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Abstract. In this paper, we study a within-host mathematical model of HCV infection

and carry out mathematical analysis of the global dynamics and bifurcations of the model in

different parameter regimes. We explore the effect of reverse transcriptase inhibitors (RTI) on

spontaneous HCV clearance. The model can produce all clinically observed patient profiles

for realistic parameter values; it can also be used to estimate the efficacy and/or duration of

treatment that will ensure permanent cure for a particular patient. From the results of the

model, we infer possible measures that could be implemented in order to reduce the number

of infected individuals.

1. Introduction

In recent years, great attention has been paid to the dynamics properties
of the epidemic models which have a significant biological background. Many
excellent and interesting results have been obtained [1, 2, 3, 4, 5, 6, 7, 8, 9].
It is well known that epidemic models are investigated on the transmission
dynamics of infectious diseases in the host population. Nowadays, mathemat-
ical theories for the dynamics of viral infections have been around for several

0Received January 2, 2021. Revised April 1, 2021. Accepted April 5, 2021.
02010 Mathematics Subject Classification: 92D25, 34C23, 37B25, 34D23.
0Keywords: Bifurcation, delays, global stability, HCV infection, Lyapunov functionals.
0Corresponding author: P. Krishnapriya (priyaprithu1205@gmail.com),

H.G. Hyun (hyunhg8285@kyungnam.ac.kr).



630 P. Krishnapriya and H. G. Hyun

decades now. These theories have proved to be valuable in understanding the
dynamics of viral infections and in evaluating the effectiveness of various forms
of antiviral therapy.

A model of HIV infection [10, 11] was adapted by Neumann et al., [12]
to study the kinetics of chronic HCV infection during [12] treatment. Since
then, viral kinetics modeling has played an important role in the analysis of
HCV-RNA decay during antiviral therapy (see review [13]).

In this paper, we extend the original model of HCV infection under therapy
[12] to account for the proliferation of hepatocytes (herein termed the ex-
tended model), as was recently used to model HCV-RNA kinetics in primary
infection in chimpanzees [14]. To establish our results, we carry out mathe-
matical analysis on the existence and number of steady states, local stability of
infection-free, and chronic-infection steady states. To completely describe the
global dynamics, we have also established the global stability of the infection-
free steady state when it is the only steady, and that of the chronic steady
state when it is unique. Our proof of the infection-free steady state is new
and is developed to handle the logistic terms. Our proof of global stability
of the unique chronic-infection steady state uses the approach of Lyapunov
function. To relate our mathematical results to the biological context, we
have derived the basic reproduction number R0 interpreted our mathematical
results in terms of R0.

The original HCV infection model [12] contains three differential equations
(herein deemed the original model). Specifically, it models the populations
of target cells, productively infected cells, and the virus. We simplified the
model (herein deemed the four-equation model) by assuming that a constant
the population of target cells was used to estimate the rates of viral clearance
and infected cell loss by fitting the observed biphasic the decline of HCV RNA
in patients during therapy. Later on, Dahari and co-workers [15, 16], specif-
ically for hepatitis C viral, extended the basic model [12, 17, 18] to include
mitotic proliferation terms for both uninfected and infected hepatocytes. Their
model describes four populations. These populations include: uninfected tar-
get cells (hepatocytes) T (t), productively infected hepatocytes cells I(t), free
HCV virus V (t), and immune system of CD4+ cells of HCV, H(t). Here,
we assume that the proliferation of cells due to mitotic division obey a logis-
tic growth law. The mitotic proliferation of uninfected cells is described by

aT

(
1− T + I

Tmax

)
. New infectious transmission occurs at a rate βTV , while

new mitotic transmission occurs at a rate aI

(
1− T + I

Tmax

)
. As long as the

total number of cells, T (t) + I(t), is less than Tmax. Dependence of the HCV
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clearance rate on CD4+ count α and dependence of the HCV clearance rate
of CD4+ cells on HCV infected cell count γ. The DDE model is as follows:

In this paper, we investigate a class of HCV infection models with full
logistic proliferation and incorporating RTI-based ART. The model takes the
following form:

dT

dt
= s+ aT

(
1− T + I

Tmax

)
− dT − (1− ε)βTV,

dI

dt
= (1− ε)βT (t− τ1)V (t− τ1) + aI

(
1− T + I

Tmax

)
− δI − δαHI,

dV

dt
= pI − cV,

dH

dt
= γI(t− τ2)− dHH, (1.1)

where τ1 represents the time from entry to production of new virus [2, 3], τ2
is the immune cells at time t that were activated by infected cells at time
t− τ2, where 0 ≤ 1− ε ≤ 1 is the rate of reduction in numbers of productively-
infected target cells due to interruption of reverse transcription by the RTI-
based drugs. Parameter 1 − ε is a measure of the efficiency of the ART; if
ε = 1 HCV infection produces no productively-infected target cells, and ART
has no effect and if ε = 0 , then ART is 100% effective. We will focus on the
effects of RTI-based ART in this study. The parameter values in this model
(1.1), are described in Table I.

Table I
Parameters description and Values

Para. Description Source
s recruitment rate of uninfected hepatocytes [19]
a maximum proliferation rate Estimated
d death rate of uninfected target cells Estimated
β infection rate occurs at the transmissions [19]
δ clearance rate of infected hepatocytes Estimated
p number of virions an infected cell produces in its lifetime [19]
c viral clearance rate Estimated
dH death rate of CD4+ cells [19]

The purpose of this paper is to study the stability and bifurcation of our
model with delays. We investigate not only the local and global stability
analysis of the steady state and the existence of the Hopf bifurcation also. The
remainder of this paper is organized as follows: In Section 2, we determine the
local stability analysis of an infected equilibrium, with permit delay time being
positive. We demonstrate the global stability of the infected equilibrium in the
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case of τ2 < τ∗2 , when R0 > 1. In order to support our theoretical results and
stability analysis of equilibria, we provide some numerical simulation results
in Section 3. Finally, we end with the conclusion in Section 4.

2. Stability analysis of DDE model

We adopt the following notation: R4 is a four-dimensional real Euclidean
space with norm |.|. For τ > 0, we denote by C = C([−τ, 0],R4

+), the Ba-
nach space of continuous functions from the interval [−τ, 0] into R4

+ with the
topology of uniform convergence, where τ = max{τ1, τ2}. By the standard
theory of functional differential equation [20, 21, 22], we know that for any
φ ∈ C([−τ, 0],R4

+), there exists a unique solution

Z(t, φ) = (T (t, φ), I(t, φ), V (t, φ), H(t, φ))

of the delayed system (1.1), which satisfy Z0 = φ, where φ = (φ1, φ2, φ3, φ4) ∈
R4
+ with φi(ξ) ≥ 0 : (ξ ∈ [−τ, 0], i = 1, ..., 4), and φ1(0), φ2(0), φ3(0), φ4(0) >

0. And the initial conditions are given by

T (ξ) = φ1(ξ), I(ξ) = φ2(ξ), V (ξ) = φ3(ξ), H(ξ) = φ4(ξ). (2.1)

Theorem 2.1. ([23]) Let Z(t, φ) be a solution of the delayed system (1.1) with
the initial conditions (2.1). Then for all t ≥ 0, T (t), I(t), V (t) and H(t) are
all non-negative and ultimately uniformly bounded at which the solution exists.

2.1. Local stability analysis. The model (1.1) has two steady states: the
first, called the infection free equilibrium E0 and the second one, called the
chronic infection equilibrium Ê. The steady state points are as follows:

E0 = (T0, I0, V0, H0) =
Tmax

2a

(
a− d+

√
(a− d)2 +

4as

Tmax
, 0, 0, 0

)
and

Ê = (T̂ , Î, V̂ , Ĥ) =

−D2 +
√
D2

2 − 4D1D3

2D1
,
T̂ (A− 1) +B(
1 +

δαγTmax
a(dH)

) , p
c
Î,

γ

dH
Î

 .

where
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D1 =
a

Tmax
+

a

Tmax

(A− 1)(
1 +

δαγTmax
a(dH)

) +
(1− ε)βp(A− 1)

c

(
1 +

δαγTmax
a(dH)

) ,
D2 = d− a+

aB

Tmax

(
1 +

δαγTmax
a(dH)

) +
(1− ε)βpB

c

(
1 +

δαγTmax
a(dH)

) ,
D3 = −s,

A =
(1− ε)βpTmax

ac
,

B = Tmax −
δTmax
a

.

Basic Reproduction Number: We computed the basic reproduction num-
ber of model using next generation matrix method and is given by

R0 =
a

δ

(
1− T0

Tmax

)
+

(1− ε)βT0p
cδ

. (2.2)

It is apparent from the expression (2.2) that the basic reproduction number
is independent of immune response parameters. It can be understood as the
basic reproduction number is the number of newly infected cells produced by
a single infected cell when introduced into completely healthy cells.

To determine the stability of the delayed model, we linearized system (1.1)
around E0 and obtained the characteristic equation as

−d+ a−
2aT0

Tmax
− λ −

aT0

Tmax
−(1 − ε)β0 0

0 −δ + a−
aT0

Tmax
− λ (1 − ε)βT0e

−λτ1 0

0 p −c− λ 0

0 γe−λτ2 0 −(dH + VH) − λ

= 0 (2.3)

where λ is an eigenvalue of (2.3) around E0 .
We see that (2.3) has an eigenvalue λ = −(dH) < 0, we also consider that

Ê satisfies system (1.1) so a

(
1− T0

Tmax

)
= d − s

T0
. And using the previous

fact we can rewrite the factors of the characteristic equation (2.3) as

λ = a− d− 2aT0
Tmax

= −
(
s

T0
+

aT0
Tmax

)
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which have a negative eigenvalue and other eigenvalues are determined by

λ2 + λ

(
c+ δ +

aT0
Tmax

− a
)

+ cδ
(

1−R0e
−λτ1

)
= 0. (2.4)

Theorem 2.2. The infection free steady state of model (1.1) is locally asymp-
totically stable when R0 < 1 and unstable when R0 > 1.

Proof. The characteristic equation (2.4) at the infection free steady state can
be rewritten as (

λ+ δ +
aT0
Tmax

− a
)

(λ+ c) = cδR0e
−λτ1 . (2.5)

If the eigenvalue of λ in (2.4) has a non-negative real part, then the modulus
of the LHS of (2.4) satisfies,∣∣∣∣(λ+ δ +

aT0
Tmax

− a
)

(λ+ c)

∣∣∣∣ ≥ cδ, (2.6)

while the modulus of the RHS of (2.4) satisfies |cδR0e
−λτ1 | < |cδR0| < cδ.

This leads to a contradiction of (2.4). Thus, all the eigenvalues of (2.4) have
negative real part and hence the infected free steady state of the model (1.1)
is locally asymptotically stable when R0 < 1.

For R0 > 1, we define

Ψ1(λ) =

(
λ+ δ +

aT0
Tmax

− a
)

(λ+ c)− cδR0e
−λτ1 .

It is clear that Ψ1(0) < 0 and Ψ1(λ) → ∞ as λ → ∞. By the continuity, we
know that, there exists at least one positive root when R0 > 1. Thus, the
infection free steady state of the model (1.1) is unstable when R0 > 1. �

From biological point of view, it can be understand from the above result
that on the onset of infection if R0 < 1, (i.e. number of new infections on
average is less than one) then the infection will not keep on increasing further
and the system will settle to infection-free equilibrium point.

Now, we have to ascertain the stability of Ê(T̂ , Î, V̂ , Ĥ) and so the linearized

system (1.1) at Ê and obtain the characteristic equation:
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a11 − λ − aT̂

Tmax
−(1− ε)βT̂ 0

(1− ε)βV̂ e−λτ1 − aÎ

Tmax
a22 − λ (1− ε)βT̂ e−λτ1 −δαÎ

0 p −c− λ 0

0 γe−λτ2 0 −(dH)− λ

= 0,

where

a11 = a− d− 2aT̂

Tmax
− aÎ

Tmax
− (1− ε)βV̂

and

a22 = a− δ − 2aÎ

Tmax
− aT̂

Tmax
− δαĤ.

Thus, the characteristic equation as follows:

L(λ, τ1, τ2) = λ4 + p1λ
3 + p2λ

2 + p3λ+ p4 + e−λτ1(q1λ
2 + q2λ+ q3)

+e−λτ2(r1λ
2 + r2λ+ r3)

= 0, (2.7)

where pi = pi(τ1, τ2), qi = qi(τ1, τ2), ri = ri(τ1, τ2), and

p1 = a− d− 2aT̂

Tmax
− aÎ

Tmax
− (1− ε)βV̂

+ a− δ − 2aÎ

Tmax
− aT̂

Tmax
− δαĤ + c+ dH ,

p2 =

{(
a− d− 2aT̂

Tmax
− aÎ

Tmax
− (1− ε)βV̂

)(
a− δ − 2aÎ

Tmax
− aT̂

Tmax
− δαĤ

)

+

(
a− d− 2aT̂

Tmax
− aÎ

Tmax
− (1− ε)βV̂ + a− δ − 2aÎ

Tmax
− aT̂

Tmax
− δαĤ

)

× (c+ dH) + c(dH + βHVH)− a2T̂ Î

T 2
max

}
,



636 P. Krishnapriya and H. G. Hyun

p3 =

(
a− d− 2aT̂

Tmax
− aÎ

Tmax
− (1− ε)βV̂

)(
a−δ− 2aÎ

Tmax
− aT̂

Tmax
−δαĤ

)
× (c+ dH + βHVH)

+ c

(
a−d− 2aT̂

Tmax
− aÎ

Tmax
−(1− ε)βV̂ +a−δ − 2aÎ

Tmax
− aT̂

Tmax
− δαĤ

)

− a2T̂ Î

T 2
max

− (1− ε)βT̂aÎp
Tmax

,

p4 =

(
a− d− 2aT̂

Tmax
− aÎ

Tmax
− (1− ε)βV̂

)(
a− δ − 2aÎ

Tmax
− aT̂

Tmax
− δαĤ

)

× c(dH + βHVH)− a2T̂ Î

T 2
max

c(dH)− (1− ε)βT̂aÎp
Tmax

(dH),

q1 =
aT̂

Tmax
(1− ε)βV̂ − (1− ε)βpT̂ ,

q2 =
aT̂

Tmax
(c+ dH)(1− ε)βV̂ + (1− ε)2β2V̂ T̂ p

− (1− ε)βT̂p

(
a− d− 2aT̂

Tmax
− aÎ

Tmax
− (1− ε)βV̂ + dH + βHVH

)
,

q3 = (1− ε)βV̂ aT̂

Tmax
c(dH) + (1− ε)2β2V̂ T̂ p

− (1− ε)βT̂p

(
a− d− 2aT̂

Tmax
− aÎ

Tmax
− (1− ε)βV̂

)
(dH),

r1 = δαγÎ,

r2 = δαγÎ

(
a− d− 2aT̂

Tmax
− aÎ

Tmax
− (1− ε)βV̂ + c

)
,

r3 = δαγÎ

(
a− d− 2aT̂

Tmax
− aÎ

Tmax
− (1− ε)βV̂

)
× c.

For τ1 = τ2 = 0 the above equation (2.7) becomes as follows

λ4 + λ3p1 + λ2(p2 + q1 + r1) + λ(p3 + q2 + r2) + (p4 + q3 + r3) = 0. (2.8)

Since R0 > 1, by Routh-Hurwitz criteria, the corresponding system without
delay is locally asymptotically stable around the chronic infection equilibrium
if following conditions are satisfied:
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(1) p1 > 0, p3 + q2 + r2 > 0 and p4 + q3 + r3 > 0,
(2) p1(p2 + q1 + r1)(p3 + q2 + r2) > (p3 + q2 + r2)

2 + p21(p4 + q3 + r3).

To determine the local stability Ê of (1.1), for various delays, we need to
show that the distribution of zeros of the characteristic equation (2.7) for τ1
and τ2. In contrast to the transcendental equation with one delay in [24] the
parameters of equation (2.7) depend on two delays. Therefore, it is necessary
to reformulate the stability switch criteria for (2.7). However, we suppose
hereafter τ1 = τ̄ to simplify the study and the general case can be treated in
the same manner.

When τ̄ = 0, the characteristic equation (2.7) becomes

L(λ, τ2) = G1(λ, τ2) + e−λτ2G2(λ, τ2) = 0, (2.9)

where

G1(λ, τ2) = λ4 + k1λ
3 + k2λ

2 + k3λ+ k4,

G2(λ, τ2) = m1λ
2 +m2λ+m3,

for

k1 = p1, k2 = p2 + q1, k3 = p3 + q2, k4 = p4 + q3,

m1 = r1, m2 = r2, m3 = r3.

Let λ = iω∗ (ω∗ > 0) be a root of (2.9), and separating the real and
imaginary parts, we have

ω∗4 − ω∗2k∗2 + k∗4 = (m1ω
∗2 −m3) cos(ω∗τ2)

−m2 ω
∗ sin(ω∗τ2) (2.10)

and

ω∗k∗3 − ω∗3k∗1 = (m1ω
∗2 −m3) sin(ω∗τ2)

+m2 ω
∗ cos(ω∗τ2). (2.11)

Squaring and adding both equations of (2.10) and (2.11), we can obtain the
following eight-degree equation for ω∗:

ω∗8 + ω∗6(k∗21 − 2k∗2) + ω∗4(k∗22 −m2
1 + 2k∗4 − 2k∗1k

∗
3)

+ ω∗2(k∗23 − 2k∗2k
∗
4 −m2

2) + k∗24 −m2
3 = 0. (2.12)

Putting ω∗2 = u∗∗ into (2.12), we can obtain the following equation:

F (u∗∗) = u∗∗4 +A∗1u
∗∗3 +A∗2u

∗∗2 +A∗3u
∗∗ +A∗4 = 0, (2.13)
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where

A∗1 = k∗21 − 2k∗2,

A∗2 = k∗22 −m2
1 + 2k∗4 − 2k∗1k

∗
3,

A∗3 = k∗23 − 2k∗2k
∗
4 −m2

2,

A∗4 = k∗24 −m2
3.

Taking derivative with respect to u∗∗ of equation (2.13), we get

Ḟ (u∗∗) = 4u∗∗3 + 3u∗∗2A∗1 + 2u∗∗A∗2 +A∗3 = 0. (2.14)

It is easy to verify that the coefficients in the above equation (2.14) are all

positive and hence Ḟ (u∗∗) > 0. By Descartes rule of signs, equation (2.13)
has positive root u∗∗ and thus equation (2.12) has a pair of purely imaginary
roots iω∗. From equation (2.10) and (2.11), we obtain

τ∗2 =
1

ω∗
arccos

(
(ω∗4 − ω∗2k∗2 + k∗4)(ω∗2m1 −m3) + (ω∗2k∗3 − ω∗4k∗1)m2

(ω∗2m1 −m3)2 + ω∗2m2
2

)
+

2jπ

ω∗
,

where j = 0, 1, 2, .... Therefore Ê is stable for τ2 ∈ [0, τ∗2 ) and unstable when
τ2 > τ∗2 .

When τ2 > 0 we show the existence of bifurcating periodic solutions. We
already proved that the characteristic equation (2.9) has a purely imaginary
eigenvalues iω∗, now we shall verify the transversality condition only.

Differentiating (2.9) with respect to τ2, we get{
(4λ3 + 3λ2k∗1 + 2λk∗2 + k∗3) + e−λτ2(2λm1 +m2)

−τ2e−λτ2(m1λ
2 +m2λ+m3)

} dλ

dτ2
= λe−λτ2(m1λ

2 +m2λ+m3)

which implies(
dλ

dτ2

)−1
=

4λ3 + 3λ2k∗1 + 2λk∗2 + k∗3
λe−λτ2(m1λ2 +m2λ+m3)

+
2λm1 +m2

λ(m1λ2 +m2λ+m3)
− τ2
λ

=
4λ3 + 3λ2k∗1 + 2λk∗2 + k∗3

−λ(λ4 + k∗1λ
3 + k∗2λ

2 + k∗3λ+ k∗4)
+

2λm1 +m2

λ(m1λ2 +m2λ+m3)
− τ2
λ

=
3λ4 + 2k∗1λ

3 + k∗2λ
2 − k∗4

−λ2(λ4 + k∗1λ
3 + k∗2λ

2 + k∗3λ+ k∗4)
+

λ2m1 −m3

λ2(m1λ2 +m2λ+m3)
− τ2
λ
.

Therefore,
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Ξ = sign

{
Re

(
3λ4 + 2k∗1λ

3 + k∗2λ
2 − k∗4

−λ2(λ4 + k∗1λ
3 + k∗2λ

2 + k∗3λ+ k∗4)

+
λ2m1 −m3

λ2(m1λ2 +m2λ+m3)
− τ2
λ

)}
λ=iω∗

0

= sign

{
Re

(
(3ω∗40 − ω∗20 k∗2 − k∗4) + i(−2ω∗30 k

∗
1)

ω∗20 (ω∗40 − ω∗20 k∗2 + k∗4) + i(ω∗0k
∗
3 − ω∗30 k∗1)

+
m1ω

∗2
0 +m3

ω∗20 (m3 −m1ω∗20 ) + i(m2ω∗0)
− τ2
iω∗0

)}
=

1

ω∗20
sign

{
(3ω∗40 −ω∗20 k∗2−k∗4)(ω∗40 −ω∗20 k∗2+k∗4)−2ω∗30 k

∗
1(ω∗0k

∗
3−ω∗30 k∗1)

(ω∗40 − ω∗20 k∗2 + k∗4)2 + (ω∗0k
∗
3 − ω∗30 k∗1)2

+
(m1ω

∗2
0 +m3)(m3 −m1ω

∗2
0 )

(m3 −m1ω∗20 )2 + (m2ω∗0)2

}
=

1

ω∗20
sign

{
(3ω∗40 − ω∗20 k∗2 − k∗4)(ω∗40 − ω∗20 k∗2 + k∗4)

(m3 −m1ω∗20 )2 + (m2ω∗0)2

+
(m1ω

∗2
0 +m3)(m3 −m1ω

∗2
0 )− 2ω∗30 k

∗
1(ω∗0k

∗
3 − ω∗30 k∗1)

(m3 −m1ω∗20 )2 + (m2ω∗0)2

}
=

1

ω∗20
sign

{
3ω∗80 +(k∗21 −2k2)ω

∗6
0 +(k∗22 −2k∗1k

∗
3+2k∗4−m2

1)ω
∗4
0 +k∗24 −m2

3

(m3 −m1ω∗20 )2 + (m2ω∗0)2

}
.

As k∗21 − 2k∗2, k∗22 − 2k∗1k
∗
3 + 2k∗4 −m2

1 and k∗24 −m2
3 are both positive by

virtue of equation (2.12), we have(
dRe(λ)

dτ2

)∣∣∣∣
ω∗=ω∗

0 ,τ2=τ
∗
2

> 0.

Therefore the transversality condition holds and hence Hopf bifurcation occurs
at ω∗ = ω∗0, τ2 = τ∗2 .

Moreover the infected equilibrium Ê is stable when τ2 ∈ [0, τ∗2 ) and unstable
when τ2 > τ∗2 . τ2 is the Hopf bifurcation value, which means that periodic
solutions will bifurcate from this infected equilibrium as τ2 passes through the
critical value τ∗2 .

2.2. Global stability analysis. In this section, we prove that E0 of (1.1) is

globally asymptotically stable when R0 < 1, and so is Ê of (1.1) is provided
that R0 > 1. Therefore, the model (1.1) demonstrates global dynamics. We
shall achieve our goal with the global asymptotic stability of E0 of (1.1) under
R0 < 1.

Theorem 2.3. If R0 < 1, then the infection free equilibrium E0 of (1.1) is
indeed globally asymptotically stable.
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Proof. We consider a Lyapunov functional W1(t) as follows,

W1(t) = T − T0 ln
T

T0
+ I +

(1− ε)β
c

T0V +
δ

γ
(1−R0)H

+ (1− ε)β
∫ 0

−τ1
T (t+ σ)V (t+ σ)dσ +

δ

γ
(1−R0)γ

∫ 0

−τ2
I(t+ σ)dσ.

Calculating the time derivative of W1(t) along positive solutions of (1.1), we
have

dW1

dt
=

(
1− T0

T

)
dT

dt
+
dI

dt
+

(1− ε)β
c

T0
dV

dt
+
δ

γ
(1−R0)

dH

dt

+(1− ε)β(T (t)V (t)− T (t− τ1)V (t− τ1))

+
δ

γ
(1−R0)γ(I(t)− I(t− τ2))

= (T − T0)
(
s

T
− d+ a

(
1− T + I

Tmax

)
− (1− ε)βTV

)
−δI − δαHI + aI

(
1− T + I

Tmax

)
(1− ε)β

c
T0[pI − cV ]

+

(
d

γ

)(
1− Ĥ

H

)
dH

dt
+ (1− ε)βTV

− δ
γ

(1−R0)(dHH) + δ(1−R0)I. (2.15)

Using the infection-free equilibrium condition of model (1.1), a−d =
aT0
Tmax

− s

T0
in (2.15), then we get

dW1

dt
= −s(T − T0)2

TT0
− a

Tmax
(T − T0)2−

a

Tmax
I(T − T0)−(1− ε)β(T − T0)V

− δI − δαHI + aI − aIT

Tmax
− aI2

Tmax
+

(1− ε)β
c

T0pI − (1− ε)βT0V

+ (1− ε)βT (t)V (t)− δ

γ
(1−R0)(dHH) + δ(1−R0)

+
a

Tmax
IT0 −

a

Tmax
IT0,

= −s(T − T0)2

TT0
− a

Tmax
((T − T0) + I)2

+ I

(
a

(
1− T0

Tmax

)
+

(1− ε)β
c

T0p− δ
)

+ δ(1−R0).
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Note that,

a

(
1− T0

Tmax

)
+

(1− ε)β
c

T0p− δ = δ(1−R0) ≤ 0.

Since R0 < 1, we have

dW1

dt
= −

(
s

(T − T0)2

TT0
− a

Tmax
((T − T0) + I)2 + 2δ(1−R0)

)
≤ 0.

Hence if R0 < 1, then
dW1

dt
≤ 0. Therefore, the maximal compact invariant

set in

{
dW1

dt
= 0

}
is the singleton E0. By the LaSalle invariance principle for

delay systems [25], the infection free equilibrium of (1.1) is globally attracting.
In previous section, we proved that the infection free equilibrium is locally
asymptotically stable when R0 < 1. Therefore, the disease free equilibrium of
model (1.1) is globally asymptotically stable when R0 < 1. �

Determining the global convergence to the infected equilibrium or uniform
persistence of solutions is important in understanding the threshold dynamics
in the viral systems. The uniform persistence of system (1.1) can be shown
by using the persistence theory in [26], for infinite dimensional systems, as in
the proof of [27] (Theorem 4.1) or [28] (Theorem 5). We present this result in
the following theorem and omit the proof.

Theorem 2.4. If R0 > 1, then the system (1.1) is uniformly persistent, that
is, there is a constant γ0 > 0 such that lim inft→∞ T (t) ≥ γ0, lim inft→∞ I(t) ≥
γ0, lim inft→∞ V (t) ≥ γ0 and lim inft→∞H(t) ≥ γ0.

Theorem 2.5. If the basic reproductive number satisfies R0 > 1, then the
chronic infection equilibrium Ê of model (1.1) is globally attracting.

Proof. We define a Lyapunov functional W2(t) as follows,

W2(t) =

(
T − T̂ ln

T

T̂

)
+

(
I − ˆ̂

I ln
I

Î

)
+

(1− ε)βT̂
c

(
V − V̂ ln

V

V̂

)
×
(
d

γ

)(
H − Ĥ ln

H

Ĥ

)
+(1− ε)βT̂ V̂

∫ 0

−τ1
g

(
T (t+ σ)V (t+ σ)

T̂ V̂

)
dσ

×
(
d

γ

)
γÎ

∫ 0

−τ2
g

(
I(t+ σ)

Î

)
dσ,
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where, u(x) = x − 1 − lnx, and the function g(x) ≥ 0, for all x ∈ (0,∞) and

u(x) = 0, if and only if x = 1. Note that Ê of (1.1) satisfies

a− d = − s
T

+ (1− ε)βV̂ +
a

Tmax
(T̂ + Î),

a− δ = −(1− ε)βT̂ V̂
Î

+
a

Tmax
(T̂ + Î) + δαĤ,

cV̂ = pÎ,

γÎ − (dH)Ĥ = 0 (2.16)

and directly calculate the time derivative of W2(t) along a positive solutions
of (1.1) to obtain,

dW2

dt

=

(
1− T̂

T

)
dT

dt
+

(
1− Î

I

)
dI

dt
+

(1− ε)βT̂
c

(
1− V̂

V

)
dV

dt

+

(
d

γ

)(
1− Ĥ

H

)
dH

dt

+ (1− ε)βT̂ V̂
{
T (t)V (t)

T̂ V̂
−T (t− τ1)V (t− τ1)

T̂ V̂
+ln

T (t− τ1)V (t− τ1)
TV

}
+

(
d

γ

)
γÎ

{
I

Î
− I(t− τ2)

Î
+ ln

I(t− τ2)
I

}
=
(
T − T̂

)( s
T
− d+ a

(
1− T + I

Tmax

)
− (1− ε)βTV

)
+
(
I − Î

)((1− ε)βT (t− τ1)V (t− τ1)
I

− δ − δαH + a

(
1− T + I

Tmax

))
+

(1− ε)βT̂
c

(
1− V̂

V

)
(pI − cV ) +

(
d

γ

)(
1− Ĥ

H

)
× (γI(t− τ2)− (dHH) + (1− ε)βTV − (1− ε)βT (t− τ1)V (t− τ1)

+ (1− ε)βT̂ V̂ ln
T (t− τ1)V (t− τ1)

TV
+

(
d

γ

)
γÎ

(
I

Î

)
− (d)I(t− τ2)

+

(
d

γ

)
ln

(
I(t− τ2)

I

)
. (2.17)
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By using (2.16), the above equation (2.17) becomes

dW2

dt
= −s(T − T̂ )2

T T̂
− a

Tmax
((T − T̂ ) + (I − Î))2 − (1− ε)βTV

+ (1− ε)βT̂V + (1− ε)βV̂ T − (1− ε)βV̂ T̂

+ (1− ε)βV (t− τ1)T (t− τ1)−
(1− ε)βV (t− τ1)T (t− τ1)Î

I

− (1− ε)βV̂ T̂ I
Î

+ (1− ε)βV̂ T̂ − δα(H − Ĥ)

+
(1− ε)βT̂

c
pI − (1− ε)βT̂ V̂

cV
pI − (1− ε)βT̂

c
cV

+
(1− ε)βT̂

c
cV̂ +

(
d

γ

)(
γI(t− τ2)−

γI(t− τ2)Ĥ
H

−(dH)(H − Ĥ)

)
+ (1− ε)βTV − (1− ε)βT (t− τ1)V (t− τ1)

+ (1− ε)βT̂ V̂ ln
T (t− τ1)V (t− τ1)

TV
+

(
d

γ

)
γÎ

(
I

Î

)
− (d)I(t− τ2) +

(
d

γ

)
ln

(
I(t− τ2)

I

)
= −s(T − T̂ )2

T T̂
− a

Tmax
((T − T̂ ) + (I − Î))2 + (1− ε)βV̂ T

− (1− ε)βV (t− τ1)T (t− τ1)Î
I

− (1− ε)βV̂ T̂ I
Î

+ (1− ε)βV̂ T̂

− δα(H − Ĥ) +
(1− ε)βT̂

c
pI − (1− ε)βT̂ V̂

cV
pI

×

(
−(1− ε)βT̂

c
c+ (1− ε)βT̂

)
V +

(
(1− ε)βT̂

c
c− (1− ε)βT̂

)
V̂

−
(
d

γ

)(
γI(t− τ2)Ĥ

H

)
+ (1− ε)βT̂ V̂ ln

T (t− τ1)V (t− τ1)
TV

+

(
d

γ

)
γÎ

(
I

Î

)
+

(
d

γ

)
ln

(
I(t− τ2)

I

)
≤ −s(T − T̂ )2

T T̂
− a

Tmax
((T − T̂ ) + (I − Î))2 − γÎ (I − Î)2

IÎ

+
(
γÎ−(dH)Ĥ

) (I − Î)2

IÎ
−(dH)Î

(
2+g

(
ÎH

ĤI

)
+g

(
I(t− τ2)Ĥ

HÎ

))

− (1− ε)βT̂ V̂

{
2 + g

(
T̂

T

)
+ g

(
T (t− τ1)V (t− τ1)Î

T̂ V̂ I

)
+ g

(
V̂ I

ÎV

)}
≤ 0. (2.18)
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Thus
dW2

dt
≤ 0. Let Γ =

{
(T, I, V,E) :

dW2

dt
= 0

}
and Ê be the largest in-

variant set in Γ. Note that
dW2

dt
= 0 if and only if T = T̂ , ÎT (t−τ1)V (t−τ1) =

IT̂ V̂ , IV̂ = ÎV, IĤ = ÎH and I(t−τ2)Ĥ = HÎ. Therefore, the maximal com-

pact invariant set in

{
dW2

dt
= 0

}
is the singleton Ê. By the LaSalle invariance

principle for delay systems [25], the chronic infection equilibrium of (1.1) is
globally attracting. In previous section, we proved that the chronic infec-
tion equilibrium of model (1.1) is locally asymptotically stable when R0 > 1.
Therefore, the chronic infection equilibrium of model (1.1) is globally asymp-
totically stable when R0 > 1. �

3. Numerical simulations

In this section, we illustrate some simulation results performed to validate
the analytical results of model (1.1) using Maple. We present some such
examples using different levels of therapy intervention. In spite of what seems
to be observe restrictions to the applicability of the model (1.1), there are still
some interesting findings illustrated by the following cases.

Fix the parameters

s = 4365, β = 4.1× 10−6,

δ = 3, βH = 7.3× 10−8,

p = 13.48, Tmax = 4.106× 108,

d = 1.06× 10−3, c = 2.06,

dH = 9× 10−3, α = 5× 10−3,

γ = 2× 10−8, VH = 1× 106,

a = 3, ε = 0.85.

We obtain the characteristic equation for the above system (1.1) consider
for the following cases.

Case 1: We obtain the characteristic equation for ε = 0.85 as follows:

λ4 − 5.506603785× 105λ3 + 1.117238907× 109λ2 + 4.102776713× 109λ

+ 1.900088900× 109 + e−21λ(40.8218758λ2 − 2.239588860× 107λ

− 4.613570376× 107) = 0. (3.1)
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For ε = 0.85, τ1 = 0 and τ2 = 3 weeks (21 days). Hence the above equation
(3.1) is stable when τ2 > 0. It can be shown from the following Figure 1.

Figure 1
Case 2: For ε = 0.90, τ1 = 0 and τ2 = 2 weeks (14 days), we depict the
characteristic equation as follows:

λ4 − 2.451892421× 105λ3 + 3.310058143× 108λ2 + 1.214847951× 109λ

+ 5.625044666× 108 + e−14λ(27.1892787λ2 − 6.629628711× 106λ

− 1.365715053× 107) = 0. (3.2)

Hence the above system (3.2) is stable when τ2 > 0. It can be shown from the
following Figure 2.

Figure 2
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Case 3: For ε = 0.95, τ1 = 0 and τ2 = 1 week, 3 days (10 days), we obtain
the characteristic equation as follows:

λ4 − 61634.99476λ3 + 4.136395210× 107λ2 + 1.515594467× 108λ

+ 7.013121938× 107 + e−10λ(6.317921546× 107λ2

− 8.263763638× 105λ− 1.702392839× 106) = 0. (3.3)

Hence the above system (3.3) is stable when τ2 > 0. It can be shown from the
following Figure 3.

Figure 3

Letting τ1 = 0, τ2 > 0 all the characteristic roots of the characteristic
equation of the HIV co-infection model on HCV dynamics have negative real
parts. (see Fig 1, 2, 3). It is also verified that the steady state Ê(T̂ , Î, V̂ , Ĥ)
of the HIV co-infection on HCV is stable in the following three cases:

(i) τ̄ = 0 and τ2 ∈ [0, τ∗2 ), τ2 = 3weeks (21 days) for ε = 0.85;
(ii) τ̄ = 0 and τ2 ∈ [0, τ∗2 ), τ2 = 2weeks (14 days) for ε = 0.90;

(iii) τ̄ = 0 and τ2 ∈ [0, τ∗2 ), τ2 = 1week and 3 days (10days) for ε = 0.95.

From the above figures, finally we can easily shown that the drug period
plays an important role in the disease spread and that the disease may be
controlled by the consuming level of therapy intervention in the drug period
(that is, The high amount of therapy can reducing the infection at the small
level of period).

4. Conclusion

In this paper, we have proposed and analyzed a model of delayed immuno-
logical impact of HIV co-infection on HCV. The model results presented here
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give a theoretical demonstration of the effect that HIV coinfection can have
on the course of HCV infection. We examined the local stability analysis our
model (1.1), which is based upon the reproduction ratio number R0 < 1 and
R0 > 1.

Additionally, we showed that global asymptotic stability of the infected
equilibrium in the presence of immune delay. Additionally, our findings have
demonstrated that the drug period plays an important role in the disease
spread and the disease may be controlled by shortening that drug period. The
positive immune delay, τ2 is able to destabilize the infected steady state.

We showed that for this simplified model (1.1), the chronic infection equi-
librium is locally asymptotically stable for τ2 < τ∗2 and bifurcation leads when
τ2 = τ∗2 . By the result, the immune delay τ2 as a bifurcation parameter, a
sufficient condition has been established for existence of Hopf bifurcation at
the infected equilibrium.
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