
Nonlinear Functional Analysis and Applications
Vol. 26, No. 3 (2021), pp. 611-628

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2021.26.03.11
http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2021 Kyungnam University Press

KUPress

MONOTONIC OPTIMIZATION TECHNIQUES FOR
SOLVING KNAPSACK PROBLEMS

Tran Van Thang1, Jong Kyu Kim2 and Won Hee Lim3

1Electric Power University, Hanoi, Vietnam
e-mail: thangtv@epu.edu.vn

2Department of Mathematics Education, Kyungnam University
Changwon, Gyeongnam, 51767, Korea

e-mail: jongkyuk@kyungnam.ac.kr

3Department of Mathematics Education, Kyungnam University
Changwon, Gyeongnam, 51767, Korea

e-mail: worry36@kyungnam.ac.kr

Abstract. In this paper, we propose a new branch-reduction-and-bound algorithm to solve

the nonlinear knapsack problems by using general discrete monotonic optimization tech-

niques. The specific properties of the problem are exploited to increase the efficiency of the

algorithm. Computational experiments of the algorithm on problems with up to 30 variables

and 5 different constraints are reported.

1. Introduction

We consider the knapsack problem which is the following nonlinear integer
programming problem (shortly, MNKP):

max f(x) =

n∑
j=1

fj(xj) (1.1)

0Received November 23, 2020. Revised March 15, 2021. Accepted March 20, 2021.
02000 Mathematics Subject Classification: 90C90, 90C30, 49N15.
0Keywords: Lagrangian relaxation, discrete monotonic optimization, knapsack problem,

quasi-conjugate duality.
0Corresponding author: Tran Van Thang(thangtv@epu.edu.vn).

612 T. V. Thang, J. K. Kim and W. H. Lim

s.t. gi(x) =

n∑
j=1

gij(xj) ≤ wi, i = 1, 2, ...,m, (1.2)

x ∈ X = {x ∈ Zn : aj ≤ xj ≤ bj , j = 1, 2, ..., n}, (1.3)

where Zn is the set of all integer points in Rn, fj are increasing functions on
[aj , bj] and gij are increasing lower semicontinuous functions on [aj , bj] for any
i = 1, 2, ...,m, j = 1, 2, ..., n, with aj ≤ bj and aj , bj ∈ Z for any j = 1, 2, ..., n.
The area of knapsack problems has an attracted attention from applications
in economics, operations research. Recently, researchers have presented some
methods to solve this type of problems.

In [4], Cooper used dynamic programming to solve problem in integers with
a separable objective function. The monotonicity of the problem (MNKP)
here is not exploited. We can solve knapsack problem by continuous relaxation-
based branch-and-bound [5] or hybrid DP/B&B methods [3, 6, 7, 12, 13, 14,
17, 19]. In the nonconcave case, however, computing upper bound of sub-
problem by this continuous relaxation method is usually not easy to have an
exact number. Recently, the problem (MNKP) has been solved by nonlinear
Lagrangian methods [1, 2, 8, 9, 10, 15, 16]. In optimization theory, nonlin-
ear Lagrangian methods are convergent, however, the computational is often
difficult to implement.

In [11], Li, Sun, Wang and McKinnon proposed a convergent Lagrangian
and domain cut method to solve knapsack problem (MNKP). This method
can be interpreted as an extension of the traditional branch-and-bound method.
At each iteration, a box candidate for subdivision may be branched into 2n+1
new subboxes and the dual search method is applied to the each newly gener-
ated subbox.

In this paper we apply the polyblock algorithm and the branch-reduction-
and-bound algorithm for general discrete monotonic optimization ([21]) to
solve (MNKP). The specific properties of the problem are exploited to in-
crease the efficiency of the algorithm. Specifically, the separability and the
monotonicity of problem (MNKP) help us to compute an upper bound of
a subproblem by the Lagrangian relaxation method. Due to the problem
(MNKP) is an integer programming, the separation cut and reduction cut
are realized simpler in the general case.

The paper is organized as follows. In sections 2 we review some necessary
concepts, results from monotonic optimization as presented in [21] and prove
some specific properties. Section 3, will present the polyblock approxima-
tion algorithm for (MNKP). The branch-reduction-and-bound algorithm for
(MNKP) is presented in section 4. Finally in section 5, the computational

Monotonic optimization techniques for solving Knapsack problems 613

experiments of branch-reduction-and-bound algorithm on problems with up
to 30 variables and 5 constraints are reported.

2. Separation cut and reduction cut

In monotonic optimization ([21]), the separation cut and reduction cut are
fundamental steps of polyblock algorithm and branch-reduce-and-bound algo-
rithm. At a given iteration of the algorithm, it reduces a polyblock (box) to
smaller polyblock (box) without losing any feasible solution currently still of
interest.

A set G ⊂ [a, b] is called normal if x ∈ G whenever a ≤ x ≤ x′ ∈ G.

Proposition 2.1. (cf. [20]) If f is an increasing function on Rn+ then the set
G = {x ∈ Rn+| f(x) ≤ 1} is normal and it is closed if f is lower semicontinu-
ous.

Definition 2.2. (cf. [21]) Let A ⊂ [a, b]. The normal hull of A, written Ae,

is defined by Ae = ∪z∈A[a, z]. If A is finite, then Ae is called a polyblock and
the vector z ∈ A is said to be vertex of the polyblock.

For the rest of this paper, denote by ei the vector satisfying eii = 1 and
eij = 0, for all j 6= i.

Lemma 2.3. (cf. [21]) Let x ∈ [a, b] satisfy a < x < b. Then, the set
[a, b] \ (x, b] is a polyblock with vertices zi = b− (bi − xi)ei, i = 1, 2, ..., n.

Proposition 2.4. (cf. [21]) The maximum of an increasing function f(x)
over a polyblock is achieved at a proper vertex of this polyblock.

Consider the problem (MNKP). Set a = (a1, a2, ..., an), b = (b1, b2, ..., bn).
Since fj and gij are increasing functions on [aj , bj] for any i = 1, 2, ...,m, j =
1, 2, ..., n, without loss of generality, we may assume that [a, b] ⊂ Rn+.

For the rest of this paper, we define

g̃(x) = max{gi(x)− wi| j = 1, 2, ...,m}.
Since gi is a lower semicontinuous increasing function on [a, b] for every i =
1, 2, ..,m, the function g̃ is lower semicontinuous increasing on [a, b]. By Propo-
sition 2.1, G = {x ∈ [a, b]| g̃(x) ≤ 0} is a closed and normal subset on [a, b].
Then, the problem (MNKP) can be rewritten as following:

max{f(x)| x ∈ G ∩X}. (2.1)

This is discrete monotonic optimization problem which has been studied in
[21].

614 T. V. Thang, J. K. Kim and W. H. Lim

A vector x̄ ∈ G is an upper boundary of G if the cone Kx̄ := {x| x > x̄}
constains no point x ∈ G. Denote by ∂+G the set of all upper boundary points
of G.

Proposition 2.5. (cf. [21]) Let G be a closed normal set G in [a, b], and
z̄ ∈ [a, b] \ G. If x̄ ∈ ∂+G satisfying x̄ < z̄ then the cone Kx̄ := {x| x > x̄}
constains z̄ but is disjoint from G, that is, Kx̄ ∩G = ∅.

We shall refer to the cone Kx̄ as a separation cut with vertex x̄ for G.
Consider a box [p, q] ⊂ [a, b] satisfying p, q ∈ Zn. Given any point x ∈ [p, q].

As in [21], the lower X-adjustment of x is the point

bxcX = x̃ with x̃i = max{yi : y ∈ X ∪ {p}, yi ≤ xi}, i = 1, 2, ..., n (2.2)

and the upper X-adjustment of x is the point

dxeX = x̂ with x̂i = min{yi : y ∈ X ∪ {q}, yi ≥ xi}, i = 1, 2, ..., n. (2.3)

Let [xi] denote the integer number satisfying [xi] ≤ xi < [xi] + 1 for all
i = 1, 2, ..., n. It is easy to prove following proposition.

Proposition 2.6. Let x ∈ [p, q] ⊂ [a, b]. Then

x̃i = [xi], ∀ i = 1, 2, ..., n, (2.4)

x̂i =

{
[xi] if [xi] = xi,

[xi] + 1 otherwise,
i = 1, 2, ..., n. (2.5)

Proposition 2.7. Let [p, q] ⊂ [a, b] satisfy p, q ∈ Zn. Then bxcX ∈ [p, q]∩X
and dxeX ∈ [p, q] ∩X for any x ∈ [p, q].

Proof. Since pi ∈ Z and pi ≤ xi, we have pi ≤ x̃i by (2.4). This together
with x̃i ≤ xi ≤ qi implies that pi ≤ x̃i ≤ qi for any i = 1, 2, .., n. So,
bxcX ∈ [p, q] ∩ X. We now show that dxeX ∈ [p, q] ∩ X. Since qi ∈ Z and
xi ≤ qi, we have x̂i ≤ pi by (2.5). This together with pi ≤ xi ≤ x̂i implies that
qi ≤ x̂i ≤ pi. Therefore, dxeX ∈ [p, q] ∩X. �

Proposition 2.8. (cf. [21]) If x is the vertex of a separation cut for G, then
bxcX is the vertex of a separation cut for the G ∩X, that is,, the cone KbxcX
is disjoint from G ∩X.

Let [p, q] be any box in [a, b] satisfying p, q ∈ X. We consider the following
problem:

max{f(x)| x ∈ G ∩ [p, q]}. (2.6)

If a feasible solution of (2.6) is known with objective function value γ, then
we would like to recognize whether or not the box [p, q] contains a feasible
solution to (2.6) with objective function value at least equal to γ.

Monotonic optimization techniques for solving Knapsack problems 615

Proposition 2.9. (i) Let f(q) ≥ γ and

p
′

= q −
n∑
i=1

αi(qi − pi)ei, (2.7)

αi = sup{α| 0 ≤ α ≤ 1, f(q − α(qi − pi)ei) ≥ γ}, i = 1, ..., n. (2.8)

Then dp′eX ∈ X and the box [dp′eX , q] still contains all feasible solutions with
objective function value at least equal to γ of the problem (2.6).

(ii) Let g̃(p) ≤ 0 and q
′

= p+
∑n

i=1 βi(qi − pi)ei, where

βi = sup{β| 0 ≤ β ≤ 1, g̃(p+ β(qi − pi)ei) ≤ 0}, i = 1, ..., n. (2.9)

Then bq′cX ∈ X and the box [p, bq′cX] still contains all feasible solutions with
objective function value at least equal to γ of the problem (2.6).

Proof. It suffices to prove (i) because the proof of (ii) is similar. From

p
′

= q −
n∑
i=1

αi(qi − pi)ei,

we have p
′
i = αipi + (1−αi)qi with 0 ≤ αi ≤ 1, for all i = 1, 2, ..., n. It follows

that

pi ≤ p
′
i ≤ qi, ∀i = 1, 2, ..., n.

Hence, p ≤ p′ ≤ q. By Proposition 2.7, we have dp′eX ∈ [p, q] ∩X.
Consider any x ∈ [p, q] ∩ X satisfying f(x) ≥ γ and g̃(x) ≤ 0 (g̃(x) =

max{gi(x) − wi| j = 1, 2, ...,m}). We now show that x ≥ p
′
. Suppose that

x � p
′
. Then there exists i ∈ {1, 2, ..., n} such that

xi < p
′
i = αipi + (1− αi)qi

= qi − αi(qi − pi).

So, there exists α ∈ (αi, 1] such that xi = qi − α(qi − pi). It follows that

q − (qi − xi)ei = q − α(qi − pi)ei.

By virtue of the definition of αi and last equality, we have

f(q − (qi − xi)ei) = f(q − α(qi − pi)ei) < γ.

This together with x ≤ q − (qi − xi)ei implies that

f(x) ≤ f(q − α(qi − pi)ei) < γ.

It contradicts with f(x) ≥ γ. So, x ≥ p
′
. From the definition of dp′eX and

x ∈ X, we have x ≥ dp′eX . �

616 T. V. Thang, J. K. Kim and W. H. Lim

For box [p, q] satisfying g̃(p) ≤ 0, f(q) ≥ γ. Clearly, the box [dp′eX , q]
defined in (i) is obtained from [p, q] by cutting domain

⋃n
i=1{x| xi < x̂i}

(dp′eX = x̂) and the box [p, bq′cX] defined in (ii) is obtained from [p, q] by

cutting
⋃n
i=1{x| xi > x̃i} (bp′cX = x̃). The former cut is referred to as a lower

cut for [p, q] with vertex dp′eX and the latter cut as an upper cut [p, q] with

vertex bq′cX . If g̃(dp′eX) ≤ 0 and bq′cX is the vertex of the upper cut for

[dp′eX , q], that is,

bq′cX = dp′eX +

n∑
i=1

βi(qi − p̂i)ei,

where dp′eX = p̂ and βi is determined by (2.9). Then the box [dp′eX , bq
′cX]

is called a γ-reduction of [p, q], written [dp′eX , bq
′cX] = redγ [p, q].

3. Branch-reduce-and-bound algorithm

In this section, we apply branch-reduce-and-bound algorithm to solve prob-
lem (MNPK). In each iteration, this algorithm is a procedure involving three
basic operations: branching, reduction and bounding.

Assume at k-th iteration, we have the current best feasible solution xk with
the current best value γ = f(xk) a set of newly generated boxes that remain
for exploration (note that the newly generated boxes have vertices in X). If
M = [p, q] is such a box, it is easily to verify that there exists a feasible
solution x ∈ [p, q] to (2.1) satisfying f(x) ≥ γ only if g̃(p) ≤ 0, f(q) ≥ γ. We
now consider the following subproblem:

max{f(x)| x ∈ G ∩M ∩X}. (3.1)

I. Reduction. For every box M = [p, q](p, q ∈ X), which is interested.
This operation reduces M = [p, q] to smaller box redγ [p, q] without losing any
feasible solution currently still of interest. In general case ([21]), to compute

dp′eX and bq′cX , we must first calculate p
′

and q
′

by Proposition 2.9. In

particular, we only can approximatively compute p
′

and q
′
. In this paper, due

to X is a subset in Z, the dp′eX and bq′cX are realized without knowing p
′

and q
′

by following theorem.

Theorem 3.1. Let [p, q] be any box in [a, b] satisfying p, q ∈ X, g̃(p) ≤ 0 and
f(q) ≥ γ. Then,

dp′eX = q −
n∑
i=1

ᾱi(qi − pi)ei

Monotonic optimization techniques for solving Knapsack problems 617

where

ᾱi =

{
0, if qi − pi 6= 0

1
qi−pi max{ki| ki ∈ {0, 1, ..., qi − pi}, f(q − kiei) ≥ γ}, otherwise

(3.2)
for i = 1, ..., n and

bq′cX = dp′eX +

n∑
i=1

β̄i(qi − p̂i)ei,

where

β̄i =

{
0, if qi − pi 6= 0

1
qi−p̂i max{li| li ∈ {0, 1, ..., qi − p̂i}, g̃(dp′eX + lie

i) ≤ 0}, otherwise

(3.3)
for i = 1, ..., n.

Proof. Since p ≤ dp′eX ≤ q, there exists ᾱi ∈ [0, 1], i = 1, 2, ..., n such that

dp′eX = q −
n∑
i=1

ᾱi(qi − pi)ei.

For i ∈ {1, 2, ..., n}, from last equality we have (p̂ = dp′eX)

p̂i = q − αi(qi − pi)ei. (3.4)

If qi − pi = 0, it follows that qi = pi. By (2.5), we have p̂i = qi. If qi − pi 6= 0,
from p̂i ∈ Z and (3.4) it follows that ᾱi(qi − pi) ∈ Z. We now show that

ᾱi = max{α| α ∈ [0, 1], α(qi − pi) ∈ Z, f(q − α(qi − pi)ei) ≥ γ}. (3.5)

Indeed, suppose that there exists a real number α∗i in [0, 1] satisfying

α∗i (qi − pi) ∈ Z, f(q − α∗i (qi − pi)ei) ≥ γ

such that α∗i > ᾱi. From (2.7), (2.8) and f(q − α∗i (qi − pi)ei) ≥ γ we have
α∗i ≤ αi. It follows that ᾱi < α∗i ≤ αi. Therefore,

p
′
i = qi − αi(qi − pi)
≤ qi − α∗i (qi − pi)
< q − αi(qi − pi)ei

= p̂i. (3.6)

From (3.6), qi−α∗i (qi−pi) ∈ Z and p̂ = dp′eX , it follows that p̂i ≤ qi−α∗i (qi−
pi). This conflicts with (3.6). Hence, we have (3.5). Let α ∈ [0, 1] satisfy

α(qi − pi) ∈ Z, f(q − α(qi − pi)ei) ≥ γ.

618 T. V. Thang, J. K. Kim and W. H. Lim

Setting ki := α(qi − pi), we have ki ∈ {0, 1, ..., qi − pi}. This together with
(3.5) implies that

ᾱi =
1

qi − pi
max{ki| ki ∈ {0, 1, ..., qi − pi}, f(q − kiei) ≥ γ}.

Hence, dp′eX = q −
∑n

i=1 ᾱi(qi − pi)ei with ᾱi satisfying (3.2).

By the same above proof, we show that bq′cX = dp′eX +
∑n

i=1 β̄i(qi − pi)ei
with β̄i satisfying (3.3). �

II. Bounding. In this operation, we need compute a upper bound µ(M)
such that

µ(M) ≥ γ(M) = max{f(x)| x ∈ G ∩M ∩X}.

Due to the f(x) is increasing in [p, q] so f(q) is a upper bound of problem
(3.1). In general case, we can always take µ(M) = f(q) when a better bound
is expensive to compute. In this paper, due to the separability of objective,
subjective functions and X ⊂ Zn, we can obtained a upper bound better
that f(q) by using Lagrangian relaxation method or separation cut which is a
operation in polyblock algorithm ([21]).

If q ∈ G then q is a feasible solution and

max{f(x)| x ∈ G ∩M ∩X} = f(q).

Hence, we take µ(M) = f(q). Suppose that q /∈ G. We now compute a upper
bound by separation cut. Denote

Xk = {x ∈ X| f(x) > γ},

q is the first point of G on the line segment joint q to p and q̃ = bqcXk
(using

formula (2.3) for X := Xk). For i = 1, 2, ..., n, set

∆i =
{
αi|αi ∈ {0, 1, ..., qi − pi}, ti =

αi
qi − pi

, f(q − (qi − pi − αi)ei) > γ,

g̃(p+ ti(q − p)) ≤ 0
}
. (3.7)

Proposition 3.2. Let q /∈ G. Then, the polyblock [p, q] \ (q̃, q] still contains
G ∩M ∩Xk, q̃ ∈ G ∩X and

q̃ = p+
n∑
i=1

α̃ie
i, (3.8)

where α̃i = max
{
αi| αi ∈ ∆i} for every i = 1, 2, ..., n, (agree that max ∅ = 0).

Monotonic optimization techniques for solving Knapsack problems 619

Proof. By Proposition 2.8, the polyblock [p, q] \ (bqcXk
, q] still contains G ∩

M ∩Xk. Set

x∗ = p+
n∑
i=1

α̃ie
i. (3.9)

Since α̃i ∈ {0, 1, ..., qi − pi}, we have x∗i ∈ Z and pi ≤ x∗i ≤ qi ∀i = 1, 2, ..., n.
So, x∗ ∈ X. Since q̃ = bqcXk

, we have q̃ ≤ q. It follows that g̃(q̃) ≤ g̃(q) ≤ 0
(because q ∈ G). So, q̃ ∈ G ∩X.

We next prove (3.8). For i ∈ {1, 2, ..., n}. If qi = pi, by (3.7), we have
α̃i = 0, and so x∗i = pi. From (2.3) and qi = pi, it follows that q̃i = pi. So
q̃i = x∗i .

If qi > pi and ∆i = ∅, then α̃i = 0, and so x∗i = pi by (3.9). Using
Proposition 2.7, we have q̃ ∈ [p, q] ∩Xk, it follows that q̃i ≥ pi = x∗i .

Now, we suppose that q̃i > pi = x∗i . Since q̃ = bqcXk
and (2.3), there exists

x ∈ [p, q] ∩Xk such that xi = q̃i. Setting α = q̃i − pi, then

q − (qi − pi − α)ei = q − (qi − q̃i)ei

≥ x.

From the last inequality and x ∈ Xk, it follows that

f(q − (qi − pi − α)ei) ≥ f(x) > γ. (3.10)

Since q is the first point of G on the line segment joint q to p, one has p ≤ q ≤ q,
so there is number t̄ ∈ [0, 1] such that q = p+ t̄(q− p). From the defination of
bqcXk

, we have q̃i ≤ qi. This together with α = q̃i − pi implies that

pi + t(qi − pi) ≤ pi + t̄(qi − pi),
where t = α

qi−pi . It follows that t ≤ t̄, and so

p+ t(q − p) ≤ p+ t̄(q − p) = q.

By the increaseness of g̃ we have

g̃(p+ t(q − p)) ≤ g̃(q) ≤ 0.

This together with (3.10) implies that α ∈ ∆i, which contradicts the fact that
∆i = ∅. Therefore, q̃i = x∗i .

If qi > pi and ∆i 6= ∅. Setting t̃i = α̃i
qi−pi , we have

f(q − (qi − pi − α̃i)ei) > γ, (3.11)

g̃(p+ t̃i(q − p)) ≤ 0. (3.12)

From (3.11), we have
q − (qi − pi − α̃i)ei ∈ Xk. (3.13)

From (3.12), we have
p+ t̃i(q − p) ∈ G. (3.14)

620 T. V. Thang, J. K. Kim and W. H. Lim

Now, we show that x∗i ≤ qi. Assume the contrary that x∗i > qi, then

pi + t̃i(qi − pi) > pi + t̄(qi − pi),

and so t̃i > t̄. It follows that p + t̃i(q − p) ≥ q and p + t̃i(q − p) 6= q. This
together with (3.14) contradicts the fact that q is the first point of G on the
line segment joint q to p. Hence, x∗i ≤ qi. This together with (3.9), x∗i ∈ Z
and q̃ = bqcXk

implies that

q̃i ≥ x∗i = pi + α̃i.

Suppose that q̃i > x∗i . Setting α∗ = q̃i − pi, from last inequality, we have
α∗ > α̃i. It follows that

q − (qi − pi − α∗)ei ≥ q − (qi − pi − α̃i)ei,

and so,

f(q − (qi − pi − α∗)ei) > γ. (3.15)

Setting t∗ = α∗

qi−pi , by the same above proof, we also show that

g̃(p+ t∗(q − p)) ≤ g̃(q) ≤ 0. (3.16)

From (3.15) and (3.16), it follows α∗ ∈ ∆i. This together with α∗ > α̃i
conflicts with α̃i = max

{
αi| αi ∈ ∆i}. Hence, q̃ = x∗. �

In general case ([21]), in order to compute q̃, the first we must compute
approximately q. In this paper, due to the problem (MNKP) is an integer
programming, we can exactly calculate q̃ without knowing q by above propo-
sition.

Since G is a normal set and q is the first point of G on the line segment joint
q to p, then q is an upper boundary of G. By Lemma 2.5, q is the vertex of a
separation cut for the G. By Proposition 2.8, q̃ is the vertex of a separation
cut for the G ∩X, and so, the polyblock [p, q] \ (q̃, q] still contains all feasible
solution x in [p, q] satisfying f(x) ≥ γ. Using Lemma 2.3, we have that the
vertex set of polyblock [p, q] \ (q̃, q] is{

q + (q̃i − qi)ei| i ∈ {1, 2, ..., n}
}
.

By Proposition 2.4, we have

max{f(x)| x ∈ G ∩M ∩Xk} ≤ max{f(x)| x ∈ [p, q] \ (q̃, q]} (3.17)

≤ max{f(q + (q̃i − qi)ei)| i ∈ {1, 2, ..., n}}.

So, we have that max{f(q + (q̃i − qi)ei)| i ∈ {1, 2, ..., n}} is a upper bound of
(3.1). Since q + (q̃i − qi)ei ∈ [p, q], ∀i ∈ {1, 2, ..., n}, we have

max{f(q + (q̃i − qi)ei)| i ∈ {1, 2, ..., n}} ≤ f(q). (3.18)

Monotonic optimization techniques for solving Knapsack problems 621

Next, we show that the upper bound of (3.1) can be provided by Lagrangian
relaxation method. The problem (3.1) can be rewritten as following:

max{f(x)| g(x) ≤ w, x ∈M ∩X}. (3.19)

where g(x) = (g1(x), g2(x), ..., gm(x)), w = (w1, w2, ..., wm). The Lagrangian
relaxation of (3.19) is defined as follows

d(λ) = max{L(x, λ)| x ∈M ∩X}, (3.20)

where L(x, λ) = f(x)− λT (g(x)− w), ∀λ ∈ Rm+ .

It is well known that the following weak duality always holds

d(λ) ≥ f(x) ∀x ∈ G ∩M ∩X, ∀λ ∈ Rm+ .

It follows that d(λ) ≥ max{f(x)| x ∈ G ∩M ∩X} ∀λ ∈ Rm+ and so d(λ) is a
upper bound of f(x) over G ∩M ∩X for each λ ∈ Rm+ .

The duality problem of (3.19) is defined by

min{d(λ)| λ ≥ 0}. (3.21)

Let d∗ = min{d(λ)| λ ≥ 0}. Then d∗ is a upper bound of f(x) over G∩M ∩X.
By this way and (3.17), we can take

µ(M) = min

{
d∗,max

{
f(q + (q̃i − qi)ei)| i ∈ {1, 2, ..., n}

}}
.

From (3.18) and last equality, it follows that µ(M) ≤ f(q).

The problem (3.21) is a convex optimization problem. So, we can use sub-
gradient method to solve this problem ([18]). To minimize d(λ) over Rm+ ,
the subgradient method uses the iteration λs+1 = λs − tsηs where ηs is any
subgradient of d at λs, ts > 0 is the s-th step size satisfying ts → 0 and∑∞

s=1 t
s → +∞.

At each s-th iteration, we need compute the d(λs) by solving the Lagrangian
relaxation problem:

d(λs) = max{L(x, λs)| x ∈M ∩X}. (3.22)

Suppose that xλ
s

is an optimal solution of (3.22) corresponds to λs. It easy to
check that vector w − g(xλ

s
) is a subgradient of d at λs. So, the subgradient

method updates the multipliers by

λs+1
i = max{0, λsi − tsηi/||η||}, i = 1, 2, .,m.

We have

L(x, λs) =

n∑
j=1

(
fj(xj)−

m∑
i=1

λsigij(xj)

)
+ (λs)Tw.

622 T. V. Thang, J. K. Kim and W. H. Lim

Therefore, in order to solve the (3.22), we solve n following one-dimensional
problems

max

{
fj(xj)−

m∑
i=1

λsigij(xj)| xj ∈ [pj , qj] ∩ Z
}
, j = 1, 2, ..., n. (3.23)

It is a d.m problem in the form studied in [20] (the objective is difference of
two increasing functions). Using the method proposed in the latter paper the
problem (3.23) is then converted to nonlinear integer monotonic optimization
problem in two-dimensional space. So, the our method take advantages fully
the monotonicity of functions fj(xj), j = 1, 2, ..., n.

Note that: In this operation, we always obtain the feasible solution q̃.
Moreover, we can obtain some feasible solutions in the set {xλs | s = 1, 2, ...}.
This is very useful for updating the current best feasible solution and current
best value in branch-reduce-and-bound algorithm.

III. Branching. This operation is performed according to a standard
bisection rule. At k-th iteration, let [p, q] ⊂ [a, b] (p, q ∈ Z) be a box candidate
for subdivision. Compute the numbers

δ([a, b]) = max{qi − pi| i = 1, 2, ..., n} = qiM − piM , riM =
1

2
(qiM + piM)

and divide [a, b] into two boxes

M+ = {x ∈M | xiM ≥ [riM] + 1},

M− = {x ∈M | xiM ≤ [riM]},
where riM ∈ Z such that riM ≤ r < riM + 1. Since the set

{x ∈M | [riM] < xiM < [riM] + 1}

don’t contains any elements of X, we have

M ∩X = M+ ∪M− ∩X.

It is easily to verify that the vertices of M+(M−) are contained in X.

Algorithm:

Initialization. Let P1 = {M1}, M1 = [a, b], R1 = ∅. Let a be the current
best feasible solution, CBV = f(a). Set k := 1.

Step 1. Let P
′
k = {redγ [p, q]| [p, q] ∈ Pk} for γ = CBV. In particular delete

every box [p, q] such that g(p) > 0.

Step 2. For each box M = redγ [p, q] = [dp′eX , bq
′cX] ∈ P ′k, compute a bound

µ(M) satisfying µ(M) ≤ f(bq′cX) and determine some feasible solutions in
M .

Monotonic optimization techniques for solving Knapsack problems 623

Step 3. Let Sk = P
′
k ∪ Rk. Update CBV, using the new feasible solutions

encountered in Step 2, if any. Delete every M ∈ Sk such that µ(M) ≤ CBV
and let Rk+1 be the collection of remaining boxes.

Step 4. If Rk+1 = ∅, then terminate: CBV is the optimal value and the
feasible solution x̄ with f(x̄) = CBV is an optimal solution.

Step 5. If Rk+1 6= ∅, let Mk ∈ argumax{µ(M)| M ∈ Rk+1}. Divide Mk into
two boxes according to the above described rule. Let Pk+1 be the collection
of these two subboxes of Mk.

Step 6. Increment k and return to Step 1.

Theorem 3.3. (see Theorem 17, [21]) The algorithm terminates after finitely
many iterations, yielding an optimal solution.

4. Computational results

As an illustration, we present in this final some numerical examples of
branch-reduce-and-bound algorithm for some problems. The algorithm was
coded in Matlab 7.0 and the program was run on a PC Intel(R) (2.26GHz
with 1.96GB of DDR RAM).

Example 4.1. Consider the problem:

max f(x) =
1

2
x2

1 + 5x1 + 6x2

s.t g(x) = 6x1 + x2
2 ≤ 23,

x ∈ X = [1, 5]2 ∩ Z2.

For initialization we take P1 = {M1}, M1 = [a, b], a = (1, 1), b = (5, 5),
R1 = ∅ and let xbest = a be the current best feasible solution with current
best value CBV = f(a) = 23

2 . Set k = 1.

Iteration 1:

Step 1. redγM1 = [(1, 1), (3, 4)], P
′
1 = {[(1, 1), (3, 4)]}.

Step 2. Determine feasible solution bπG(3, 4)cX1 = (2, 3) and calculate the
upper bound µ(redγM1) = max{f(2, 4), f(3, 3)} = 37.5.

Step 3. S1 = P
′
1 ∪ R1 = {[(1, 1), (3, 4)]}, xbest = (2, 3), CBV = 30,

R2 = {[(1, 1), (3, 4)]}. Since R2 6= ∅, go to Step 4.

Step 4. M2 = [(1, 1), (3, 4)], divide M2 into two boxes: M2 = M21 ∪
M22, M21 = [(1, 1), (2, 4)], M22 = [(3, 1), (3, 4)], P2 = {M21,M22}, R2 =
R2 \ {M2} = ∅.
Step 5. k = 2.

624 T. V. Thang, J. K. Kim and W. H. Lim

Iteration 2:

Step 1. redγM21 = [(2, 3), (2, 3)], redγM22 = [(3, 2), (3, 2)],

P
′
2 = {[(2, 3), (2, 3)], [(3, 2), (3, 2)]}.

Step 2. Both (2, 3) and (3, 2) are feasible solution, µ(redγM21) = 30,
µ(redγM21) = 31.5.

Step 3. S2 = {[(2, 3), (2, 3)], [(3, 2), (3, 2)]}, xbest = (3, 2), CBV = 31.5,
R3 = ∅.
Step 4. We have R3 = ∅. So, xopti = (3, 2)t is the optimal solution with
optimal value f(xopti) = 31.5.

Example 4.2.

max f(x) =
20∑
j=1

(cjxj − djx2
j)

s.t g(x) = Ax ≤ w,
x ∈ X = [1, 5]20 ∩ Z20,

where
ct = (300, 111, 123, 300, 121, 298, 143, 300, 134, 299, 178, 176, 157, 298, 254, 134,
176, 300, 300, 300),
dt = (1, 10, 9, 1, 8, 1, 7, 1, 10, 1, 9, 7, 10, 1, 9, 8, 9, 1, 1, 1),
w = 0.7A× h, ht = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5),

A=

4 45 47 8 41 34 8 9 43 25 27 23 4 25 23 6 8 44 1 24
31 5 34 33 26 8 5 9 33 25 7 35 32 5 28 33 31 21 41 29
21 35 4 23 6 28 35 29 43 35 37 45 22 35 38 3 21 41 3 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

5×20

.

Since cj/2dj ≥ 5 ∀j = 1, 2, ..., n, the function fj = cjxj − djx2
j is increasing

on [1, 5] for every j = 1, 2, ..., n. Therefore, f is increasing on [1, 5]20. The
algorithm terminates after 230 iterations with the computational time is 13.2
seconds, yielding 16714 is the optimal value and the optimal solution is

xopti = (5, 2, 4, 5, 2, 5, 3, 5, 1, 5, 3, 1, 2, 5, 5, 1, 1, 5, 5, 5)t.

Example 4.3.

max f(x) =

20∑
j=1

(cjxj + djx
2
j)

s.t g(x) = Ax ≤ w,
x ∈ X = [1, 5]20 ∩ Z20,

Monotonic optimization techniques for solving Knapsack problems 625

where ct = (30, 11, 23, 30, 21, 28, 43, 3, 14, 29, 17, 16, 17, 29, 50, 34, 16, 4, 30, 3),
dt = (1, 10, 9, 1, 8, 1, 7, 1, 10, 1, 9, 7, 10, 1, 9, 8, 9, 1, 1, 1),
w = 0.7A× h, ht = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5),

A=

4 45 47 8 41 34 8 9 43 25 27 23 4 25 23 6 8 44 1 24
31 5 34 33 26 8 5 9 33 25 7 35 32 5 28 33 31 21 41 29
21 35 4 23 6 28 35 29 43 35 37 45 22 35 38 3 21 41 3 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

5×20

.

The function fj = cjxj + djx
2
j is increasing on [1, 5] for every j = 1, 2, ..., n.

Therefore, f is increasing on [1, 5]20. The algorithm terminates after 389
iterations with the computational time is 15.9 seconds, yielding 3990 is the
optimal value and the optimal solution is

xopti = (2, 5, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 5, 5, 5, 5, 1, 5, 1)t.

Example 4.4.

max f(x) =

20∑
j=1

(cjxj + dj(xj − ej)3)

g(x) = Ax ≤ w,
x ∈ X = [1, 5]20 ∩ Z20,

where ct = (33, 1, 42, 3, 23, 4, 13, 18, 3, 2, 32, 21, 1, 1, 24, 14, 25, 32, 3, 25),
dt = (1, 10, 3, 1, 8, 1, 7, 1, 10, 1, 3, 7, 10, 1, 9, 2, 9, 1, 1, 1),
et = (23, 4, 5, 2, 1, 3, 4, 5, 3, 2, 4, 2, 5, 3, 2, 1, 2, 3, 5),
w = 0.7A× h, ht = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5),

A=

4 5 4 8 1 4 8 9 3 2 2 3 4 5 3 6 8 4 1 4
31 5 34 33 26 8 5 9 33 25 7 35 32 5 28 33 31 21 41 29
21 35 4 23 6 28 35 29 43 35 37 45 22 35 38 3 21 41 3 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

5×20

.

The function f is increasing on [1, 5]20 and f is not convex and concave on
[1, 5]20. The algorithm terminates after 330 iterations the computational time
is 9.6 seconds, yielding 2590 is the optimal value and the optimal solution is

xopti = (5, 2, 5, 1, 5, 1, 5, 3, 4, 1, 5, 3, 5, 2, 5, 2, 5, 5, 1, 4)t.

626 T. V. Thang, J. K. Kim and W. H. Lim

Example 4.5.

max f(x) =

30∑
j=1

−dj
xj

s.t g(x) = Ax1 +Bx2 ≤ w,
x ∈ X = [1, 5]30 ∩ Z30,

where x =

(
x1

x2

)
, x1, x2 ∈ R15,

dt = (19, 2, 1, 11, 18, 16, 17, 11, 20, 1, 2, 1, 2, 3, 4, 1, 1, 18, 19, 1, 3, 14, 1, 19, 18, 19,
14, 1, 18, 14),
w = 0.7A× h, ht = (5, 5,
5, 5, 5, 5),

A=

4 5 7 8 1 3 8 9 4 5 7 2 4 2 2
31 5 34 33 26 8 5 9 33 25 7 35 32 5 2
21 5 4 23 6 28 35 29 43 35 3 45 22 35 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

5×15

,

B=

6 8 4 1 4 5 1 4 1 3 12 7 3 7 9
33 31 21 41 29 4 45 47 8 41 34 8 9 3 5
3 21 41 3 9 3 26 8 5 9 33 25 7 35 32
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

5×15

.

The function fj = − dj

xj
is increasing on [1, 5] for every j = 1, 2, ..., n. Therefore,

f is increasing on [1, 5]20. The algorithm terminates after 2553 iterations with the
computational time is 112.2 seconds, yielding -69.0833 is the optimal value and the
optimal solution is

xopti = (5, 3, 2, 4, 5, 5, 5, 4, 5, 1, 3, 1, 2, 2, 4, 2, 1, 4, 5, 2, 4, 4, 2, 5, 5, 5, 4, 2, 4, 4)t.

Next, we present the computational result for problem which is problem
(MNKP) with the nonlinear constraints and the objective is not concave.

Example 4.6.

max f(x) =
20∑
j=1

(cjxj + dj(xj − ej)3)

s.t g1(x) =

20∑
j=1

(rjxj + ujx
2
j) ≤ 20000,

g2(x) = Ax ≤ w,
x ∈ X = [1, 5]20 ∩ Z20,

Monotonic optimization techniques for solving Knapsack problems 627

where ct = (33, 13, 42, 30, 23, 24, 13, 18, 31, 22, 32, 21, 15, 15, 24, 14, 25, 32, 13, 25),
dt = (1, 10, 3, 1, 8, 1, 7, 1, 10, 1, 3, 7, 10, 1, 9, 2, 9, 1, 1, 1),
et = (2, 3, 4, 5, 2, 1, 3, 4, 5, 3, 2, 4, 2, 5, 3, 2, 1, 2, 3, 5),
rt = (300, 111, 123, 300, 121, 298, 143, 300, 134, 299, 178, 176, 157, 298, 254, 134,
176, 300, 300, 300),
ut = (111, 10, 294, 112, 8, 199, 7, 134, 10, 1, 9, 7, 300, 31, 9, 8, 279, 164, 215, 121),
w = 0.7A× h, ht = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5),

A=

31 5 34 33 26 8 5 9 33 25 7 35 32 5 28 33 31 21 41 29
21 35 4 23 6 28 35 29 43 35 37 45 22 35 38 3 21 41 3 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

.

The function f and g1 are increasing on [1, 5]20 and f is not concave on
[1, 5]20. The algorithm terminates after 907 iterations the computational time
is 88.2 seconds, yielding 1979 is the optimal value and the optimal solution is

xopti = (1, 5, 1, 1, 5, 1, 5, 1, 5, 1, 5, 3, 1, 2, 5, 3, 5, 1, 1, 1)t.

Acknowledgments: This work was supported by the Basic Science Research
Program through the National Research Foundation(NRF) Grant funded by
Ministry of Education of the republic of Korea (2018R1D1A1B07045427).

References

[1] P.N. Anh and L.D. Muu, Lagrangian duality algorithms for finding a global optimal so-
lution to mathematical programs with affine equilibrium constraints, Nonlinear. Dynam.
Syst. Theory, 6 (2006), 225-244.

[2] P.N. Anh and L.D. Muu, Contraction mapping fixed point algorithms for multivalued
mixed variational inequalities on network, in Optimization with Multivalued Mappings,
Eds: S. Dempe and K. Vyacheslav, Springer, 2006.

[3] P.N. Anh and T.V. Thang, Optimality condition and quasi-conjugate duality with zero
gap in nonconvex optimization, Optim. Letters, 14 (2020), 2021-2037.

[4] M.W. Cooper, The use of dynamic programming for the solution of a class of nonlinear
programming problems, Nav. Res. Logist. Q., 27 (1980), 89-95.

[5] O.K. Gupta and A. Ravindran, Branch and bound experiments in convex nonlinear
integer programming, Manag. Sci. 31 (1985), 1533-1546.

[6] J.K.Kim, T.M. Tuyen and M.T. Ngoc Ha, Two projection methods for solving the split
common fixed point problem with multiple output sets in Hilbert spaces, Numerical Funct.
Anal. Optim., 42 (8)(2021), 973-988, https://doi.org/10.1080/01630563.2021.1933528

[7] F. Korner, A hybrid method for solving nonlinear knapsack problems, Eur. J. Oper. Res.
38 (1989), 238-241.

[8] D. Li and X.L. Sun, Success guarantee of dual search in nonlinear integer programming:
P-th power Lagrangian method, J. Glob. Optim., 18 (2000), 235-254.

[9] D. Li and X.L. Sun, Nonlinear Integer Programming, Springer, New York, 2006.
[10] D. Li and D.J. White, P-th power Lagrangian method for integer programming, Ann.

Oper. Res., 98 (2000), 151-170.

628 T. V. Thang, J. K. Kim and W. H. Lim

[11] D. Li, X.L. Sun, J. Wang and K.I.M. McKinnon, Convergent Lagrangian and domain
cut method for nonlinear knapsack problems, Comput. Optim. Appl., 42 (2009), 67-104.

[12] R.E. Marsten and T.L. Morin, A hybrid approach to discrete mathematical programming,
Math. Program., 14 (1978), 21-40.

[13] P.T. Thach and T.V. Thang, Problems with rerource allocation constraints and opti-
mization over the efficient set, J. Glob. Optim., 58 (2014), 481-495.

[14] T.V. Thang, Conjugate duality and optimization over weakly efficient set, Acta Math.
Vietnamica, 42(2) (2017), 337-355.

[15] J.P. Penot and M. Volle, Quasi-conjugate duality, Math. Oper. Res., 15(4) (1990), 597-
625.

[16] T.D. Quoc, P.N. Anh and L.D. Muu, Dual extragradient algorithms to equilibrium prob-
lems, J. Glob. Optim., 52 (2012), 139-159.

[17] T. Rockafellar, Conjugate duality and optimization, Siam for Industrial and Applied
Mathematics Philadelphia, University of Washington, Seattle, 1974.

[18] N.Z. Shor, Minimization Methods for Non-differentiable Functions, Springer Series in
Computational Mathematics., Springer, 1985.

[19] T. V. Thang and N. D. Truong, Conjugate duality for concave maximization problems
and applications, Nonlinear Funct. Anal. Appl., 25(1) (2020), 161-174.

[20] H. Tuy, Monotonic optimization: Problems and solution approaches, SIAM J. Optim.,
11 (2000), 464-494.

[21] H. Tuy, M. Minoux and N.T. Hoai-Phuong, Discrete Monotonic Optimization With
Application to A Discrete Location Problem, SIAM J. Optim., 17 (2006), 78-97.

