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Abstract. In this paper, we propose a new branch-reduction-and-bound algorithm to solve

the nonlinear knapsack problems by using general discrete monotonic optimization tech-

niques. The specific properties of the problem are exploited to increase the efficiency of the

algorithm. Computational experiments of the algorithm on problems with up to 30 variables

and 5 different constraints are reported.

1. Introduction

We consider the knapsack problem which is the following nonlinear integer
programming problem (shortly, MNKP ):

max f(x) =

n∑
j=1

fj(xj) (1.1)
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s.t. gi(x) =

n∑
j=1

gij(xj) ≤ wi, i = 1, 2, ...,m, (1.2)

x ∈ X = {x ∈ Zn : aj ≤ xj ≤ bj , j = 1, 2, ..., n}, (1.3)

where Zn is the set of all integer points in Rn, fj are increasing functions on
[aj , bj ] and gij are increasing lower semicontinuous functions on [aj , bj ] for any
i = 1, 2, ...,m, j = 1, 2, ..., n, with aj ≤ bj and aj , bj ∈ Z for any j = 1, 2, ..., n.
The area of knapsack problems has an attracted attention from applications
in economics, operations research. Recently, researchers have presented some
methods to solve this type of problems.

In [4], Cooper used dynamic programming to solve problem in integers with
a separable objective function. The monotonicity of the problem (MNKP )
here is not exploited. We can solve knapsack problem by continuous relaxation-
based branch-and-bound [5] or hybrid DP/B&B methods [3, 6, 7, 12, 13, 14,
17, 19]. In the nonconcave case, however, computing upper bound of sub-
problem by this continuous relaxation method is usually not easy to have an
exact number. Recently, the problem (MNKP ) has been solved by nonlinear
Lagrangian methods [1, 2, 8, 9, 10, 15, 16]. In optimization theory, nonlin-
ear Lagrangian methods are convergent, however, the computational is often
difficult to implement.

In [11], Li, Sun, Wang and McKinnon proposed a convergent Lagrangian
and domain cut method to solve knapsack problem (MNKP ). This method
can be interpreted as an extension of the traditional branch-and-bound method.
At each iteration, a box candidate for subdivision may be branched into 2n+1
new subboxes and the dual search method is applied to the each newly gener-
ated subbox.

In this paper we apply the polyblock algorithm and the branch-reduction-
and-bound algorithm for general discrete monotonic optimization ([21]) to
solve (MNKP ). The specific properties of the problem are exploited to in-
crease the efficiency of the algorithm. Specifically, the separability and the
monotonicity of problem (MNKP ) help us to compute an upper bound of
a subproblem by the Lagrangian relaxation method. Due to the problem
(MNKP ) is an integer programming, the separation cut and reduction cut
are realized simpler in the general case.

The paper is organized as follows. In sections 2 we review some necessary
concepts, results from monotonic optimization as presented in [21] and prove
some specific properties. Section 3, will present the polyblock approxima-
tion algorithm for (MNKP ). The branch-reduction-and-bound algorithm for
(MNKP ) is presented in section 4. Finally in section 5, the computational
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experiments of branch-reduction-and-bound algorithm on problems with up
to 30 variables and 5 constraints are reported.

2. Separation cut and reduction cut

In monotonic optimization ([21]), the separation cut and reduction cut are
fundamental steps of polyblock algorithm and branch-reduce-and-bound algo-
rithm. At a given iteration of the algorithm, it reduces a polyblock (box) to
smaller polyblock (box) without losing any feasible solution currently still of
interest.

A set G ⊂ [a, b] is called normal if x ∈ G whenever a ≤ x ≤ x′ ∈ G.

Proposition 2.1. (cf. [20]) If f is an increasing function on Rn+ then the set
G = {x ∈ Rn+| f(x) ≤ 1} is normal and it is closed if f is lower semicontinu-
ous.

Definition 2.2. (cf. [21]) Let A ⊂ [a, b]. The normal hull of A, written Ae,

is defined by Ae = ∪z∈A[a, z]. If A is finite, then Ae is called a polyblock and
the vector z ∈ A is said to be vertex of the polyblock.

For the rest of this paper, denote by ei the vector satisfying eii = 1 and
eij = 0, for all j 6= i.

Lemma 2.3. (cf. [21]) Let x ∈ [a, b] satisfy a < x < b. Then, the set
[a, b] \ (x, b] is a polyblock with vertices zi = b− (bi − xi)ei, i = 1, 2, ..., n.

Proposition 2.4. (cf. [21]) The maximum of an increasing function f(x)
over a polyblock is achieved at a proper vertex of this polyblock.

Consider the problem (MNKP ). Set a = (a1, a2, ..., an), b = (b1, b2, ..., bn).
Since fj and gij are increasing functions on [aj , bj ] for any i = 1, 2, ...,m, j =
1, 2, ..., n, without loss of generality, we may assume that [a, b] ⊂ Rn+.

For the rest of this paper, we define

g̃(x) = max{gi(x)− wi| j = 1, 2, ...,m}.
Since gi is a lower semicontinuous increasing function on [a, b] for every i =
1, 2, ..,m, the function g̃ is lower semicontinuous increasing on [a, b]. By Propo-
sition 2.1, G = {x ∈ [a, b]| g̃(x) ≤ 0} is a closed and normal subset on [a, b].
Then, the problem (MNKP ) can be rewritten as following:

max{f(x)| x ∈ G ∩X}. (2.1)

This is discrete monotonic optimization problem which has been studied in
[21].
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A vector x̄ ∈ G is an upper boundary of G if the cone Kx̄ := {x| x > x̄}
constains no point x ∈ G. Denote by ∂+G the set of all upper boundary points
of G.

Proposition 2.5. (cf. [21]) Let G be a closed normal set G in [a, b], and
z̄ ∈ [a, b] \ G. If x̄ ∈ ∂+G satisfying x̄ < z̄ then the cone Kx̄ := {x| x > x̄}
constains z̄ but is disjoint from G, that is, Kx̄ ∩G = ∅.

We shall refer to the cone Kx̄ as a separation cut with vertex x̄ for G.
Consider a box [p, q] ⊂ [a, b] satisfying p, q ∈ Zn. Given any point x ∈ [p, q].

As in [21], the lower X-adjustment of x is the point

bxcX = x̃ with x̃i = max{yi : y ∈ X ∪ {p}, yi ≤ xi}, i = 1, 2, ..., n (2.2)

and the upper X-adjustment of x is the point

dxeX = x̂ with x̂i = min{yi : y ∈ X ∪ {q}, yi ≥ xi}, i = 1, 2, ..., n. (2.3)

Let [xi] denote the integer number satisfying [xi] ≤ xi < [xi] + 1 for all
i = 1, 2, ..., n. It is easy to prove following proposition.

Proposition 2.6. Let x ∈ [p, q] ⊂ [a, b]. Then

x̃i = [xi], ∀ i = 1, 2, ..., n, (2.4)

x̂i =

{
[xi] if [xi] = xi,

[xi] + 1 otherwise,
i = 1, 2, ..., n. (2.5)

Proposition 2.7. Let [p, q] ⊂ [a, b] satisfy p, q ∈ Zn. Then bxcX ∈ [p, q]∩X
and dxeX ∈ [p, q] ∩X for any x ∈ [p, q].

Proof. Since pi ∈ Z and pi ≤ xi, we have pi ≤ x̃i by (2.4). This together
with x̃i ≤ xi ≤ qi implies that pi ≤ x̃i ≤ qi for any i = 1, 2, .., n. So,
bxcX ∈ [p, q] ∩ X. We now show that dxeX ∈ [p, q] ∩ X. Since qi ∈ Z and
xi ≤ qi, we have x̂i ≤ pi by (2.5). This together with pi ≤ xi ≤ x̂i implies that
qi ≤ x̂i ≤ pi. Therefore, dxeX ∈ [p, q] ∩X. �

Proposition 2.8. (cf. [21]) If x is the vertex of a separation cut for G, then
bxcX is the vertex of a separation cut for the G ∩X, that is,, the cone KbxcX
is disjoint from G ∩X.

Let [p, q] be any box in [a, b] satisfying p, q ∈ X. We consider the following
problem:

max{f(x)| x ∈ G ∩ [p, q]}. (2.6)

If a feasible solution of (2.6) is known with objective function value γ, then
we would like to recognize whether or not the box [p, q] contains a feasible
solution to (2.6) with objective function value at least equal to γ.
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Proposition 2.9. (i) Let f(q) ≥ γ and

p
′

= q −
n∑
i=1

αi(qi − pi)ei, (2.7)

αi = sup{α| 0 ≤ α ≤ 1, f(q − α(qi − pi)ei) ≥ γ}, i = 1, ..., n. (2.8)

Then dp′eX ∈ X and the box [dp′eX , q] still contains all feasible solutions with
objective function value at least equal to γ of the problem (2.6).

(ii) Let g̃(p) ≤ 0 and q
′

= p+
∑n

i=1 βi(qi − pi)ei, where

βi = sup{β| 0 ≤ β ≤ 1, g̃(p+ β(qi − pi)ei) ≤ 0}, i = 1, ..., n. (2.9)

Then bq′cX ∈ X and the box [p, bq′cX ] still contains all feasible solutions with
objective function value at least equal to γ of the problem (2.6).

Proof. It suffices to prove (i) because the proof of (ii) is similar. From

p
′

= q −
n∑
i=1

αi(qi − pi)ei,

we have p
′
i = αipi + (1−αi)qi with 0 ≤ αi ≤ 1, for all i = 1, 2, ..., n. It follows

that

pi ≤ p
′
i ≤ qi, ∀i = 1, 2, ..., n.

Hence, p ≤ p′ ≤ q. By Proposition 2.7, we have dp′eX ∈ [p, q] ∩X.
Consider any x ∈ [p, q] ∩ X satisfying f(x) ≥ γ and g̃(x) ≤ 0 (g̃(x) =

max{gi(x) − wi| j = 1, 2, ...,m}). We now show that x ≥ p
′
. Suppose that

x � p
′
. Then there exists i ∈ {1, 2, ..., n} such that

xi < p
′
i = αipi + (1− αi)qi

= qi − αi(qi − pi).

So, there exists α ∈ (αi, 1] such that xi = qi − α(qi − pi). It follows that

q − (qi − xi)ei = q − α(qi − pi)ei.

By virtue of the definition of αi and last equality, we have

f(q − (qi − xi)ei) = f(q − α(qi − pi)ei) < γ.

This together with x ≤ q − (qi − xi)ei implies that

f(x) ≤ f(q − α(qi − pi)ei) < γ.

It contradicts with f(x) ≥ γ. So, x ≥ p
′
. From the definition of dp′eX and

x ∈ X, we have x ≥ dp′eX . �
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For box [p, q] satisfying g̃(p) ≤ 0, f(q) ≥ γ. Clearly, the box [dp′eX , q]
defined in (i) is obtained from [p, q] by cutting domain

⋃n
i=1{x| xi < x̂i}

(dp′eX = x̂) and the box [p, bq′cX ] defined in (ii) is obtained from [p, q] by

cutting
⋃n
i=1{x| xi > x̃i} (bp′cX = x̃). The former cut is referred to as a lower

cut for [p, q] with vertex dp′eX and the latter cut as an upper cut [p, q] with

vertex bq′cX . If g̃(dp′eX) ≤ 0 and bq′cX is the vertex of the upper cut for

[dp′eX , q], that is,

bq′cX = dp′eX +

n∑
i=1

βi(qi − p̂i)ei,

where dp′eX = p̂ and βi is determined by (2.9). Then the box [dp′eX , bq
′cX ]

is called a γ-reduction of [p, q], written [dp′eX , bq
′cX ] = redγ [p, q].

3. Branch-reduce-and-bound algorithm

In this section, we apply branch-reduce-and-bound algorithm to solve prob-
lem (MNPK). In each iteration, this algorithm is a procedure involving three
basic operations: branching, reduction and bounding.

Assume at k-th iteration, we have the current best feasible solution xk with
the current best value γ = f(xk) a set of newly generated boxes that remain
for exploration (note that the newly generated boxes have vertices in X). If
M = [p, q] is such a box, it is easily to verify that there exists a feasible
solution x ∈ [p, q] to (2.1) satisfying f(x) ≥ γ only if g̃(p) ≤ 0, f(q) ≥ γ. We
now consider the following subproblem:

max{f(x)| x ∈ G ∩M ∩X}. (3.1)

I. Reduction. For every box M = [p, q](p, q ∈ X), which is interested.
This operation reduces M = [p, q] to smaller box redγ [p, q] without losing any
feasible solution currently still of interest. In general case ([21]), to compute

dp′eX and bq′cX , we must first calculate p
′

and q
′

by Proposition 2.9. In

particular, we only can approximatively compute p
′

and q
′
. In this paper, due

to X is a subset in Z, the dp′eX and bq′cX are realized without knowing p
′

and q
′

by following theorem.

Theorem 3.1. Let [p, q] be any box in [a, b] satisfying p, q ∈ X, g̃(p) ≤ 0 and
f(q) ≥ γ. Then,

dp′eX = q −
n∑
i=1

ᾱi(qi − pi)ei
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where

ᾱi =

{
0, if qi − pi 6= 0

1
qi−pi max{ki| ki ∈ {0, 1, ..., qi − pi}, f(q − kiei) ≥ γ}, otherwise

(3.2)
for i = 1, ..., n and

bq′cX = dp′eX +

n∑
i=1

β̄i(qi − p̂i)ei,

where

β̄i =

{
0, if qi − pi 6= 0

1
qi−p̂i max{li| li ∈ {0, 1, ..., qi − p̂i}, g̃(dp′eX + lie

i) ≤ 0}, otherwise

(3.3)
for i = 1, ..., n.

Proof. Since p ≤ dp′eX ≤ q, there exists ᾱi ∈ [0, 1], i = 1, 2, ..., n such that

dp′eX = q −
n∑
i=1

ᾱi(qi − pi)ei.

For i ∈ {1, 2, ..., n}, from last equality we have (p̂ = dp′eX)

p̂i = q − αi(qi − pi)ei. (3.4)

If qi − pi = 0, it follows that qi = pi. By (2.5), we have p̂i = qi. If qi − pi 6= 0,
from p̂i ∈ Z and (3.4) it follows that ᾱi(qi − pi) ∈ Z. We now show that

ᾱi = max{α| α ∈ [0, 1], α(qi − pi) ∈ Z, f(q − α(qi − pi)ei) ≥ γ}. (3.5)

Indeed, suppose that there exists a real number α∗i in [0, 1] satisfying

α∗i (qi − pi) ∈ Z, f(q − α∗i (qi − pi)ei) ≥ γ

such that α∗i > ᾱi. From (2.7), (2.8) and f(q − α∗i (qi − pi)ei) ≥ γ we have
α∗i ≤ αi. It follows that ᾱi < α∗i ≤ αi. Therefore,

p
′
i = qi − αi(qi − pi)
≤ qi − α∗i (qi − pi)
< q − αi(qi − pi)ei

= p̂i. (3.6)

From (3.6), qi−α∗i (qi−pi) ∈ Z and p̂ = dp′eX , it follows that p̂i ≤ qi−α∗i (qi−
pi). This conflicts with (3.6). Hence, we have (3.5). Let α ∈ [0, 1] satisfy

α(qi − pi) ∈ Z, f(q − α(qi − pi)ei) ≥ γ.
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Setting ki := α(qi − pi), we have ki ∈ {0, 1, ..., qi − pi}. This together with
(3.5) implies that

ᾱi =
1

qi − pi
max{ki| ki ∈ {0, 1, ..., qi − pi}, f(q − kiei) ≥ γ}.

Hence, dp′eX = q −
∑n

i=1 ᾱi(qi − pi)ei with ᾱi satisfying (3.2).

By the same above proof, we show that bq′cX = dp′eX +
∑n

i=1 β̄i(qi − pi)ei
with β̄i satisfying (3.3). �

II. Bounding. In this operation, we need compute a upper bound µ(M)
such that

µ(M) ≥ γ(M) = max{f(x)| x ∈ G ∩M ∩X}.

Due to the f(x) is increasing in [p, q] so f(q) is a upper bound of problem
(3.1). In general case, we can always take µ(M) = f(q) when a better bound
is expensive to compute. In this paper, due to the separability of objective,
subjective functions and X ⊂ Zn, we can obtained a upper bound better
that f(q) by using Lagrangian relaxation method or separation cut which is a
operation in polyblock algorithm ([21]).

If q ∈ G then q is a feasible solution and

max{f(x)| x ∈ G ∩M ∩X} = f(q).

Hence, we take µ(M) = f(q). Suppose that q /∈ G. We now compute a upper
bound by separation cut. Denote

Xk = {x ∈ X| f(x) > γ},

q is the first point of G on the line segment joint q to p and q̃ = bqcXk
(using

formula (2.3) for X := Xk). For i = 1, 2, ..., n, set

∆i =
{
αi|αi ∈ {0, 1, ..., qi − pi}, ti =

αi
qi − pi

, f(q − (qi − pi − αi)ei) > γ,

g̃(p+ ti(q − p)) ≤ 0
}
. (3.7)

Proposition 3.2. Let q /∈ G. Then, the polyblock [p, q] \ (q̃, q] still contains
G ∩M ∩Xk, q̃ ∈ G ∩X and

q̃ = p+
n∑
i=1

α̃ie
i, (3.8)

where α̃i = max
{
αi| αi ∈ ∆i} for every i = 1, 2, ..., n, (agree that max ∅ = 0).
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Proof. By Proposition 2.8, the polyblock [p, q] \ (bqcXk
, q] still contains G ∩

M ∩Xk. Set

x∗ = p+
n∑
i=1

α̃ie
i. (3.9)

Since α̃i ∈ {0, 1, ..., qi − pi}, we have x∗i ∈ Z and pi ≤ x∗i ≤ qi ∀i = 1, 2, ..., n.
So, x∗ ∈ X. Since q̃ = bqcXk

, we have q̃ ≤ q. It follows that g̃(q̃) ≤ g̃(q) ≤ 0
(because q ∈ G). So, q̃ ∈ G ∩X.

We next prove (3.8). For i ∈ {1, 2, ..., n}. If qi = pi, by (3.7), we have
α̃i = 0, and so x∗i = pi. From (2.3) and qi = pi, it follows that q̃i = pi. So
q̃i = x∗i .

If qi > pi and ∆i = ∅, then α̃i = 0, and so x∗i = pi by (3.9). Using
Proposition 2.7, we have q̃ ∈ [p, q] ∩Xk, it follows that q̃i ≥ pi = x∗i .

Now, we suppose that q̃i > pi = x∗i . Since q̃ = bqcXk
and (2.3), there exists

x ∈ [p, q] ∩Xk such that xi = q̃i. Setting α = q̃i − pi, then

q − (qi − pi − α)ei = q − (qi − q̃i)ei

≥ x.

From the last inequality and x ∈ Xk, it follows that

f(q − (qi − pi − α)ei) ≥ f(x) > γ. (3.10)

Since q is the first point of G on the line segment joint q to p, one has p ≤ q ≤ q,
so there is number t̄ ∈ [0, 1] such that q = p+ t̄(q− p). From the defination of
bqcXk

, we have q̃i ≤ qi. This together with α = q̃i − pi implies that

pi + t(qi − pi) ≤ pi + t̄(qi − pi),
where t = α

qi−pi . It follows that t ≤ t̄, and so

p+ t(q − p) ≤ p+ t̄(q − p) = q.

By the increaseness of g̃ we have

g̃(p+ t(q − p)) ≤ g̃(q) ≤ 0.

This together with (3.10) implies that α ∈ ∆i, which contradicts the fact that
∆i = ∅. Therefore, q̃i = x∗i .

If qi > pi and ∆i 6= ∅. Setting t̃i = α̃i
qi−pi , we have

f(q − (qi − pi − α̃i)ei) > γ, (3.11)

g̃(p+ t̃i(q − p)) ≤ 0. (3.12)

From (3.11), we have
q − (qi − pi − α̃i)ei ∈ Xk. (3.13)

From (3.12), we have
p+ t̃i(q − p) ∈ G. (3.14)
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Now, we show that x∗i ≤ qi. Assume the contrary that x∗i > qi, then

pi + t̃i(qi − pi) > pi + t̄(qi − pi),

and so t̃i > t̄. It follows that p + t̃i(q − p) ≥ q and p + t̃i(q − p) 6= q. This
together with (3.14) contradicts the fact that q is the first point of G on the
line segment joint q to p. Hence, x∗i ≤ qi. This together with (3.9), x∗i ∈ Z
and q̃ = bqcXk

implies that

q̃i ≥ x∗i = pi + α̃i.

Suppose that q̃i > x∗i . Setting α∗ = q̃i − pi, from last inequality, we have
α∗ > α̃i. It follows that

q − (qi − pi − α∗)ei ≥ q − (qi − pi − α̃i)ei,

and so,

f(q − (qi − pi − α∗)ei) > γ. (3.15)

Setting t∗ = α∗

qi−pi , by the same above proof, we also show that

g̃(p+ t∗(q − p)) ≤ g̃(q) ≤ 0. (3.16)

From (3.15) and (3.16), it follows α∗ ∈ ∆i. This together with α∗ > α̃i
conflicts with α̃i = max

{
αi| αi ∈ ∆i}. Hence, q̃ = x∗. �

In general case ([21]), in order to compute q̃, the first we must compute
approximately q. In this paper, due to the problem (MNKP ) is an integer
programming, we can exactly calculate q̃ without knowing q by above propo-
sition.

Since G is a normal set and q is the first point of G on the line segment joint
q to p, then q is an upper boundary of G. By Lemma 2.5, q is the vertex of a
separation cut for the G. By Proposition 2.8, q̃ is the vertex of a separation
cut for the G ∩X, and so, the polyblock [p, q] \ (q̃, q] still contains all feasible
solution x in [p, q] satisfying f(x) ≥ γ. Using Lemma 2.3, we have that the
vertex set of polyblock [p, q] \ (q̃, q] is{

q + (q̃i − qi)ei| i ∈ {1, 2, ..., n}
}
.

By Proposition 2.4, we have

max{f(x)| x ∈ G ∩M ∩Xk} ≤ max{f(x)| x ∈ [p, q] \ (q̃, q]} (3.17)

≤ max{f(q + (q̃i − qi)ei)| i ∈ {1, 2, ..., n}}.

So, we have that max{f(q + (q̃i − qi)ei)| i ∈ {1, 2, ..., n}} is a upper bound of
(3.1). Since q + (q̃i − qi)ei ∈ [p, q], ∀i ∈ {1, 2, ..., n}, we have

max{f(q + (q̃i − qi)ei)| i ∈ {1, 2, ..., n}} ≤ f(q). (3.18)
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Next, we show that the upper bound of (3.1) can be provided by Lagrangian
relaxation method. The problem (3.1) can be rewritten as following:

max{f(x)| g(x) ≤ w, x ∈M ∩X}. (3.19)

where g(x) = (g1(x), g2(x), ..., gm(x)), w = (w1, w2, ..., wm). The Lagrangian
relaxation of (3.19) is defined as follows

d(λ) = max{L(x, λ)| x ∈M ∩X}, (3.20)

where L(x, λ) = f(x)− λT (g(x)− w), ∀λ ∈ Rm+ .

It is well known that the following weak duality always holds

d(λ) ≥ f(x) ∀x ∈ G ∩M ∩X, ∀λ ∈ Rm+ .

It follows that d(λ) ≥ max{f(x)| x ∈ G ∩M ∩X} ∀λ ∈ Rm+ and so d(λ) is a
upper bound of f(x) over G ∩M ∩X for each λ ∈ Rm+ .

The duality problem of (3.19) is defined by

min{d(λ)| λ ≥ 0}. (3.21)

Let d∗ = min{d(λ)| λ ≥ 0}. Then d∗ is a upper bound of f(x) over G∩M ∩X.
By this way and (3.17), we can take

µ(M) = min

{
d∗,max

{
f(q + (q̃i − qi)ei)| i ∈ {1, 2, ..., n}

}}
.

From (3.18) and last equality, it follows that µ(M) ≤ f(q).

The problem (3.21) is a convex optimization problem. So, we can use sub-
gradient method to solve this problem ([18]). To minimize d(λ) over Rm+ ,
the subgradient method uses the iteration λs+1 = λs − tsηs where ηs is any
subgradient of d at λs, ts > 0 is the s-th step size satisfying ts → 0 and∑∞

s=1 t
s → +∞.

At each s-th iteration, we need compute the d(λs) by solving the Lagrangian
relaxation problem:

d(λs) = max{L(x, λs)| x ∈M ∩X}. (3.22)

Suppose that xλ
s

is an optimal solution of (3.22) corresponds to λs. It easy to
check that vector w − g(xλ

s
) is a subgradient of d at λs. So, the subgradient

method updates the multipliers by

λs+1
i = max{0, λsi − tsηi/||η||}, i = 1, 2, .,m.

We have

L(x, λs) =

n∑
j=1

(
fj(xj)−

m∑
i=1

λsigij(xj)

)
+ (λs)Tw.
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Therefore, in order to solve the (3.22), we solve n following one-dimensional
problems

max

{
fj(xj)−

m∑
i=1

λsigij(xj)| xj ∈ [pj , qj ] ∩ Z
}
, j = 1, 2, ..., n. (3.23)

It is a d.m problem in the form studied in [20] (the objective is difference of
two increasing functions). Using the method proposed in the latter paper the
problem (3.23) is then converted to nonlinear integer monotonic optimization
problem in two-dimensional space. So, the our method take advantages fully
the monotonicity of functions fj(xj), j = 1, 2, ..., n.

Note that: In this operation, we always obtain the feasible solution q̃.
Moreover, we can obtain some feasible solutions in the set {xλs | s = 1, 2, ...}.
This is very useful for updating the current best feasible solution and current
best value in branch-reduce-and-bound algorithm.

III. Branching. This operation is performed according to a standard
bisection rule. At k-th iteration, let [p, q] ⊂ [a, b] (p, q ∈ Z) be a box candidate
for subdivision. Compute the numbers

δ([a, b]) = max{qi − pi| i = 1, 2, ..., n} = qiM − piM , riM =
1

2
(qiM + piM )

and divide [a, b] into two boxes

M+ = {x ∈M | xiM ≥ [riM ] + 1},

M− = {x ∈M | xiM ≤ [riM ]},
where riM ∈ Z such that riM ≤ r < riM + 1. Since the set

{x ∈M | [riM ] < xiM < [riM ] + 1}

don’t contains any elements of X, we have

M ∩X = M+ ∪M− ∩X.

It is easily to verify that the vertices of M+(M−) are contained in X.

Algorithm:

Initialization. Let P1 = {M1}, M1 = [a, b], R1 = ∅. Let a be the current
best feasible solution, CBV = f(a). Set k := 1.

Step 1. Let P
′
k = {redγ [p, q]| [p, q] ∈ Pk} for γ = CBV. In particular delete

every box [p, q] such that g(p) > 0.

Step 2. For each box M = redγ [p, q] = [dp′eX , bq
′cX ] ∈ P ′k, compute a bound

µ(M) satisfying µ(M) ≤ f(bq′cX) and determine some feasible solutions in
M .
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Step 3. Let Sk = P
′
k ∪ Rk. Update CBV, using the new feasible solutions

encountered in Step 2, if any. Delete every M ∈ Sk such that µ(M) ≤ CBV
and let Rk+1 be the collection of remaining boxes.

Step 4. If Rk+1 = ∅, then terminate: CBV is the optimal value and the
feasible solution x̄ with f(x̄) = CBV is an optimal solution.

Step 5. If Rk+1 6= ∅, let Mk ∈ argumax{µ(M)| M ∈ Rk+1}. Divide Mk into
two boxes according to the above described rule. Let Pk+1 be the collection
of these two subboxes of Mk.

Step 6. Increment k and return to Step 1.

Theorem 3.3. (see Theorem 17, [21]) The algorithm terminates after finitely
many iterations, yielding an optimal solution.

4. Computational results

As an illustration, we present in this final some numerical examples of
branch-reduce-and-bound algorithm for some problems. The algorithm was
coded in Matlab 7.0 and the program was run on a PC Intel(R) (2.26GHz
with 1.96GB of DDR RAM).

Example 4.1. Consider the problem:

max f(x) =
1

2
x2

1 + 5x1 + 6x2

s.t g(x) = 6x1 + x2
2 ≤ 23,

x ∈ X = [1, 5]2 ∩ Z2.

For initialization we take P1 = {M1}, M1 = [a, b], a = (1, 1), b = (5, 5),
R1 = ∅ and let xbest = a be the current best feasible solution with current
best value CBV = f(a) = 23

2 . Set k = 1.

Iteration 1:

Step 1. redγM1 = [(1, 1), (3, 4)], P
′
1 = {[(1, 1), (3, 4)]}.

Step 2. Determine feasible solution bπG(3, 4)cX1 = (2, 3) and calculate the
upper bound µ(redγM1) = max{f(2, 4), f(3, 3)} = 37.5.

Step 3. S1 = P
′
1 ∪ R1 = {[(1, 1), (3, 4)]}, xbest = (2, 3), CBV = 30,

R2 = {[(1, 1), (3, 4)]}. Since R2 6= ∅, go to Step 4.

Step 4. M2 = [(1, 1), (3, 4)], divide M2 into two boxes: M2 = M21 ∪
M22, M21 = [(1, 1), (2, 4)], M22 = [(3, 1), (3, 4)], P2 = {M21,M22}, R2 =
R2 \ {M2} = ∅.
Step 5. k = 2.
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Iteration 2:

Step 1. redγM21 = [(2, 3), (2, 3)], redγM22 = [(3, 2), (3, 2)],

P
′
2 = {[(2, 3), (2, 3)], [(3, 2), (3, 2)]}.

Step 2. Both (2, 3) and (3, 2) are feasible solution, µ(redγM21) = 30,
µ(redγM21) = 31.5.

Step 3. S2 = {[(2, 3), (2, 3)], [(3, 2), (3, 2)]}, xbest = (3, 2), CBV = 31.5,
R3 = ∅.
Step 4. We have R3 = ∅. So, xopti = (3, 2)t is the optimal solution with
optimal value f(xopti) = 31.5.

Example 4.2.

max f(x) =
20∑
j=1

(cjxj − djx2
j )

s.t g(x) = Ax ≤ w,
x ∈ X = [1, 5]20 ∩ Z20,

where
ct = (300, 111, 123, 300, 121, 298, 143, 300, 134, 299, 178, 176, 157, 298, 254, 134,
176, 300, 300, 300),
dt = (1, 10, 9, 1, 8, 1, 7, 1, 10, 1, 9, 7, 10, 1, 9, 8, 9, 1, 1, 1),
w = 0.7A× h, ht = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5),

A=


4 45 47 8 41 34 8 9 43 25 27 23 4 25 23 6 8 44 1 24
31 5 34 33 26 8 5 9 33 25 7 35 32 5 28 33 31 21 41 29
21 35 4 23 6 28 35 29 43 35 37 45 22 35 38 3 21 41 3 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1


5×20

.

Since cj/2dj ≥ 5 ∀j = 1, 2, ..., n, the function fj = cjxj − djx2
j is increasing

on [1, 5] for every j = 1, 2, ..., n. Therefore, f is increasing on [1, 5]20. The
algorithm terminates after 230 iterations with the computational time is 13.2
seconds, yielding 16714 is the optimal value and the optimal solution is

xopti = (5, 2, 4, 5, 2, 5, 3, 5, 1, 5, 3, 1, 2, 5, 5, 1, 1, 5, 5, 5)t.

Example 4.3.

max f(x) =

20∑
j=1

(cjxj + djx
2
j )

s.t g(x) = Ax ≤ w,
x ∈ X = [1, 5]20 ∩ Z20,
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where ct = (30, 11, 23, 30, 21, 28, 43, 3, 14, 29, 17, 16, 17, 29, 50, 34, 16, 4, 30, 3),
dt = (1, 10, 9, 1, 8, 1, 7, 1, 10, 1, 9, 7, 10, 1, 9, 8, 9, 1, 1, 1),
w = 0.7A× h, ht = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5),

A=


4 45 47 8 41 34 8 9 43 25 27 23 4 25 23 6 8 44 1 24
31 5 34 33 26 8 5 9 33 25 7 35 32 5 28 33 31 21 41 29
21 35 4 23 6 28 35 29 43 35 37 45 22 35 38 3 21 41 3 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1


5×20

.

The function fj = cjxj + djx
2
j is increasing on [1, 5] for every j = 1, 2, ..., n.

Therefore, f is increasing on [1, 5]20. The algorithm terminates after 389
iterations with the computational time is 15.9 seconds, yielding 3990 is the
optimal value and the optimal solution is

xopti = (2, 5, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 5, 5, 5, 5, 1, 5, 1)t.

Example 4.4.

max f(x) =

20∑
j=1

(cjxj + dj(xj − ej)3)

g(x) = Ax ≤ w,
x ∈ X = [1, 5]20 ∩ Z20,

where ct = (33, 1, 42, 3, 23, 4, 13, 18, 3, 2, 32, 21, 1, 1, 24, 14, 25, 32, 3, 25),
dt = (1, 10, 3, 1, 8, 1, 7, 1, 10, 1, 3, 7, 10, 1, 9, 2, 9, 1, 1, 1),
et = (23, 4, 5, 2, 1, 3, 4, 5, 3, 2, 4, 2, 5, 3, 2, 1, 2, 3, 5),
w = 0.7A× h, ht = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5),

A=


4 5 4 8 1 4 8 9 3 2 2 3 4 5 3 6 8 4 1 4
31 5 34 33 26 8 5 9 33 25 7 35 32 5 28 33 31 21 41 29
21 35 4 23 6 28 35 29 43 35 37 45 22 35 38 3 21 41 3 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1


5×20

.

The function f is increasing on [1, 5]20 and f is not convex and concave on
[1, 5]20. The algorithm terminates after 330 iterations the computational time
is 9.6 seconds, yielding 2590 is the optimal value and the optimal solution is

xopti = (5, 2, 5, 1, 5, 1, 5, 3, 4, 1, 5, 3, 5, 2, 5, 2, 5, 5, 1, 4)t.
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Example 4.5.

max f(x) =

30∑
j=1

−dj
xj

s.t g(x) = Ax1 +Bx2 ≤ w,
x ∈ X = [1, 5]30 ∩ Z30,

where x =

(
x1

x2

)
, x1, x2 ∈ R15,

dt = (19, 2, 1, 11, 18, 16, 17, 11, 20, 1, 2, 1, 2, 3, 4, 1, 1, 18, 19, 1, 3, 14, 1, 19, 18, 19,
14, 1, 18, 14),
w = 0.7A× h, ht = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5),

A=


4 5 7 8 1 3 8 9 4 5 7 2 4 2 2
31 5 34 33 26 8 5 9 33 25 7 35 32 5 2
21 5 4 23 6 28 35 29 43 35 3 45 22 35 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16


5×15

,

B=


6 8 4 1 4 5 1 4 1 3 12 7 3 7 9
33 31 21 41 29 4 45 47 8 41 34 8 9 3 5
3 21 41 3 9 3 26 8 5 9 33 25 7 35 32
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1


5×15

.

The function fj = − dj

xj
is increasing on [1, 5] for every j = 1, 2, ..., n. Therefore,

f is increasing on [1, 5]20. The algorithm terminates after 2553 iterations with the
computational time is 112.2 seconds, yielding -69.0833 is the optimal value and the
optimal solution is

xopti = (5, 3, 2, 4, 5, 5, 5, 4, 5, 1, 3, 1, 2, 2, 4, 2, 1, 4, 5, 2, 4, 4, 2, 5, 5, 5, 4, 2, 4, 4)t.

Next, we present the computational result for problem which is problem
(MNKP ) with the nonlinear constraints and the objective is not concave.

Example 4.6.

max f(x) =
20∑
j=1

(cjxj + dj(xj − ej)3)

s.t g1(x) =

20∑
j=1

(rjxj + ujx
2
j ) ≤ 20000,

g2(x) = Ax ≤ w,
x ∈ X = [1, 5]20 ∩ Z20,
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where ct = (33, 13, 42, 30, 23, 24, 13, 18, 31, 22, 32, 21, 15, 15, 24, 14, 25, 32, 13, 25),
dt = (1, 10, 3, 1, 8, 1, 7, 1, 10, 1, 3, 7, 10, 1, 9, 2, 9, 1, 1, 1),
et = (2, 3, 4, 5, 2, 1, 3, 4, 5, 3, 2, 4, 2, 5, 3, 2, 1, 2, 3, 5),
rt = (300, 111, 123, 300, 121, 298, 143, 300, 134, 299, 178, 176, 157, 298, 254, 134,
176, 300, 300, 300),
ut = (111, 10, 294, 112, 8, 199, 7, 134, 10, 1, 9, 7, 300, 31, 9, 8, 279, 164, 215, 121),
w = 0.7A× h, ht = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5),

A=


31 5 34 33 26 8 5 9 33 25 7 35 32 5 28 33 31 21 41 29
21 35 4 23 6 28 35 29 43 35 37 45 22 35 38 3 21 41 3 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

.

The function f and g1 are increasing on [1, 5]20 and f is not concave on
[1, 5]20. The algorithm terminates after 907 iterations the computational time
is 88.2 seconds, yielding 1979 is the optimal value and the optimal solution is

xopti = (1, 5, 1, 1, 5, 1, 5, 1, 5, 1, 5, 3, 1, 2, 5, 3, 5, 1, 1, 1)t.
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