A COMMON FIXED POINT THEOREM OF COMPATIBLE OF TYPE (γ) MAPS IN COMPLETE FUZZY METRIC SPACES

Shaban Sedghi ${ }^{1}$, Nabi Shobe ${ }^{2}$ and Shahram Sedghi ${ }^{3}$
${ }^{1}$ Department of Mathematics, Islamic Azad University-Ghaemshahr Branch Ghaemshahr P. O. Box 163, Iran e-mail: sedghi_gh@yahoo.com
${ }^{2}$ Department of Mathematics, Islamic Azad University-Babol Branch Ghaemshahr P. O. Box 163, Iran e-mail: nabi_shobe@yahoo.com
${ }^{3}$ Department of Mechanical Engineering, Iran University of Science and Technology Narmak, Tehran 16844, Iran
e-mail: shahramm_sedghi@yahoo.com

Abstract

In this paper, we establish a common fixed point theorem of compatible of type γ maps in complete fuzzy metric spaces.

1. Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [17] in 1965. Since then, to use this concept in topology and analysis many authors have expansively developed the theory of fuzzy sets and application. George and Veeramani [5] and Kramosil and Michalek [8] have introduced the concept of fuzzy topological spaces induced by fuzzy metric which have very important applications in quantum particle physics particularly in connections with both string and $\epsilon^{(\infty)}$ theory which were given and studied by El Naschie $[1,2,3$, $4,16]$. Many authors $[6,11,12]$ have proved fixed point theorem in fuzzy (probabilistic) metric spaces.

[^0]Definition 1.1. A binary operation $*:[0,1] \times[0,1] \longrightarrow[0,1]$ is a continuous t-norm if it satisfies the following conditions
(1) $*$ is associative and commutative,
(2) $*$ is continuous,
(3) $a * 1=a$ for all $a \in[0,1]$,
(4) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c, d \in[0,1]$.

Two typical examples of continuous t-norm are $a * b=a b$ and $a * b=$ $\min (a, b)$.

Definition 1.2. A 3 -tuple $(X, M, *)$ is called a fuzzy metric space if X is an arbitrary (non-empty) set, $*$ is a continuous t-norm, and M is a fuzzy set on $X^{2} \times(0, \infty)$, satisfying the following conditions for each $x, y, z \in X$ and $t, s>0$,
(1) $M(x, y, t)>0$,
(2) $M(x, y, t)=1$ if and only if $x=y$,
(3) $M(x, y, t)=M(y, x, t)$,
(4) $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$,
(5) $M(x, y,):.(0, \infty) \longrightarrow[0,1]$ is continuous.

Let $(X, M, *)$ be a fuzzy metric space. For $t>0$, the open ball $B(x, r, t)$ with center $x \in X$ and radius $0<r<1$ is defined by

$$
B(x, r, t)=\{y \in X: M(x, y, t)>1-r\}
$$

Let $(X, M, *)$ be a fuzzy metric space. Let τ be the set of all $A \subset X$ with $x \in A$ if and only if there exist $t>0$ and $0<r<1$ such that $B(x, r, t) \subset A$. Then τ is a topology on X (induced by the fuzzy metric M). This topology is Hausdorff and first countable. A sequence $\left\{x_{n}\right\}$ in X converges to x if and only if $M\left(x_{n}, x, t\right) \rightarrow 1$ as $n \rightarrow \infty$, for each $t>0$. It is called a Cauchy sequence if for each $0<\varepsilon<1$ and $t>0$, there exits $n_{0} \in \mathbb{N}$ such that $M\left(x_{n}, x_{m}, t\right)>1-\varepsilon$ for each $n, m \geq n_{0}$. The fuzzy metric space $(X, M, *)$ is said to be complete if every Cauchy sequence is convergent. A subset A of X is said to be F-bounded if there exists $t>0$ and $0<r<1$ such that $M(x, y, t)>1-r$ for all $x, y \in A$.

Example 1.3. Let $X=\mathbb{R}$. Denote $a * b=a \cdot b$ for all $a, b \in[0,1]$. For each $t \in(0, \infty)$, define

$$
M(x, y, t)=\frac{t}{t+|x-y|}
$$

for all $x, y \in X$.
Lemma 1.4. ([5]) Let $(X, M, *)$ be a fuzzy metric space. Then $M(x, y, t)$ is non-decreasing with respect to t, for all x, y in X.

Definition 1.5. Let $(X, M, *)$ be a fuzzy metric space. M is said to be continuous on $X^{2} \times(0, \infty)$ if

$$
\lim _{n \rightarrow \infty} M\left(x_{n}, y_{n}, t_{n}\right)=M(x, y, t)
$$

Whenever a sequence $\left\{\left(x_{n}, y_{n}, t_{n}\right)\right\}$ in $X^{2} \times(0, \infty)$ converges to a point $(x, y, t) \in$ $X^{2} \times(0, \infty)$ i.e.,

$$
\lim _{n \rightarrow \infty} M\left(x_{n}, x, t\right)=\lim _{n \rightarrow \infty} M\left(y_{n}, y, t\right)=1 \text { and } \lim _{n \rightarrow \infty} M\left(x, y, t_{n}\right)=M(x, y, t)
$$

Lemma 1.6. Let $(X, M, *)$ be a fuzzy metric space. Then M is continuous function on $X^{2} \times(0, \infty)$.
Proof. see proposition 1 of [10].
Definition 1.7. Let A and S be mappings from a fuzzy metric space ($X, M, *$) into itself. Then the mappings are said to be weak compatible if they commute at their coincidence point, that is, $A x=S x$ implies that $A S x=S A x$.
Definition 1.8. Let A and S be mappings from a fuzzy metric space ($X, M, *$) into itself. Then the mappings are said to be compatible if

$$
\lim _{n \rightarrow \infty} M\left(A S x_{n}, S A x_{n}, t\right)=1, \forall t>0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=x \in X
$$

Definition 1.9. Let A and S be mappings from a fuzzy metric space ($X, M, *$) into itself. Then the mappings are said to be weak compatible of type (γ) if $A x_{n}=S x_{n}=x$ implies that $A x=S x$, for $x \in X$.
Proposition 1.10. ([13])Let self-mappings A and S of a fuzzy metric space $(X, M, *)$ be compatible. Then they are weak compatible.

Throughout this section, a binary operation $*:[0,1] \times[0,1] \longrightarrow[0,1]$ is a continuous t-norm if it satisfies the condition $t * s \geq t s$.

Three examples of such a continuous t-norm are

$$
a * b=a b, a * b=\min (a, b)
$$

and

$$
a * b=\frac{a b}{\max \{a, b, \alpha\}}
$$

for all $a, b \in[0,1]$, where $\alpha \in(0,1]$.
Lemma 1.11. Let $(X, M, *)$ be a fuzzy metric space. If sequence $\left\{x_{n}\right\}$ in X exist such that for every $n \in \mathbb{N}$.

$$
M\left(x_{n}, x_{n+1}, t\right) \geq 1-k^{n} \alpha
$$

for every $0<k, \alpha<1$, then sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.

Proof. For every $m>n$ and $x_{n}, x_{m} \in X$, we have

$$
\begin{aligned}
M\left(x_{n}, x_{m}, t\right) & \geq M\left(x_{n}, x_{n+1}, \frac{t}{m-n}\right) * \cdots * M\left(x_{m-1}, x_{m}, \frac{t}{m-n}\right) \\
& \geq M\left(x_{n}, x_{n+1}, \frac{t}{m-n}\right) \cdot \cdots . M\left(x_{m-1}, x_{m}, \frac{t}{m-n}\right) \\
& \geq\left(1-k^{n} \alpha\right) \cdot\left(1-k^{n+1} \alpha\right) . \cdots \cdot\left(1-k^{m-1} \alpha\right) \\
& \geq\left(1-k^{n} \alpha\right)^{m-n} \\
& \geq 1-(m-n) k^{m} \alpha \\
& >1-\epsilon
\end{aligned}
$$

The last inequality indeed by inequality Bernoli, and for every $\epsilon \in(0,1)$ there exists $n_{0} \in \mathbb{N}$ such that for every $m>n \geq n_{0}$ we get $(m-n) k^{m} \alpha<\epsilon$. Hence sequence $\left\{x_{n}\right\}$ is Cauchy sequence.

2. The main Results

A class of implicit relation. Let Φ be the set of all continuous functions $\phi:[0,1]^{5} \longrightarrow[0,1]$, increasing in any coordinate and $\phi\left(s, s, s, s^{n}, s^{m}\right)>s$ for every $s \in[0,1)$ and $n, m \in\{0,1,2\}$ such that $n+m=2$.

Example 2.1. Let $\phi:[0,1]^{5} \longrightarrow[0,1]$ is define by
(i) $\phi_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(\min \left\{x_{1}, x_{2}, x_{3},\left(x_{4} x_{5}\right)^{1 / 2}\right\}\right)^{h}$ for some $0<h<1$.
(ii) $\phi_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(a(t) x_{1}+b(t) x_{2}+c(t) x_{3}+d(t)\left(x_{4} x_{5}\right)^{1 / 2}\right)^{h}$ where $a, b, c, d: \mathbb{R}^{+} \longrightarrow[0,1]$, be four mappings such that $a(t)+b(t)+c(t)+d(t)=1$, for all $t>0$ and some $0<h<1$.
(iii) $\phi_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=a(t) x_{1}+b(t) x_{2}+c(t) x_{3}+d(t) x_{4}^{1 / 2}+e(t) x_{5}^{1 / 2}$ where $a, b, c, d, e: \mathbb{R}^{+} \longrightarrow[0,1]$, be five mappings such that $a(t)+b(t)+c(t)+$ $d(t)+e(t)=1$, for all $t>0$.

Theorem 2.2. Let f, g, S, T be self-mappings of a complete fuzzy metric space $(X, M, *)$ satisfying that
(i) $f(X) \subseteq T(X), g(X) \subseteq S(X)$,
(ii) there exists a number $k \in(0,1)$ such that

$$
\begin{aligned}
& M(f x, g y, t) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{ll}
M(S x, T y, t), & M(S x, f x, t), \\
M(T y, g y, t), & M(S x, g y, q t), \\
M(T y, f x,(3-q) t)
\end{array}\right)\right)
\end{aligned}
$$

for every x, y in $X, q \in\{1,2\}, t>0$ and $\phi \in \Phi$,
(iii) the pairs (f, S) and (g, T) are be weak compatible of type (γ).

Then f, g, S and T have a unique common fixed point in X.

Proof. Let $x_{0} \in X$ be an arbitrary point as $f(X) \subseteq T(X), g(X) \subseteq S(X)$, there exist $x_{1}, x_{2} \in X$ such that $f x_{0}=T x_{1}, g x_{1}=S x_{2}$. Inductively, construct sequence $\left\{y_{n}\right\}$ and $\left\{x_{n}\right\}$ in X such that $y_{2 n}=f x_{2 n}=T x_{2 n+1}, y_{2 n+1}=$ $g x_{2 n+1}=S x_{2 n+2}$, for $n=0,1,2, \cdots$.

Now, we prove $\left\{y_{n}\right\}$ is a Cauchy sequence. Let $d_{m}(t)=M\left(y_{m}, y_{m+1}, t\right), t>$ 0 we prove $\left\{d_{m}(t)\right\}$ is increasing w.r.t m. For $m=2 n$ and $q=2$, we have

$$
\begin{aligned}
& d_{2 n}(t) \\
= & M\left(y_{2 n}, y_{2 n+1}, t\right)=M\left(f x_{2 n}, g x_{2 n+1}, t\right) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{ll}
M\left(S x_{2 n}, T x_{2 n+1}, t\right), & M\left(S x_{2 n}, f x_{2 n}, t\right), \\
M\left(T x_{2 n+1}, g x_{2 n+1}, t\right), & M\left(S x_{2 n}, g x_{2 n+1}, 2 t\right), \\
M\left(T x_{2 n+1}, f x_{2 n}, t\right)
\end{array}\right)\right) \\
= & 1-k\left(1-\phi\left(\begin{array}{ll}
M\left(y_{2 n-1}, y_{2 n}, t\right), & M\left(y_{2 n-1}, y_{2 n}, t\right), \\
M\left(y_{2 n}, y_{2 n+1}, t\right), & M\left(y_{2 n-1}, y_{2 n+1}, 2 t\right), \\
M\left(y_{2 n}, y_{2 n}, t\right)
\end{array}\right)\right) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{ll}
M\left(y_{2 n-1}, y_{2 n}, t\right), & M\left(y_{2 n-1}, y_{2 n}, t\right), \\
M\left(y_{2 n}, y_{2 n+1}, t\right), & M\left(y_{2 n-1}, y_{2 n}, t\right) * M\left(y_{2 n}, y_{2 n+1}, t\right), \\
M\left(y_{2 n}, y_{2 n}, t\right)
\end{array}\right)\right) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{ll}
M\left(y_{2 n-1}, y_{2 n}, t\right), & M\left(y_{2 n-1}, y_{2 n}, t\right), \\
M\left(y_{2 n}, y_{2 n+1}, t\right), & M\left(y_{2 n-1}, y_{2 n}, t\right) \cdot M\left(y_{2 n}, y_{2 n+1}, t\right), \\
M\left(y_{2 n}, y_{2 n}, t\right)
\end{array}\right)\right) \\
= & 1-k\left(1-\phi\left(d_{2 n-1}(t), d_{2 n-1}(t), d_{2 n}(t), d_{2 n-1}(t) \cdot d_{2 n}(t), 1\right)\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
d_{2 n}(t) \geq 1-k\left(1-\phi\left(d_{2 n-1}(t), d_{2 n-1}(t), d_{2 n}(t), d_{2 n-1}(t) \cdot d_{2 n}(t), 1\right)\right) \tag{2.1}
\end{equation*}
$$

We claim that for every $n \in \mathbb{N}, d_{2 n}(t) \geq d_{2 n-1}(t)$. For if $d_{2 n}(t)<d_{2 n-1}(t)$ for some $n \in \mathbb{N}$, then since $d_{2 n}(t) . d_{2 n-1}(t) \geq d_{2 n}(t) . d_{2 n}(t)$ in inequality (2.1), we have

$$
d_{2 n}(t) \geq 1-k\left(1-\phi\left(d_{2 n}(t), d_{2 n}(t), d_{2 n}(t),\left(d_{2 n}(t)\right)^{2}, 1\right)\right)>1-k\left(1-d_{2 n}(t)\right)
$$

That is, $(1-k) d_{2 n}(t)>1-k$, a contradiction. Hence $d_{2 n}(t) \geq d_{2 n-1}(t)$ for every $n \in \mathbb{N}$ and $\forall t>0$. Similarly for $m=2 n+1$, we have $d_{2 n+1}(t) \geq d_{2 n}(t)$. Thus $\left\{d_{n}(t)\right\}$; is an increasing sequence in $[0,1]$.
By inequality (2.1) and $d_{n}(t)$ is an increasing sequence, we have

$$
\begin{aligned}
d_{2 n}(t) & \geq 1-k\left(1-\phi\left(d_{2 n-1}(t), d_{2 n-1}(t), d_{2 n-1}(t),\left(d_{2 n-1}(t)\right)^{2}, 1\right)\right) \\
& >1-k\left(1-d_{2 n-1}(t)\right)
\end{aligned}
$$

Similarly for an odd integer $m=2 n+1$ and $q=1$, we have $d_{2 n+1}(t) \geq$ $1-k\left(1-d_{2 n}(t)\right)$. Thus

$$
d_{n}(t) \geq 1-k\left(1-d_{n-1}(t)\right)
$$

That is,

$$
\begin{aligned}
M\left(y_{n}, y_{n+1}, t\right) & =d_{n}(t) \\
& \geq 1-k+k d_{n-1}(t) \\
& \geq \\
& \vdots \\
& \geq 1-k^{n}+k^{n} M\left(y_{0}, y_{1}, t\right) \\
& =1-k^{n}\left(1-M\left(y_{0}, y_{1}, t\right)\right)=1-k^{n} \alpha
\end{aligned}
$$

Hence by Lemma 1.11, $\left\{y_{n}\right\}$ is Cauchy and the completeness of $X,\left\{y_{n}\right\}$ converges to y in X. That is, $\lim _{n \rightarrow \infty} y_{n}=y$. Hence

$$
\begin{aligned}
\lim _{n \rightarrow \infty} y_{2 n} & =\lim _{n \rightarrow \infty} f x_{2 n}=\lim _{n \rightarrow \infty} T x_{2 n+1} \\
& =\lim _{n \rightarrow \infty} y_{2 n+1}=\lim _{n \rightarrow \infty} g x_{2 n+1}=\lim _{n \rightarrow \infty} S x_{2 n+2}=y
\end{aligned}
$$

Since the pairs (f, S) and (g, T) are compatible of type (γ), hence we have $f y=S y$ and $g y=T y$. Now, we prove that $f y=y$. By (ii) for $q=2$, we have

$$
\begin{aligned}
& M\left(f y, g x_{2 n+1}, t\right) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{ll}
M\left(S y, T x_{2 n+1}, t\right), & M(S y, f y, t), \\
M\left(T x_{2 n+1}, g x_{2 n+1}, t\right), & M\left(S y, g x_{2 n+1}, 2 t\right), \\
M\left(T x_{2 n+1}, f y, t\right)
\end{array}\right)\right) .
\end{aligned}
$$

By continuous M and ϕ, on making $n \longrightarrow \infty$ the above inequality, we get

$$
\begin{aligned}
& M(f y, y, t) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{cc}
M(S y, y, t), & M(S y, f y, t), \\
M(y, y, t), & M(S y, y, 2 t), \\
M(y, f y, t)
\end{array}\right)\right) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{l}
M(S y, y, t), 1,1, M(S y, y, t) * M(y, y, t), M(y, f y, t))) \\
= \\
> \\
\hline
\end{array} 1-k(1-\phi(M(f y, y, t), M(f y, y, t), M(f y, y, t), M(f y, y, t), M(f y, y, t)))\right.\right. \\
& 1-k M(f y, y, t)
\end{aligned}
$$

If $f y \neq y$, by above inequality we get $M(f y, y, t)>1$ which is contradiction. Hence $M(f y, y, t)=1$, i.e., $f y=y$. Thus $f y=S y=y$.

Similarly, we prove that $g y=y$. For

$$
\begin{aligned}
& M(y, g g, t) \\
= & M(f y, g y, t) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{ll}
M(S y, g y, t), & M(S y, f y, t), \\
M(T y, g y, t), & M(S y, g y, 2 t), \\
M(T y, f y, t)
\end{array}\right)\right) \\
\geq & 1-k(1-\phi(M(y, g y, t), 1,1, M(y, g y, t) * M(g y, y, t), 1)) \\
= & 1-k\left(1-\phi\left(M(y, g y, t), M(y, g y, t), M(y, g y, t), M^{2}(y, g y, t), 1\right)\right) \\
> & 1-k+k M(y, g y, t)
\end{aligned}
$$

We claim that $g y=y$. For if $g y \neq y$, then $M(y, g y, t)<1$. On the above inequality we get

$$
M(y, g y, t)>1
$$

a contradiction. Hence $f y=g y=S y=T y=y$. That is, y is a common fixed of f, g, S and T.

Uniqueness, let z be another common fixed point of f, g, S and T. Then $z=f z=g z=S z=T z$ and $M(z, y, t)<1$, hence for $q=2$, we have

$$
\begin{aligned}
& M(y, z, t) \\
& =M(f y, g z, t) \\
& \geq 1-k\left(1-\phi\left(\begin{array}{ll}
M(S y, T z, t), & M(S y, f y, t), \\
M(T z, g z, t), & M(S y, g z, 2 t), \\
M(T z, f y, t) &
\end{array}\right)\right. \\
& \geq 1-k(1-\phi(M(y, z, t), 1,1, M(y, z, t) * M(z, z, t), M(y, z, t))) \\
& =1-k(1-\phi(M(y, z, t), M(y, z, t), M(y, z, t), M(y, z, t), M(y, z, t))) \\
& >1-k+k M(y, z, t) \text {. }
\end{aligned}
$$

That is $M(y, z, t)>1$ is a contradiction. Therefore, y is the unique common fixed point of self-maps f, g, S and T.

Corollary 2.3. Let f, g, T, H, R and S be self-mappings of a complete fuzzy metric space $(X, M, *)$ satisfying conditions:
(i) $f(X) \subseteq T H(X), g(X) \subseteq S R(X)$,
(ii) there exists a number $k \in(0,1)$ such that

$$
\begin{aligned}
& M(f x, g y, t) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{ll}
M(S R x, T H y, t), & M(S R x, f x, t) \\
M(T H y, g y, t), & M(S R x, g y, q t) \\
M(T H y, f x,(3-q) t) &
\end{array}\right)\right)
\end{aligned}
$$

for every x, y in $X, q \in\{1,2\}, t>0$ and $\phi \in \Phi$,
(iii) the pairs $(f, S R)$ and $(g, T H)$ are be weak compatible of type (γ),
(iv) $T H=H T, f R=R f, g H=H g$ and $S R=R S$.

Then f, g, H, R, S and T have a unique common fixed point in X.
Proof. By Theorem $2.2, f, g, T H$ and $S R$ have a unique common fixed point in X. That is, there exists $y \in X$, such that $f(y)=g(y)=T H(y)=S R(y)=y$. We prove $R(y)=y$. By (ii), we get

$$
\begin{aligned}
& M(f R y, g y, t) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{ll}
M(S R R y, T H y, t), & M(S R R y, f R y, t), \\
M(T H y, g y, t), & M(S R R y, g y, q t), \\
M(T H y, f R y,(3-q) t)
\end{array}\right)\right.
\end{aligned}
$$

For $q=1$, we get

$$
\begin{aligned}
& M(R y, y, t) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{ll}
M(R y, y, t), & M(R y, R y, t) \\
M(y, y, t), & M(R y, y, t) \\
M(y, R y, 2 t)
\end{array}\right)\right) \\
= & 1-k(1-\phi(M(R y, y, t), 1,1, M(R y, y, t), M(y, R y, t))) \\
> & 1-k+k M(R y, y, t)
\end{aligned}
$$

Therefore it follows that $R y=y$. Hence $S(y)=S R(y)=y$. Similarly, we get $T(y)=H(y)=y$.

Corollary 2.4. Let S, T and two sequences $\left\{f_{i}\right\}$, $\left\{g_{j}\right\}$ for every $i, j \in \mathbb{N}$ be self-mappings of a complete fuzzy metric space $(X, M, *)$ satisfying conditions:
(i) there exists $i_{0}, j_{0} \in \mathbb{N}$ such that $f_{i_{0}}(X) \subseteq T(X), g_{j_{0}}(X) \subseteq S(X)$,
(ii) there exists a number $k \in(0,1)$ such that

$$
\begin{aligned}
& M\left(f_{i} x, g_{j} y, t\right) \\
\geq & 1-k\left(1-\phi\left(\begin{array}{ll}
M(S x, T y, t), & M\left(S x, f_{i} x, t\right), \\
M\left(T y, g_{j} y, t\right), & M\left(S x, g_{j} y, q t\right), \\
M\left(T y, f_{i} x,(3-q) t\right)
\end{array}\right.\right.
\end{aligned}
$$

for every x, y in $X, q \in\{1,2\}, t>0$ and $\phi \in \Phi$,
(iii) the pairs $\left(S, f_{i_{0}}\right)$ and $\left(g_{j_{0}}, T\right)$ are be weak compatible of type (γ).

Then S, T and $\left\{f_{i}\right\},\left\{g_{j}\right\}$ have a unique common fixed point in X for every $i, j=1,2, \cdots$.
Proof. By Theorem 2.2, S, T and $f_{i_{0}}$ and $g_{j_{0}}$ for some $i_{0}, j_{0} \in \mathbb{N}$, have a unique common fixed point in X. That is, there exists a unique $x \in X$ such that

$$
S(x)=T(x)=f_{i_{0}}(x)=g_{j_{0}}(x)=x .
$$

Suppose there exists $i \in \mathbb{N}$ such that $i \neq i_{0}$. Then we have

$$
\begin{aligned}
M\left(f_{i} x, x, t\right) & =M\left(f_{i} x, g_{j_{0}} x, t\right) \\
& \geq 1-k\left(1-\phi\left(\begin{array}{ll}
M(S x, T x, t), & M\left(S x, f_{i} x, t\right), \\
M\left(T x, g_{j 0} x, t\right), & M\left(S x, g_{j_{0}} x, q t\right), \\
M\left(T x, f_{i} x,(3-q) t\right) &
\end{array}\right) .\right.
\end{aligned}
$$

Hence for $q=2$, we get

$$
\begin{aligned}
M\left(f_{i} x, x, t\right) & \geq 1-k\left(1-\phi\left(\begin{array}{ll}
M(x, x, t), & M\left(x, f_{i} x, t\right), \\
M(x, x, t), & M(x, x, 2 t), \\
M\left(x, f_{i} x, t\right)
\end{array}\right)\right) \\
& \geq 1-k(1-\phi(d, d, d, d, d)) \\
& >1-k(1-d)
\end{aligned}
$$

it follows that $d=M\left(f_{i} x, x, t\right)>1$ which is a contradiction. Hence for every $i \in \mathbb{N}$ it follows that $f_{i} x=x$.

Similarly, for every $j \in \mathbb{N}$, we get $g_{j} x=x$. Therefore for every $i, j \in \mathbb{N}$ we have

$$
f_{i} x=g_{j} x=S x=T x=x .
$$

Corollary 2.5. Let f, g, S, T be self-mappings of a complete fuzzy metric space $(X, M, *)$ satisfying that
(i) $f(X) \subseteq T(X), g(X) \subseteq S(X)$,
(ii) there exists a number $k \in(0,1)$ such that

$$
\begin{aligned}
& M(f x, g y, t) \\
\geq & 1-k\left(1-\binom{a(t) M(S x, T y, t)-b(t) M(S x, f x, t)-c(t) M(T y, g y, t)}{-d(t)(M(S x, g y, q t) \cdot M(T y, f x,(3-q) t))^{1 / 2}}^{h}\right)
\end{aligned}
$$

for every x, y in $X, q \in\{1,2\}$, where $a, b, c, d: \mathbb{R}^{+} \longrightarrow[0,1]$, be four mappings such that $a(t)+b(t)+c(t)+d(t)=1$, for all $t>0$ some $0<h<1$ and $\phi \in \Phi$,
(iii) the pairs (f, S) and (g, T) are be weak compatible of type (γ).

Then f, g, S and T have a unique common fixed point in X.
Proof. It is enough in Theorem 2.2, define

$$
\phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(a(t) x_{1}+b(t) x_{2}+c(t) x_{3}+d(t)\left(x_{4} x_{5}\right)^{1 / 2}\right)^{h}
$$

where $a, b, c, d: \mathbb{R}^{+} \longrightarrow[0,1]$, be four mappings such that $a(t)+b(t)+c(t)+$ $d(t)=1$, for all $t>0$ and some $0<h<1$.
Corollary 2.6. Let f and g be self-mappings of a complete fuzzy metric space $(X, M, *)$ satisfying conditions:
(i) there exists a number $k \in(0,1)$ such that

$$
M(f x, g y, t) \geq 1-k\left(1-\phi\left(\begin{array}{ll}
M(x, y, t), & M(x, f x, t) \\
M(y, g y, t), & M(x, g y, q t) \\
M(y, f x,(3-q) t) &
\end{array}\right)\right.
$$

for every x, y in $X, q \in\{1,2\}, t>0$ and $\phi \in \Phi$.
Then f and g have a unique common fixed point in X.
Proof. It is enough in Theorem2.2, we set $S=T=I$, where I is identity map.

Corollary 2.7. Let f and g be self-mappings of a complete fuzzy metric space $(X, M, *)$ satisfying conditions:
(i) there exists a number $k \in(0,1)$ such that

$$
M\left(f^{n} x, g^{m} y, t\right) \geq 1-k\left(1-\phi\left(\begin{array}{ll}
M(x, y, t), & M\left(x, f^{n} x, t\right) \\
M\left(y, g^{m} y, t\right), & M\left(x, g^{m} y, q t\right), \\
M\left(y, f^{n} x,(3-q) t\right) &
\end{array}\right)\right.
$$

for every x, y in X, for some $n, m \in \mathbb{N}, q \in\{1,2\}, t>0$ and $\phi \in \Phi$. If $f^{n} g=g f^{n}$ and $g^{m} f=f g^{m}$, then f and g have a unique common fixed point in X.

Proof. By Corollary 2.6, f^{n} and g^{m} have a unique common fixed point in X. That is, there exists a unique $x \in X$ such that $f^{n}(x)=g^{m}(x)=x$. Since $g(x)=g\left(g^{m}(x)\right)=g^{m}(g(x))$ and $g(x)=g\left(f^{n}(x)\right)=f^{n}(g(x))$, i.e., $g(x)$ is fixed point for f^{n}, g^{m} hence $g(x)=x$. Similarly, since $f(x)=f\left(f^{n}(x)\right)=f^{n}(f(x))$ and $f(x)=f\left(g^{m}(x)\right)=g^{m}(f(x))$, i.e., $f(x)=g(x)=x$.

References

[1] MS. El Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals, 9(1998), 517-529.
[2] MS. El Naschie, A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals, 19(2004), 209-236.
[3] MS. El Naschie, On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment, Int J of Nonlinear Science and Numerical Simulation, 6(2005), 95-98.
[4] MS. El Naschie, The idealized quantum two-slit gedanken experiment revisited-Criticism and reinterpretation, Chaos, Solitons and Fractals, 27(2006), 9-13.
[5] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and Syst., 64(1994), 395-399.
[6] V. Gregori and A. Sapena, it On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Sys., 125(2002), 245-252
[7] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(1998), 227-238.
[8] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326-334.
[9] A. Razani and M. Shirdaryazdi, A common fixed point theorem of compatible maps in Menger space, Chaos, Solitons and Fractals, 32(2007), 26-34.
[10] J. Rodríguez López and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Sys., 147(2004), 273-283.
[11] D. Mihets, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Sys., 144(2004), 431-439.
[12] B. Schweizer, H. Sherwood and RM. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica 1(1988), 5-17.
[13] B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl., 301(2005), 439-448.
[14] R. Saadati and S. Sedghi, A common fixed point theorem for R-weakly commutiting maps in fuzzy metric spaces, $6^{\text {th }}$ Iranian Conference on Fuzzy Systems (2006), 387-391.
[15] B. Singh and S. Jain, A fixed point theorem in Menger space thought weak compatibility, J. Math. Anal. Appl., 301(2005), 439-448.
[16] Y. Tanaka, Y. Mizno and T. Kado, Chaotic dynamics in Friedmann equation, Chaos, Solitons and Fractals, 24(2005), 407-422.
[17] LA. Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338-353.

[^0]: ${ }^{0}$ Received January 4, 2007. Revised June 5, 2008.
 ${ }^{0} 2000$ Mathematics Subject Classification: $47 \mathrm{H} 10 ; 54 \mathrm{H} 25$.
 ${ }^{0}$ Keywords: Compatible of type (γ) maps, complete fuzzy metric space, implicit relation, common fixed point theorem.

