mathematics, University of Kashmir
Hazratbal, Srinagar - 190 006, INDIA
2e-mail: nisararather@yahoo.co.in

Abstract. In this paper we establish several sharp results concerning the maximum modulus

of the polar derivative of a polynomial P (z) which does not vanish outside a disk. Our results

generalize and refine some known polynomial inequalities including some results of Turán,

Malik, Govil and others.

1. Introduction and statement of results

Let P (z) be a polynomial of degree n and P ′(z) be its derivative. If P (z)
has all its zeros in |z| ≤ 1, then it was shown by Turán [14] that

Max
|z|=1

∣∣P ′(z)
∣∣ ≥ n

2
Max
|z|=1

|P (z)| . (1.1)

Inequality (1.1) was generalized and refined by Aziz and Dawood[4] who under
the same hypothesis proved that

Max
|z|=1

∣∣P ′(z)
∣∣ ≥ n

2

{
Max
|z|=1

|P (z)|+ nMin
|z|=1

|P (z)|
}

. (1.2)

Both the inequalities (1.1) and (1.2) are sharp and equality in (1.1) and (1.2)
holds for P (z) = azn + b where |a| = |b|. As an extension of (1.1), Malik [9]
proved that if P (z) has all its zeros in |z| ≤ k where k ≤ 1, then

Max
|z|=1

∣∣P ′(z)
∣∣ ≥ n

1 + k
Max
|z|=1

|P (z)| , (1.3)
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whereas Govil [7] showed that if P (z) = 0 for |z| ≤ k where k ≥ 1, then

Max
|z|=1

∣∣P ′(z)
∣∣ ≥ n

1 + kn
Max
|z|=1

|P (z)| . (1.4)

Recently Govil [8] refined both the inequalities (1.3) and (1.4) and proved that
if P (z) has all its zeros in |z| ≤ k, then for k ≤ 1,

Max
|z|=1

∣∣P ′(z)
∣∣ ≥ n

1 + k

{
Max
|z|=1

|P (z)|+ 1
kn−1

Min
|z|=k

|P (z)|
}

(1.5)

and for k ≥ 1,

Max
|z|=1

∣∣P ′(z)
∣∣ ≥ n

1 + kn

{
Max
|z|=1

|P (z)|+ Min
|z|=k

|P (z)|
}

. (1.6)

Let DαP (z) denote the polar derivative of the polynomial P (z) of degree n
with respect to a point α, then

DαP (z) = nP (z) + (α− z)P ′(z).
The polynomial DαP (z) is of degree at most n − 1 and it generalizes the
ordinary derivative P ′(z) of P (z) in the sense that

lim
α→∞

DαP (z)
α

= P ′(z). (1.7)

A. Aziz [2] proved several sharp results concerning the maximum modulus
of the polar derivative of a polynomial P (z) with restrocted zeros. Recently
Shah [13] extended (1.1) to the polar derivative of a polynomial P (z) and
proved that if P (z) has all its zeros in |z| ≤ 1, then

Max
|z|=1

|DαP (z)| ≥ n

2
(|α| − 1)Max

|z|=1
|P (z)| . (1.8)

More recently, the authors [5] refined inequality (1.8) by showing that

Max
|z|=1

|DαP (z)| ≥ n

2

{
|α| − 1)Max

|z|=1
|P (z)|+ (|α|+ 1)Min

|z|=1
|P (z)|

}
. (1.9)

The result is sharp and equality in (1.9) holds for P (z) = (z−1)n where α ≥ 1.
The authors [5] also considered the class of polynomials P (z) of degree n

having all its zeros in |z| ≤ k and extended the inequalities (1.3) and (1.4) to
the polar derivative of a polynomial P (z) and obtained some generalizations
of the inequality (1.8). More precisely they have shown that if P (z) is a
polynomial of degree n having all its zeros in |z| ≤ k where k ≤ 1, then for
every real or complex number α, |α| ≥ k,

Max
|z|=1

|DαP (z)| ≥ n

{ |α| − k

1 + k

}
Max
|z|=1

|P (z)| (1.10)
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whereas if P (z) = 0 for |z| ≤ k where k ≥ 1, then for every real or complex
number α with |α| ≥ k,

Max
|z|=1

|DαP (z)| ≥ n

{ |α| − k

1 + kn

}
Max
|z|=1

|P (z)| . (1.11)

The estimate (1.10) is sharp and equality in (1.10) holds for P (z) = (z − k)n

with α ≥ k.
In the present paper, we first extend the inequality (1.5) to the polar deriv-

ative of a polynomial P (z) by presenting the following sharp result which is a
refinement of the inequality (1.3) as well as a generalization of the inequality
(1.9).

Theorem 1.1. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ k where k ≤ 1, then for every real or complex number α with |α| ≥ k,

Max
|z|=1

|DαP (z)| ≥ n

1 + k

{
(|α| − k)Max

|z|=1
|P (z)|+ |α|+ 1

kn−1
Min
|z|=k

|P (z)|
}

. (1.12)

The result is best possible and equality in (1.12) holds for P (z) = (z − k)n

with α ≥ k.

Remark 1.1. For k = 1, (1.12) reduces to the inequality (1.9).

Remark 1.2. Dividing the two sides of (1.12) by |α| and letting α →∞ and
noting (1.7), we get the inequality (1.5).

Next we present the following generalization of the inequality (1.9) which
extends the inequality (1.6) to the polar derivative of a polynomial P (z).

Theorem 1.2. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ k where k ≥ 1 and m = Min

|z|=k
|P (z)|, then for every real or complex

numbers α, β with |α| ≥ k and |β| ≤ 1,

Max
|z|=1

|DαP (z) + βnm| ≥ n
|α| − k

1 + kn

{
Max
|z|=1

|P (z)|+ |β|m
}

(1.13)

and

Max
|z|=1

|DαP (z)| ≥ n

1 + kn

{
(|α|−k)Max

|z|=1
|P (z)|+|β|(|α|−1−k−kn)m

}
. (1.14)

Remark 1.3. For β = 0, Theorem 1.2 reduces to the inequality (1.11).

Remark 1.4. Dividing the two sides of the inequality (1.14) by |α| and letting
α →∞ with β = 1, we get the inequality (1.6).

As a refinement of the inequality (1.11), we establish the following result.
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Theorem 1.3. If all the zeros of polynomial P (z) =
∏n

ν=1(z − zν) of degree
n lie in |z| ≤ k where k ≤ 1, then for every real or complex number α with
|α| ≥ k,

Max
|z|=1

|DαP (z)| ≥ 2
{ |α| − k

1 + kn

} n∑

ν=1

k

k + |zν |Max
|z|=1

|P (z)| . (1.15)

Remark 1.5. Dividing the two sides of the inequality (1.15) by |α| and letting
α →∞, we obtain a result due to A. Aziz [3].

The following result which is a refinement of the inequality (1.8) immedi-
ately follows from Theorem 1.3.

Corollary 1.1. If all the zeros of polynomial P (z) =
∏n

ν=1(z − zν) of degree
n lie in |z| ≤ 1, then for every real or complex number α with |α| ≥ 1,

Max
|z|=1

|DαP (z)| ≥ (|α| − 1)
n∑

ν=1

1
1 + |zν |Max

|z|=1
|P (z)| . (1.16)

The result is sharp and equality in (1.16) holds for P (z) = (z − 1)n with
α ≥ 1.

We also prove the following result which is a refinement of the inequality
(1.10) and a generalization of (1.9).

Theorem 1.4. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ k where k ≥ 1, then for every real or complex numbers α with |α| ≥ k,

Max
|z|=1

|DαP (z)| ≥ n

{ |α| − k

1 + kn
Max
|z|=1

|P (z)|+ |α|+ k

2kn
Min
|z|=k

|P (z)|
}

. (1.17)

Remark 1.6. For k = 1, Theorem 1.4 reduces to the inequality (1.9).

Finally we present the following result which is a generalization of a result
Aziz and Dawood [4, Theorem 1].

Theorem 1.5. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ t where t > 0, then

Min
|z|=R≥t

|P (z)| ≥ Rn

tn
Min
|z|=t

|P (z)| (1.18)

and

Min
|z|=R≥t

∣∣P ′(z)
∣∣ ≥ n

Rn−1

tn
Min
|z|=t

|P (z)|. (1.19)

Both the estimates are sharp and equality in (1.18) and (1.19) holds for P (z) =
λzn, λ 6= 0.
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The following corollary immediately follows from Theorem 1.5 by taking
R = t in (1.19).

Corollary 1.2. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ t where t > 0, then

Min
|z|=t

∣∣P ′(z)
∣∣ ≥ n

t
Min
|z|=t

|P (z)|.

2. Lemma

For the proof of these theorems we need the following lemma due to Aziz
[3].
Lemma. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ k
where k ≥ 1, then

Max
|z|=k

|P (z)| ≥ 2kn

1 + kn
Max
|z|=1

|P (z)|.

3. Proofs of the theorems

Proof of Theorem 1.1. Let m = Min
|z|=k

|P (z)|. If P (z) has a zero on |z| = k,

then m = 0 and the result follows from the inequality (1.10). Henceforth, we
suppose that all the zeros of P (z) lie in |z| < k where k ≤ 1, therefore, m > 0
and m ≤ |P (z)| for |z| = k. Now if β is any real or complex number with
|β| < 1,then for |z| = k

|mβzn/kn| < |P (z)|.
By Rouche’s theorem, it follows that the polynomial G(z) = P (z)−mβzn/kn

has all its zeros in |z| < k. Using now the same argument as in the proof of
Theorem 1.1 of [5] with P (z) replaced by G(z) = P (z)−mβzn/kn, we get for
every α with |α| ≥ k and |z| = 1,

|Dα(P (z)−mβzn/kn)| ≥ (|α| − k)
n∑

ν=1

1
1 + |zν | |P (z)−mβzn/kn|

≥ n

{ |α| − k

1 + k

}
|P (z)−mβzn/kn|.

Equivalently for |z| = 1,

|Dα(P (z)−mnβzn−1/kn)| ≥ n

{ |α| − k

1 + k

}
|P (z)−mβzn/kn|. (3.1)

A simple application of Laguerre theorem ( see [1] or [ 10, p.52] ) on the polar
derivative of a polynomial shows that for every real or complex number α with
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|α| ≥ k, the polynomial DαG(z) = DαP (z)−mnαβzn/kn has all its zeros in
|z| < k ≤ 1 where |β| < 1. This implies that

|DαP (z)| ≥ mn|α||z|n−1/kn for |z| ≥ k. (3.2)

Now choosing the argument of β in the left hand side of (3.1) such that

|DαP (z)−mnαβzn−1/kn| = |DαP (z)| −mn|α||β|/kn for |z| = 1,

which is possible by (3.2), we get for |z| = 1,

|DαP (z)| −mn|α||β|/kn ≥ n

{ |α| − k

1 + k

}
{|P (z)| −m|β|/kn|}. (3.3)

Letting |β| → 1, we obtain

Max
|z|=1

|DαP (z)| ≥ n

1 + k

{
(|α| − k)Max

|z|=1
|P (z)|+ |α|+ 1

kn−1
Min
|z|=k

|P (z)|
}

,

which is inequality (1.12) and this completes the proof of Theorem 1.1. ¤

Proof of Theorem 1.2. By hypothesis, all the zeros of P (z) lie in |z| < k
where k ≥ 1 and m = Min

|z|=k
|P (z)|. If P (z) has a zero on |z| = k, then result

follows from the inequality (1.11). Henceforth, we assume that all the zeros
of P (z) lie in |z| < k where k ≥ 1 so that m > 0 and m ≤ |P (z)| for |z| = k.
By the maximum modulus theorem for every β with |β| ≤ 1, it follows that

m|β| < |P (z)| for |z| > k.
A direct application of Rouche’s theorem shows that the polynomial G(z) =
P (z) + βm has all its zeros in |z| ≤ k. Applying inequality (1.11) to the
polynomial G(z), we get for every α with |α| ≥ k,

Max
|z|=1

|DαG(z)| ≥ n

{ |α| − k

1 + kn

}
Max
|z|=1

|G(z)| .

That is,

Max
|z|=1

|DαP (z) + βmn| ≥ n

{ |α| − k

1 + kn

}
Max
|z|=1

|P (z) + βm|

≥ n

{ |α| − k

1 + kn

}
|P (z) + βm| for |z| = 1. (3.4)

Now choosing the argument of β in the right hand side of inequality (3.4)
suitably, we obtain

Max
|z|=1

|DαP (z) + βmn| ≥ n

{ |α| − k

1 + kn

}
Max
|z|=1

|P (z)|+ |β|m|,
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which proves the inequality (1.13).

To prove the inequality (1.14), we use the fact that

|DαP (z)|+ |β|mn ≥ |DαP (z) + βmn|
and it follows by inequality (1.13) that

Max
|z|=1

|DαP (z)|+ |β|mn ≥ Max
|z|=1

|DαP (z) + βmn|

≥ n

{ |α| − k

1 + kn

}{
Max
|z|=1

|DαP (z)|+ |β|m|
}

for every β with |β| ≤ 1. This gives

Max
|z|=1

|DαP (z)| ≥ n

1 + kn

{
(|α| − k)Max

|z|=1
|P (z)|+ |β|(|α| − 1− k − kn)m

}

which is inequality (1.14) and this completes the proof of Theorem 1.2. ¤

Proof of Theorem 1.3. Since all the zeros of polynomial

P (z) =
n∏

ν=1

(z − zν)

lie in |z| ≤ k, where k ≥ 1, the polynomial

G(z) = P (kz) =
n∏

ν=1

(kz − zν)

lie in |z| ≤ 1 and we have

G′(z)
G(z)

=
n∑

ν=1

1
z − zν/k

,

so that for 0 ≤ θ < 2π,
∣∣∣∣
G′(eiθ)
G(eiθ)

∣∣∣∣ = Re

{
eiθG′(eiθ)

G(eiθ)

}
=

n∑

ν=1

Re

{
eiθ

eiθ − zν/k

}
≥

n∑

ν=1

k

k + |zν | .

This implies

|G′(z)| ≥
n∑

ν=1

k

k + |zν | |G(z)| for |z| = 1. (3.5)

If H(z) = zn G(1/z), then the polynomial H(z) has all its zeros in |z| ≥ 1 and

|H(z)| = |G(z)| for |z| = 1.
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Therefore, it follows by a result of De Bruijn ( see [ 6, Theorem 1, p.1265] )
that

|H ′(z)| ≤ |G′(z)| for |z| = 1. (3.6)

Since
H ′(z) = nzn−1G(1/z)− zn−2G′(1/z),

therefore, for 0 ≤ θ < 2π, we have

|H ′(eiθ)| = |nG(eiθ)− eiθG′(eiθ)|
so that

|H ′(z)| = |nG(z)− zG′(z)| for |z| = 1.

Using this in (3.6), we get

|nG(z)− zG′(z)| ≤ |G′(z)| for |z| = 1. (3.7)

Now for every α with |α| ≥ k, we have

|Dα/kG(z)| = |nG(z)− zG′(z) +
α

k
G′(z)|

≥ |α|
k
|G′(z)| − |nG(z)− zG′(z)|.

This gives with the help of (3.7) that

|Dα/kG(z)| ≥
{ |α| − k

k

}
|G′(z)| for |z| = 1. (3.8)

Combining (3.5)and (3.8), we obtain for every α with |α| ≥ k,

|Dα/kG(z)| ≥ (|α| − k)
n∑

ν=1

1
k + |zν | |G(z)| for |z| = 1.

Replacing G(z) by P (kz), we get

|Dα/kP (kz)| ≥ (|α| − k)
n∑

ν=1

1
k + |zν | |P (kz)| for |z| = 1,

that is,

|nP (kz) + (
α

k
− z)kP ′(kz)| ≥ (|α| − k)

n∑

ν=1

1
k + |zν | |P (kz)| for |z| = 1,

which implies

Max
|z|=1

|nP (kz) + (α− kz)P ′(kz)| ≥ (|α| − k)
n∑

ν=1

1
k + |zν |Max

|z|=1
|P (kz)|.
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Equivalently,

Max
|z|=k

|nP (z) + (α− z)P ′(z)| ≥ (|α| − k)
n∑

ν=1

1
k + |zν |Max

|z|=k
|P (z)|.

Using the Lemma, we obtain

Max
|z|=1

|DαP (z)| = Max
|z|=k

|nP (z) + (α− z)P ′(z)|

≥ (|α| − k)
n∑

ν=1

1
k + |zν |(

2kn

1 + kn
)Max
|z|=1

|P (z)|. (3.9)

Now, if F (z) is a polynomial of degree n, then ([12, p. 346] or [11, vol. I, p.
137])

Max
|z|=R>1

|F (z)| ≤ RnMax
|z|=1

|F (z)|.

Applying this result to the polynomial nP (z) + (α− z)P ′(z) = DαP (z) which
is of degree at most n− 1 with R = k, we get

Max
|z|=k

|DαP (z)| ≤ kn−1Max
|z|=1

|DαP (z)|. (3.10)

Together (3.9) and (3.10) leads to

Max
|z|=1

|DαP (z)| ≥ 2
{ |α| − k

1 + kn

} n∑

ν=1

k

k + |zν |Max
|z|=1

|P (z)| .

This completes the proof of Theorem 1.3. ¤

Proof of Theorem 1.4. By hypothesis all the zeros of P (z) lie in |z| ≤ k
where k ≥ 1, therefore, all the zeros of G(z) = P (kz) lie in |z| ≤ 1. Applying
inequality (1.9) to the polynomial G(z) and noting that |α|

k ≥ 1, we get

Max
|z|=1

|Dα
k
G(z)| ≥ n

2

{ |α| − k

k
Max
|z|=1

|G(z)|+ |α|+ k

k
Min
|z|=1

|G(z)|
}

.

Replacing G(z) by P (kz), we obtain

Max
|z|=1

|Dα
k
P (kz)| ≥ n

2

{ |α| − k

k
Max
|z|=1

|P (kz)|+ |α|+ k

k
Min
|z|=1

|P (kz)|
}

.



22 A. Aziz and N. A. Rather

This implies with the help of the Lemma that

Max
|z|=1

|nP (kz) + (
α

k
− z)kP ′(kz)|

≥ n

2

{ |α| − k

k
Max
|z|=k

|P (z)|+ |α|+ k

k
Min
|z|=k

|P (z)|
}

≥ n

2

{ |α| − k

k

2kn

1 + kn
Max
|z|=1

|P (z)|+ |α|+ k

k
Min
|z|=k

|P (z)|
}

,

which gives

Max
|z|=k

|DαP (z)| = Max
|z|=k

|nP (z) + (α− z)P ′(z)|

= Max
|z|=1

|nP (kz) + (
α

k
− z)kP ′(kz)|

≥ n

{
kn−1(

|α| − k

1 + kn
)Max
|z|=1

|P (z)|+ (
|α|+ k

2k
)Min
|z|=k

|P (z)|
}

.

Combining this with the inequality (3.10), it follows that

kn−1Max
|z|=1

|DαP (z)| ≥ n

{
kn−1(

|α| − k

1 + kn
)Max
|z|=1

|P (z)|

+ (
|α|+ k

2k
)Min
|z|=k

|P (z)|
}

,

which immediately leads to the inequality (1.17) and this completes the proof
of Theorem 1.4. ¤

Proof of Theorem 1.5. If P (z) has a zero on |z| = t, then m = Min
|z|=t

|P (z)| =
0, and the result is trivial in this case. We now assume that all the zeros of
P (z) lie in |z| < t where t > 0, therefore, m > 0 and

m ≤ |P (z)| for |z| = t.

If F (z) = P (tz), then all the zeros of polynomial F (z) lie in |z| < 1 and

m|z|n ≤ |F (z)| for |z| = 1. (3.11)

By the maximum modulus theorem, it follows that

m|z|n ≤ |F (z)| for |z| ≥ 1.

Equivalently,
m|z|n ≤ |P (tz)| for |z| ≥ 1.

Taking z = R
t eiθ, 0 ≤ θ < 2π and noting that |z| = R

t ≥ 1, we obtain0

|P (Reiθ| ≥ m
Rn

tn
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for every θ, 0 ≤ θ < 2π and R ≥ t. This implies

Min
|z|=R≥t

|P (z)| ≥ Rn

tn
Min
|z|=t

|P (z)|,

which is the inequality (1.18).

To prove the inequality (1.19), we have by (3.11),

m|z|n ≤ |F (z)| for |z| = 1.

A direct application of Rouche’s theorem shows that for every real or complex
number β with |β| < 1, all the zeros of polynomial F (z)−mβzn lie in |z| < 1
and therefore, by the Gauss- Lucas theorem, all the zeros of derived polynomial

G(z) = F ′(z)− nmβzn−1 (3.12)

also lie in |z| < 1. This implies

|F ′(z)| ≥ nm|z|n−1 for |z| ≥ 1. (3.13)

For, if inequality (3.13) is not true, then there is a point z = z0 with |z0| ≥ 1
such that

|F ′(z0)| < nm|z0|n−1.

We take

β =
F ′(z0)
nmz0

n−1

,

then |β| < 1 and with this choice of β, we have G(z0) = 0 with |z0| ≥ 1,
which is clearly a contradiction to (3.12). This establishes inequality (3.13).
Equivalently,

t|P ′(tz)| ≥ nm|z|n−1 for |z| ≥ 1.

Taking z = R
t eiθ, 0 ≤ θ < 2π and noting that |z| = R

t ≥ 1, we obtain

t|P ′(Reiθ)| ≥ nm
Rn−1

tn−1
for |z| ≥ 1.

This implies

Min
|z|=R≥t

|P ′(z)| ≥ n
Rn−1

tn
Min
|z|=t

|P (z)|,

which is inequality (1.19) and this completes the proof of Theorem 1.5. ¤
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