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Abstract. In this paper we establish several sharp results concerning the maximum modulus
of the polar derivative of a polynomial P(z) which does not vanish outside a disk. Our results
generalize and refine some known polynomial inequalities including some results of Turén,
Malik, Govil and others.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let P(z) be a polynomial of degree n and P’(z) be its derivative. If P(z)
has all its zeros in |z] < 1, then it was shown by Turan [14] that

Maz |P'(2)| > = Maz |P(2)|. (1.1)
|z|=1 2 |z]=1
Inequality (1.1) was generalized and refined by Aziz and Dawood[4] who under
the same hypothesis proved that

Max |P'(z)] > n{Max |P(2)| +nMin|P(2)| } (1.2)
|z|=1 2 | |z=1 |z|=1

Both the inequalities (1.1) and (1.2) are sharp and equality in (1.1) and (1.2)

holds for P(z) = az™ 4+ b where |a| = |b|. As an extension of (1.1), Malik [9]

proved that if P(z) has all its zeros in |z| < k where k < 1, then

n
Maz |P'(2)| > ——Max|P 1.3
Maz |P'(2)| 2 g Maz [P(2)] (1.3)

OReceived November 10, 2006. Revised February 5, 2008.
92000 Mathematics Subject Classification: 30A10, 30C10, 30D15.
9Keywords: Inequalities, polynomials, polar derivative.



14 A. Aziz and N. A. Rather

whereas Govil [7] showed that if P(z) = 0 for |z| < k where k > 1, then

Maz |P(2)] . (1.4)

" n
Ma:c‘P ’ 15 e 1

|z[=1

Recently Govil [8] refined both the inequalities (1.3) and (1.4) and proved that
if P(z) has all its zeros in |z| < k, then for k <1,

, n
%ain‘P 2)| = 1+k{]\ﬁaf\P(z)| = 1Mm\P(z)|} (1.5)
and for k > 1,
Maz |P'(2)] > {M 2)| + Min |P(z } 1.6
|z\1‘ )| > 1+kn|\ [ P(2)] |Z‘:kl()! (1.6)

Let D, P(z) denote the polar derivative of the polynomial P(z) of degree n
with respect to a point «, then
D.P(z) =nP(z) + (o — 2)P'(2).
The polynomial D,P(z) is of degree at most n — 1 and it generalizes the
ordinary derivative P’(z) of P(z) in the sense that

D,P
lim — 22 (2)

a—00 %

= P'(2). (1.7)

A. Aziz [2] proved several sharp results concerning the maximum modulus
of the polar derivative of a polynomial P(z) with restrocted zeros. Recently
Shah [13] extended (1.1) to the polar derivative of a polynomial P(z) and
proved that if P(z) has all its zeros in |z| < 1, then

Ma:c|D P(z)| > (|a| —1)Max|P( )| - (1.8)

|2|=1 |2l

More recently, the authors [5] refined inequality (1.8) by showing that

Maz[DaP()| = {10l = DMag PG| + (ol + DM PR . (19)
The result is sharp and equality in (1.9) holds for P(z) = (¢ —1)" where o > 1.

The authors [5] also considered the class of polynomials P(z) of degree n
having all its zeros in |z| < k and extended the inequalities (1.3) and (1.4) to
the polar derivative of a polynomial P(z) and obtained some generalizations
of the inequality (1.8). More precisely they have shown that if P(z) is a
polynomial of degree n having all its zeros in |z| < k where k < 1, then for
every real or complex number «, |a| > k,

o = &
Maz D, P()| > nd BL=E Lt pee) (1.10)
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whereas if P(z) = 0 for |z| < k where k > 1, then for every real or complex
number a with |a] > k,

la] — k
M D,P > — M P . 1.11
\z|g:f | ()l = n{ 1+ k" |z\g:1U 1l ( )

The estimate (1.10) is sharp and equality in (1.10) holds for P(z) = (2 — k)"
with a > k.

In the present paper, we first extend the inequality (1.5) to the polar deriv-
ative of a polynomial P(z) by presenting the following sharp result which is a
refinement of the inequality (1.3) as well as a generalization of the inequality

(1.9).

Theorem 1.1. If P(z) is a polynomial of degree m having all its zeros in
|z| < k where k <1, then for every real or complex number a with |a| > k,
n o] +1
Maz | Dy P > — —k)Max |P Min |P . (112
Ve D,PG)| > 1 { ol = a1 + (S5 i ] | a2
The result is best possible and equality in (1.12) holds for P(z) = (z — k)"
with a > k.

Remark 1.1. For k =1, (1.12) reduces to the inequality (1.9).

Remark 1.2. Dividing the two sides of (1.12) by |«| and letting & — oo and
noting (1.7), we get the inequality (1.5).

Next we present the following generalization of the inequality (1.9) which
extends the inequality (1.6) to the polar derivative of a polynomial P(z).

Theorem 1.2. If P(z) is a polynomial of degree n having all its zeros in

|z| < k where k > 1 and m = {\/lfzz\P(z)], then for every real or complex
z|l=

numbers «,  with |a| > k and |B] < 1,

—k
Mag|DoP(2) + frm] > n ’1‘1’+ kn {glwgc P(2)] + \g|m} (1.13)
and
MaziDaP(2)] 2 1fkn{ﬂa!—k)fl\{afIP(z)!+!B\(Iar—1—k—k“)m}. (1.14)

Remark 1.3. For =0, Theorem 1.2 reduces to the inequality (1.11).

Remark 1.4. Dividing the two sides of the inequality (1.14) by |«| and letting
a — oo with =1, we get the inequality (1.6).

As a refinement of the inequality (1.11), we establish the following result.
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Theorem 1.3. If all the zeros of polynomial P(z) = [[,_,(z — 2,) of degree
n lie in |z| < k where k < 1, then for every real or complex number o with
o] >k,

la] — k) — Kk
Maz| Do P(2)| > 2 Maz |P(2)]. 115
MazlDaP(2)] 2 { L4 ;£;k++y%44if‘ (=)l (1.15)

Remark 1.5. Dividing the two sides of the inequality (1.15) by || and letting
a — 00, we obtain a result due to A. Aziz [3].

The following result which is a refinement of the inequality (1.8) immedi-
ately follows from Theorem 1.3.

Corollary 1.1. If all the zeros of polynomial P(z) = [[,_,(z — 2,) of degree
n lie in |z| < 1, then for every real or complex number o with |a| > 1,

n

1
Maz|D,P(2) > (la] — 1 —Max |P(2)|. 1.16
MarDaP() 2 ol =D tar P (110

The result is sharp and equality in (1.16) holds for P(z) = (2 — 1)™ with
a>1.

We also prove the following result which is a refinement of the inequality
(1.10) and a generalization of (1.9).
Theorem 1.4. If P(z) is a polynomial of degree m having all its zeros in
|z| <k where k > 1, then for every real or complex numbers o with |a| > k,
| — k la| + k.
Mazx |D,P > Max |P Min|P . 1.17
Wfaz|Da (Z)I_.n{ 1 ez |P)] + == Min|P(2) (1.17)

Remark 1.6. For k£ = 1, Theorem 1.4 reduces to the inequality (1.9).

Finally we present the following result which is a generalization of a result
Aziz and Dawood [4, Theorem 1].

Theorem 1.5. If P(z) is a polynomial of degree m having all its zeros in
|z| <t where t > 0, then

mn

R
Min |P(z)| > —Min|P(z)| (1.18)
|z|=R>t " |z|=t

and

Rn—l
Min |P’ > Min|P(z)|. 1.19
uth @H_nﬂlMg!@N (1.19)
Both the estimates are sharp and equality in (1.18) and (1.19) holds for P(z) =
A2, A £ 0.
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The following corollary immediately follows from Theorem 1.5 by taking
R=tin (1.19).

Corollary 1.2. If P(z) is a polynomial of degree n having all its zeros in
|z| <t where t >0, then

Min |P'(z)| >

n
|z|=t 1

in] P()].

||

2. LEMMA

For the proof of these theorems we need the following lemma due to Aziz
3].
Lemma. If P(z) is a polynomial of degree n having all its zeros in |z| < k
where k > 1, then

n

Max |P > M
|z|gf| () 2 14k |z|g1x’

P(2)|.

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. Let m = {\/|[m |P(2)|. If P(z) has a zero on |z| = k,
z|=k

then m = 0 and the result follows from the inequality (1.10). Henceforth, we
suppose that all the zeros of P(z) lie in |z| < k where k < 1, therefore, m > 0
and m < |P(z)] for |z| = k. Now if 3 is any real or complex number with
|B| < 1,then for |z| =k
imB2"[k"| < |P(2)].

By Rouche’s theorem, it follows that the polynomial G(z) = P(z) — mpBz"/k"™
has all its zeros in |z| < k. Using now the same argument as in the proof of
Theorem 1.1 of [5] with P(z) replaced by G(z) = P(z) —mpz"/k", we get for
every o with |a| > k and |z| =1,

Da(P() = mB" k)] > (lal = k) S

v=1

1

TW'P(Z) —mBz" [k"|

—k
> n{w}w(z) —mpBz"/k"|.
Equivalently for |z| = 1,

’a’_k n/pn
Tk }]P(z)—mﬁz JE™]. (3.1)

A simple application of Laguerre theorem ( see [1] or [ 10, p.52] ) on the polar
derivative of a polynomial shows that for every real or complex number o with

|Do(P(z) — mnﬁz"‘l/k”)\ > n{
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la| > k, the polynomial D,G(z) = Do P(z) — mnafz"/k™ has all its zeros in
|z| < k <1 where |3| < 1. This implies that

|DoP(2)| > mn|al|z|" "1 /k"  for |z| > k. (3.2)
Now choosing the argument of 3 in the left hand side of (3.1) such that

|DoP(2) — mnaB2""1Jk"| = |DaP(2)| — mn|a|B|/k"  for |z| =1,
which is possible by (3.2), we get for |z| =1,

"“"‘“}{|P<z>|—m|ﬁ|/k”|}. (3.3)

Do P(2)| — mnlal|8)/k" > n{ T

Letting |3| — 1, we obtain
n lof +1
Mazx |D,P > — — k)Mazx |P Min|P ,
ez D, PG)| > 1 { ol = tag PG| + G 5 i 1P |
2) and this completes the proof of Theorem 1.1. O

_ =

which is inequality (1.

Proof of Theorem 1.2. By hypothesis, all the zeros of P(z) lie in |z| < k
where k > 1 and m = {\/A‘MZL |P(2)|]. If P(z) has a zero on |z| = k, then result
z|l=

follows from the inequality (1.11). Henceforth, we assume that all the zeros
of P(z) lie in |z| < k where k > 1 so that m > 0 and m < |P(z)| for |z| = k.
By the maximum modulus theorem for every  with || < 1, it follows that

m|B| < |P(z)] for |z| > k.
A direct application of Rouche’s theorem shows that the polynomial G(z) =
P(z) + fm has all its zeros in |z| < k. Applying inequality (1.11) to the
polynomial G(z), we get for every a with || > k,

la| — k
> .
Maz|DaG(2)] 2 n{ T g [ Mar |GG

That is,

Max |DoP(2) + fmn]

\faz lof = }Ma:c |P(z) + pm|

|2[=1

\Y
3
——
—_
+
5
N

> n{|0‘| _’“} |P(2) + Bm| for |2| =1. (3.4)

Now choosing the argument of 3 in the right hand side of inequality (3.4)
suitably, we obtain

—k
Maz [DoP(2) + gl = n{ LA arag 1P + 9,



Inequalities for the derivative of a polynomial with restricted zeros 19

which proves the inequality (1.13).

To prove the inequality (1.14), we use the fact that

| Do P(2)| + |Blmn > | Do P(2) + fmn|
and it follows by inequality (1.13) that
Max |DoP(2)| + |Blmn > Max |DyP(z) 4+ Bmn|

|z|=1 |z|=1
> WU e 1D P2+ 18Im)
= L+kn =t “

for every 3 with |3| < 1. This gives

Maz |DoP(2)] > —"

21 T {(!a! ~ k)Maz |P(2)| + |Bl(lo — 1 -k - k”)m}

which is inequality (1.14) and this completes the proof of Theorem 1.2. O

Proof of Theorem 1.3. Since all the zeros of polynomial

P(z2) = H(z —2)

lie in |z| < k, where k£ > 1, the polynomial

n

G(z) = P(kz) = [ [ (kz — 2)

lie in |z] < 1 and we have

so that for 0 < 6 < 2,

G/(eie) ewG'(eie) n 61‘6 n k
‘ Re{ Ge) } ZRe{eze—zy/k}—VZ:1k+|zy|

G( eie)
This implies

ok
G'(2)] > Z m@(zﬂ for [z] =1. (3.5)
v=1 v

If H(z) = 2™ G(1/Z%), then the polynomial H(z) has all its zeros in |z| > 1 and
H() = |G() for |o|=1.
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Therefore, it follows by a result of De Bruijn ( see [ 6, Theorem 1, p.1265] )

that
() < |G()] for |o] = 1.
Since
H'(z) =nz""1G(1/7) — 2" 2G'(1/%),
therefore, for 0 < 6 < 27, we have
()] = [nG(e™) — G (e
so that
|H'(2)| = [nG(z2) — 2G'(2)| for |z] =1.
Using this in (3.6), we get
InG(2) — 2G'(2)| < |G'(2)] for |z|=1.

Now for every a with |a| > k, we have

DupGE)| = InG(z) = 2G'(x) + G/ 2)]

This gives with the help of (3.7) that

o

Dupc1 = {E el tor =1,

Combining (3.5)and (3.8), we obtain for every a with |a| > k,

’Da/kG( | > |O[’ Z k‘+ |Z | | for ’Z‘ =1

Replacing G(z) by P(kz), we get

Do P(k2)| > (|a| — Zk+| P(kz)| for |z] =1,

that is,

\nP(kz)—k(z kP (k2)| > (o] — Z 1P(k2)]

which implies

|z[=1

> Bl - mee) - o)

Mazx|nP(kz) + (o — kz)P'(k2)| > (Ja| — Z oy \z lll\ﬁarlr\P(k:zﬂ
=1

(3.6)

(3.7)

(3.8)

for |z] =1,
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Equivalently,
n

! — ; axr V4
MaglnP(e) + (@ = P ()| 2 (lol = ) 1 Ml o)L

Using the Lemma, we obtain

PP = Yaznr(o)+ +(a—)P(2)
> (o] - Zkﬂz,l " MaglPG)|. (39

Now, if F'(z) is a polynomial of degree n, then ([12, p. 346] or [11, vol. I, p.
137])

Maz |F(2)| < R®Maz|F
R ggll ()] Hag:\ (2)].

Applying this result to the polynomial nP(z) + (o — z)P'(z) = Do P(z) which
is of degree at most n — 1 with R = k, we get

J|\4|a%|D oP(2)] < k" 1]|\4‘a%“|D oP(2)]. (3.10)

Together (3.9) and (3.10) leads to

Maz|DoP(z )|22{|0‘|_k}z Y Maz|P(2)].

|2]=1 Ltk | =k + |z J2=1
This completes the proof of Theorem 1.3. U

Proof of Theorem 1.4. By hypothesis all the zeros of P(z) lie in |z| < k
where k > 1, therefore, all the zeros of G(z) = P(kz) lie in |2| < 1. Applying

inequality (1.9) to the polynomial G(z) and noting that %‘ > 1, we get

|| — la| + k.
M D G(z M G + Min |G .

Replacing G(z) by P(kz), we obtain

—k
Maz|De P(kz)| > ”{“”k Maz |P(kz)| +

la] + K
|z|=1 2 |z|=1 k

Min | (k) }
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This implies with the help of the Lemma that

MaglnP(ks) + (%—z)kP’(kzﬂ
n (|a] —k la] + k.
> I Magz |P Min |P
> 2{ o Maz [P(:)|+ L5 Min | P()
n(|la —k 2k o] + k.
> 2 Maz |P Min |P
> 2{ k 1+kn|z|i‘¥| ()] + =7 ng\ ()l ¢
which gives
]‘\/{a%]DaP(z)] = ]‘\/{a%]nP(z) + (a — 2)P'(2)
= MaglnP(kz) + (% — kP! (k2)|
_ —k la|+ k., .
> adi 1= v p Min|P(z2)| b.
> ot ar )+ (G rin Po)

Combining this with the inequality (3.10), it follows that

-k
k" Moax|DoP(z)] > n{k”_l(M)Max\P(zﬂ

|z|=1 14 k7 z=1
+ (L rin P
2k 7 z=k
which immediately leads to the inequality (1.17) and this completes the proof
of Theorem 1.4. O

Proof of Theorem 1.5. If P(z) has a zero on |z| = ¢, then m = ]‘\4|m]P(z)\ =
z|=t

0, and the result is trivial in this case. We now assume that all the zeros of
P(z) lie in |z| < t where ¢ > 0, therefore, m > 0 and

m < |P(z)| for |z]=t.
If F(z) = P(tz), then all the zeros of polynomial F(z) lie in |z| < 1 and
m|z|" < |F(z)| for |z]=1. (3.11)
By the maximum modulus theorem, it follows that
m|z|" < |F(z)| for |z|>1.
Equivalently,
m|z|" < |P(tz)] for |z| > 1.
Taking z = %ew, 0 < 0 < 27 and noting that |z| = % > 1, we obtain0

|P(Re%| > m%
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for every 6, 0 < 0 < 2w and R > t. This implies

Rn
Min |P(2)| > t—Mz'n|P(z)|,

|z|=R>t o z|=t

which is the inequality (1.18).

To prove the inequality (1.19), we have by (3.11),
m|z|" < |F(z)| for |z|=1.

A direct application of Rouche’s theorem shows that for every real or complex
number [ with |3| < 1, all the zeros of polynomial F(z) —mfgz" lie in |z| < 1
and therefore, by the Gauss- Lucas theorem, all the zeros of derived polynomial

G(z) = F'(z) — nmBz""1 (3.12)
also lie in |z| < 1. This implies
|F'(2)| > nm|z|"™'  for |z| > 1. (3.13)

For, if inequality (3.13) is not true, then there is a point z = zp with |z > 1
such that
|F"(20)] < nm]zo|™ L.
We take
F'(z)"""

)

nmzo

then || < 1 and with this choice of 3, we have G(zp) = 0 with |z9] > 1,
which is clearly a contradiction to (3.12). This establishes inequality (3.13).
Equivalently,

t|P'(tz)| > nm|z|""!  for |z| > 1.

Taking z = %ew, 0 < 0 < 27 and noting that |z| = % > 1, we obtain

. Rnfl
t|P' (Re®)| > nm for |z] > 1.
tn—l
This implies
Rnfl
Min |P'(z)| >n Min|P(z)|,
|z|=R>t (AP

which is inequality (1.19) and this completes the proof of Theorem 1.5. O
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