Nonlinear Functional Analysis and Applications
Vol. 14, No. 1 (2009), pp. 45-55

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright (© 2009 Kyungnam University Press

A COMMON FIXED POINT THEOREM OF
COMPATIBLE OF TYPE (y) MAPS IN COMPLETE
FUZZY METRIC SPACES

Shaban Sedghi!, Nabi Shobe? and Shahram Sedghi?

'Department of Mathematics, Islamic Azad University-Ghaemshahr Branch

Ghaemshahr P. O. Box 163, Iran
e-mail: sedghi_gh@yahoo.com

2Department of Mathematics, Islamic Azad University-Babol Branch

Ghaemshahr P. O. Box 163, Iran
e-mail: nabi_shobe@yahoo.com

3Department of Mechanical Engineering, Iran University of Science and Technology
Narmak, Tehran 16844, Iran
e-mail: shahramm sedghi@yahoo.com

Abstract. In this paper, we establish a common fixed point theorem of compatible of type

~v maps in complete fuzzy metric spaces.

1. INTRODUCTION AND PRELIMINARIES

The concept of fuzzy sets was introduced initially by Zadeh [17] in 1965.
Since then, to use this concept in topology and analysis many authors have
expansively developed the theory of fuzzy sets and application. George and
Veeramani [5] and Kramosil and Michalek [8] have introduced the concept of
fuzzy topological spaces induced by fuzzy metric which have very important
applications in quantum particle physics particularly in connections with both
string and €(>) theory which were given and studied by El Naschie 1, 2, 3,
4, 16]. Many authors [6, 11, 12] have proved fixed point theorem in fuzzy
(probabilistic) metric spaces.
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Definition 1.1. A binary operation « : [0,1] x [0,1] — [0, 1] is a continuous
t-norm if it satisfies the following conditions

(1) = is associative and commutative,

(2) * is continuous,

(3) ax1=aforalla€|0,1],

(4) a*b < cxd whenever a < c and b < d, for each a,b,c,d € [0, 1].

Two typical examples of continuous t-norm are a x b = ab and a x b =
min(a, b).

Definition 1.2. A 3-tuple (X, M, x) is called a fuzzy metric space if X is
an arbitrary (non-empty) set, * is a continuous t-norm, and M is a fuzzy set
on X? x (0,00), satisfying the following conditions for each x,y,z € X and
t,s >0,

(1) M(z,y,t) >0,

(2) M(xz,y,t) =1 1if and only if x =y,

(3) M(z,y,t) = M(y,ft t),

(4) M(z,y,t)*« M(y,z,8) < M(z,z,t+s),
(5) M(z,y,.): (0,00) — [0, 1] is continuous.

Let (X, M, *) be a fuzzy metric space. For ¢t > 0, the open ball B(z,r,t)
with center x € X and radius 0 < r < 1 is defined by

B(z,r,t)={ye X : M(x,y,t) >1—r}.

Let (X, M, «) be a fuzzy metric space. Let 7 be the set of all A C X with
z € A if and only if there exist ¢ > 0 and 0 < r < 1 such that B(z,r,t) C A.
Then 7 is a topology on X (induced by the fuzzy metric M). This topology is
Hausdorff and first countable. A sequence {z,} in X converges to z if and only
if M(xy,z,t) — 1 asn — oo, for each ¢ > 0. It is called a Cauchy sequence if
for each 0 < € < 1 and t > 0, there exits ng € N such that M (z,,, xm,t) > 1—¢
for each n,m > ng. The fuzzy metric space (X, M, *) is said to be complete if
every Cauchy sequence is convergent. A subset A of X is said to be F-bounded
if there exists ¢ > 0 and 0 < r < 1 such that M (z,y,t) > 1—r for all z,y € A.

Example 1.3. Let X = R. Denote a*b = a-b for all a,b € [0,1]. For each
€ (0,00), define
t
M(z,yt) = —
(@y1) = P
for all z,y € X.

Lemma 1.4. ([5]) Let (X, M, *) be a fuzzy metric space. Then M(z,y,t) is
non-decreasing with respect to t, for all x,y in X.
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Definition 1.5. Let (X, M,x*) be a fuzzy metric space. M is said to be
continuous on X2 x (0, 00) if

lim M(%n,yn,tn) = M(l‘,y,t)
n—00

Whenever a sequence { (2, Yn, tn)} in X2x (0, 00) converges to a point (x,y,t) €
X2 x (0,00) i.e.,

lim M(zp,x,t) = lim M(yp,y,t) =1 and lim M(z,y,t,) = M(x,y,t).
n—00 n—00

n—oo
Lemma 1.6. Let (X, M, *) be a fuzzy metric space. Then M is continuous
function on X2 x (0,00).
Proof. see proposition 1 of [10]. O
Definition 1.7. Let A and S be mappings from a fuzzy metric space (X, M, *)

into itself. Then the mappings are said to be weak compatible if they commute
at their coincidence point, that is, Az = Sz implies that ASxz = SAx.

Definition 1.8. Let A and S be mappings from a fuzzy metric space (X, M, *)
into itself. Then the mappings are said to be compatible if

lim M(ASx,, SAz,,t) =1,Vt >0

n—oo

whenever {z,,} is a sequence in X such that

lim Az, = lim Sz, =z € X.

n—oo n—oo

Definition 1.9. Let A and S be mappings from a fuzzy metric space (X, M, *)
into itself. Then the mappings are said to be weak compatible of type(y) if
Az, = Sx, = x implies that Az = Sz, for x € X.

Proposition 1.10. ([13])Let self-mappings A and S of a fuzzy metric space
(X, M, *) be compatible. Then they are weak compatible.

Throughout this section, a binary operation * : [0, 1] x [0,1] — [0,1] is a
continuous ¢-norm if it satisfies the condition ¢ *x s > ¢s.
Three examples of such a continuous ¢-norm are

a*xb=ab, a*b=min(a,b)

and
ab

b= — 2
“x max{a, b, a}

for all a,b € [0,1], where « € (0, 1].

Lemma 1.11. Let (X,M,*) be a fuzzy metric space. If sequence {x,} in X
exist such that for every n € N.

M(zp, xpny1,t) > 1 — k"«

for every 0 < k, a0 < 1, then sequence {x,} is a Cauchy sequence.
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Proof. For every m > n and zy,x, € X, we have
t t

M (zp, 2y, t) > M(wn,xnﬂ,m)*--~*M(xm_1,xm,m)
> M(xn,a:n_Fl,L).--- .M(ﬂzm_l,xm,;)
m-—n m-—n
> (1-k'q).(1-k"a).---.(1-k™1a)
> (1=ka)""
> 1—(m—n)k"«
> 1—e

The last inequality indeed by inequality Bernoli, and for every e € (0, 1) there
exists ng € N such that for every m > n > ng we get (m —n)k™a < e. Hence
sequence {z,} is Cauchy sequence. O

2. THE MAIN RESULTS

A class of implicit relation. Let ® be the set of all continuous functions
¢ : [0,1]°> — [0, 1], increasing in any coordinate and (s, s, s,s", s™) > s for
every s € [0,1) and n,m € {0, 1,2} such that n +m = 2.

Example 2.1. Let ¢ : [0,1]> — [0, 1] is define by

(i) ¢1(z1, 22, T3, T4, 25) = (min{xl,xg,mg, (m4x5)1/2})h for some 0 < h < 1.

(ii) ¢o(x1, T, 23, 24, 25) = (a(t)z1 + b(t)zo + c(t)x3 + d(t)(x425) /)" Where
a,b,c,d: Rt — [0, 1], be four mappings such that a(t)+b(t)+c(t)+d(t) = 1,
for all t > 0 and some 0 < h < 1.

(i) @s(x1, 72, 73, 24, 25) = a(t)zy + b(t)wa + c(t)zs + d(t)ay/* + e(t)zs/>
where a, b, c,d, e : RT — [0, 1], be five mappings such that a(t) +b(t) + c(t) +
d(t) +e(t) =1, for all t > 0.

Theorem 2.2. Let f,q,5,T be self-mappings of a complete fuzzy metric space
(X, M, x) satisfying that
(i) f(X) S T(X), g(X) C S(X),
(ii) there exists a number k € (0,1) such that
M(fz,gy,t)
M(Sz,Ty,t), M(Sz, fz,t),
> 1_k(1_¢ M(Tyagy7t)7 M(vagyaqt)7 )

for every x,y in X, g € {1,2},t >0 and ¢ € P,
(iii) the pairs (f,S) and (g,T) are be weak compatible of type (7).
Then f,g,S and T have a unique common fixed point in X.
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Proof. Let xg € X be an arbitrary point as f(X) C T'(X), g(X) C S(X), there
exist x1,x2 € X such that frg = Tx1, gr1 = Szs. Inductively, construct
sequence {y,} and {z,} in X such that yo, = fre, = TTont1, Yon+1 =
gTon+1 = STopto, forn=0,1,2,---.

Now, we prove {y,} is a Cauchy sequence. Let d;,,(t) = M (ypm, Ym+1,1t),t >
0 we prove {d,,(t)} is increasing w.r.t m. For m = 2n and ¢ = 2, we have

dan(t)
= M(y2n, Y2n+1,t

~—

= M (fxon, gTont1,t)

M(Swon, Twans1,t),  M(Sxon, fron,t),

> 1-k(1—-9¢ | M(Tz2n41,9%2n11,t), M(Sx2n,gTons1,2t), |)
M(Tl'Qn—&—la fona )
M (y2n—1,y2n,t), M (Y2n—1,Y2n,t),

= 1-k(1-¢| M2, v2n+1,t); M(Y2n-1,Y2n+1,2t), |)
M(y2n7 Yon, )
M (y2n—1,Y2n,t), M (Yan—1,Y2n, 1),

> 1 _k(l _(b M(y2n7y2n+1v )7 M(y2nflay2n7t) *M(y2nay2n+1>t)> )
M(an, Yon, )
M(an 1, Y2n, )7 M(yZn—lny’mt)y

Z 1- k(l - ¢ M(yQ’rL?an-‘rlv )7 M(yQTL—hyQ’VHt)'M(an?an-‘rlat)? )
M<y2’n7 Yon, )

= 1—k(1— ¢(don—1(t),don—1(t),dan(t), don—1(t).don(t),1)).
Hence
don(t) > 1 — k(1 — ¢(dan—1(t),dan—1(t), don(t), dan—1(t).d2n(t),1)). (2.

We claim that for every n € N, da,(t) > dan—1(t). For if da,(t) < dop—1(
for some n € N, then since da,(t).dop—1(t) > dop(t).d2n(t) in inequality (2.1
we have

1)
t)
);

dan(t) 2 1= k(1 = ¢(dan(t), dan(t), d2n(t), (d2n(t))2= 1)) > 1 = k(1 — dan(1)).

That is, (1 — k)da,(t) > 1 — k, a contradiction. Hence da,,(t) > da,—1(t) for
every n € N and V¢t > 0. Similarly for m = 2n + 1, we have da,+1(t) > da, ().
Thus {d,(t)}; is an increasing sequence in [0, 1].

By inequality (2.1) and d,(¢) is an increasing sequence, we have

don(t) 2 1= k(1= d(dan—1(t), dan—1(1), dan—1(1), (don—1(t))? 1))
> 1 - /{(1 — dgn_l(t)).



50 Shaban Sedghi, Nabi Shobe and Shahram Sedghi

Similarly for an odd integer m = 2n + 1 and ¢ = 1, we have da,11(t) >
1 — k(1 —dan(t)). Thus

dn(t) > 1 — k(1 = dni(8).
That is,

M(yna Yn+1, t) = dn(t)
1~k + kdnr (1)

(AVARYS

1—K"+ an(Z/O?Z/ht)
= 1-k"(1—-M(yo,y1,t)) =1— k"

Hence by Lemma 1.11, {y,} is Cauchy and the completeness of X, {y,} con-
verges to y in X. That is, lim,, . ¥y = y. Hence

lim yo, = lim fxg, = lim Txon41
n—oo n—oo n—oo

= lim yop4+1 = lim gxopy1 = lim Szonio =y.
n—oo n—oo n—od

Since the pairs (f,S) and (g,T") are compatible of type (), hence we have
fy = Sy and gy = T'y. Now, we prove that fy =y. By (ii) for ¢ = 2, we have

M(fy7 gTon+1, t)
M(SyaTx2n+1at)7 M(Syafya t)7
> 1-—- k(]- - ¢ M(T$2n+1>gx2n+17t)v M(Syag$2n+1>2t)> )
M(T:E2n+1> fya t)

By continuous M and ¢, on making n — oo the above inequality, we get

M(fy,y,t)
M(Sy,y,t), M(Sy, fy,t),
1_k(1_¢ M<y7y7t)a M(Syvya2t)a )
M(y, fy,t)
1= k(1 —o(M(fy,y,t), M(fy,y,t), M(fy,y,t), M(fy,y,t), M(fy,y,1)))
> 1—k+EM(fy,y,t).

Y

If fy # y, by above inequality we get M (fy,y,t) > 1 which is contradiction.
Hence M (fy,y,t) =1, i.e., fy =y. Thus fy =Sy =y.
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Similarly, we prove that gy = y. For

M(y, gg,t)
= M(fy,gy,t)

M(Sy,gy,t), M(Sy, fy.t),
1_k(1_¢ M(Tya.g?%t)a M(Syagy¢2t)> )
M(Ty, fy,t)

1—k(1—0¢( M(y,gy,t),1,1, M(y, gy, t) * M(gy,y,t),1))

= 1- k(l - ¢(M(yagy7t)>M(y7gy7t)aM(yvgy7t)7M2(yagy7t)v 1))
> 1—k+EkEM(y,gy,t).

v

We claim that gy = y. For if gy # y, then M(y,gy,t) < 1. On the above
inequality we get

M(y, gy,t) > 1

a contradiction. Hence fy = gy = Sy = Ty = y. That is, y is a common fixed
of f,g,5 and T.

Uniqueness, let z be another common fixed point of f, g, S andT. Then
z=fz=gz=Sz=Tzand M(z,y,t) < 1, hence for ¢ = 2, we have

M(y, 2,t)
= M(fy, gz, 1)
M(Sy,Tz,t), M(Sy, fy,t),
> 1-k(l—9¢ | M(Tzygz1t), M(Sy,gz2t), |)
M(Tz, fy,t)
1- k(]' - d)( M(y,Z,t),l,l,M(y,Z,t) *M(z7z7t)7M<yvzat) ))
= 1- k(l - ¢(M(y7 Z7t)7 M(y7 th)a M(y7 Z,t), M(y7 th)a M(y7 Z7t)))
> 1—k+kM(y,z,t).

That is M (y, z,t) > 1 is a contradiction. Therefore, y is the unique common
fixed point of self-maps f,g,S and 7. O

Corollary 2.3. Let f,g,T,H, R and S be self-mappings of a complete fuzzy
metric space (X, M, *) satisfying conditions:

(i) f(X) CTH(X), g(X) S SR(X),
(i) there exists a number k € (0,1) such that
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M(fz,gy,t)
M(SRx,THy,t), M(SRz, fz,t),
> 1-k(1-9¢| M(THy,gy,t), M(SRz,gy,qt), |)
M(THy, fx,(3 - q)t)

for every x,y in X, g € {1,2},t >0 and ¢ € P,
(iii) the pairs (f,SR) and (g,TH) are be weak compatible of type (),
(ivy TH=HT,fR=Rf,gH = Hg and SR = RS.
Then f,g9,H,R,S and T have a unique common fized point in X.

Proof. By Theorem 2.2, f, g, TH and SR have a unique common fixed point in
X. That is, there exists y € X, such that f(y) =g(y) =TH(y) = SR(y) =
We prove R(y) = y. By (ii), we get

M (fRy,gy,t)
M(SRRy,THy,t), M(SRRy, fRy,t),
> 1-k(1-9¢ | M(THy,gy,t), M(SRRy, gy, qt), |)-
M(THy, fRy, (3 — q)t)

For ¢ =1, we get

M(Ry,y,1)
M(Ry,y,t), Ry, Ry,
M (y, Ry, 2t)

= 1_k(1_¢(M(Ry7y7 )alalvM(Ry yv aMvayv ))
> 1—k+EkEM(Ry,y,t).
Therefore it follows that Ry = y. Hence S(y) = SR(y) = y. Similarly, we get
T(y)=H(y) =y. O
Corollary 2.4. Let S,T and two sequences {f;}, {g;} for every i,j € N be
self-mappings of a complete fuzzy metric space (X, M, ) satisfying conditions:
(i) there exists ig,jo € N such that f;(X) C T(X), gj,(X) C S(X),
(ii) there exists a number k € (0,1) such that
M(fz.%', 95Y, t)
M(Sz,Ty,t), M(Sz, fiz,t),
> 1_k(1_¢ M(Tyag]yat)’ M(Sxag]yaqt)) )
M(Ty, fiz, (3 — q)t)

for every x,y in X, g€ {1,2},t >0 and ¢ € P,
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(iii) the pairs (S, fi,) and (g;,,T) are be weak compatible of type ().
Then S, T and {fi},{g;} have a unique common fized point in X for every
i i=1,2,--.

Proof. By Theorem 2.2, S,T and f;, and g, for some iy, jo € N, have a
unique common fixed point in X. That is, there exists a unique x € X such
that

S(w) - T(.’L‘) - fzo(x) - gjo(x) =2
Suppose there exists ¢ € N such that ¢ # ig. Then we have
M(fl-ra z, t) = M(flxa Gjo s t)
M(Sx,Tx,t), M(Sz, fiz,t),
> 1—-k(l—9¢ | M(Tz,gjx,t), M(Sx,gjyx,qt), |).
M(Tx, fiz, (3 —q)t)
Hence for ¢ = 2, we get
M(.’L’,J},t), M(:If'7 iwat)a
M(fil‘,l‘,t) > 1_k(1_¢ M(.’L’,I‘,t), M(.’L’,l‘,2t>, )
M(.%', fixa t)
1- k(l - ¢(d7 da d’ d? d))
1—k(1—4d)
it follows that d = M(fiz,z,t) > 1 which is a contradiction. Hence for every
i € N it follows that f;z = x.

Similarly, for every j € N, we get gjz = x. Therefore for every i,j € N we
have

2
>

fix =gjx =Sz =Tzr = x.
Il

Corollary 2.5. Let f, g, S, T be self-mappings of a complete fuzzy metric
space (X, M, x) satisfying that
(i) f(X) CT(X), g(X) € 5(X),
(ii) there exists a number k € (0,1) such that
M(fx,gy,t)

1= k(1 — ( a(t)M(Sz, Ty,t) — b(t)M(Sz, fx,t) — c(t)M(Ty, gy, t) >h)
—d(t)(M (S, gy, qt). M (Ty, fz, (3 — q)t))'/?

for every z,y in X, q € {1,2}, where a,b,c,d : RT — [0,1], be four
mappings such that a(t) + b(t) + c(t) + d(t) = 1, for all t > 0 some
0< h< 1and ¢ € ®,

(iii) the pairs (f,S) and (g,T) are be weak compatible of type (7).

v
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Then f,g,S and T have a unique common fixed point in X.
Proof. 1t is enough in Theorem 2.2, define
d(x1, 9, 3, 4, 75) = (a(t)z1 + b(t)x2 + c(t)x3 + d(t)(x4x5)1/2)h,

where a,b, c¢,d : Rt — [0, 1], be four mappings such that a(t) + b(t) + c(t) +
d(t) =1, for all £ > 0 and some 0 < h < 1. O

Corollary 2.6. Let f and g be self-mappings of a complete fuzzy metric space
(X, M, x) satisfying conditions:
(i) there exists a number k € (0,1) such that

M($7y7t)’ M(x7fx7 t)?
M(fx,gy,t) > 1—-k(1—9¢ | M(y,gy,t), M(z,gy,qt), |)
M(yv fxv (3 - Q)t)

for every z,y in X, g € {1,2},t >0 and ¢ € ®.
Then f and g have a unique common fized point in X.

Proof. Tt is enough in Theorem2.2, we set S = T = I, where [ is identity
map. O

Corollary 2.7. Let f and g be self-mappings of a complete fuzzy metric space
(X, M, ) satisfying conditions:
(i)there exists a number k € (0,1) such that

M("'U7 y7 t)’ M(‘,I:’ fnx7 t)?

M(y, fz, (3 — q)t)

for every x,y in X, for some n,m € N, g € {1,2},t >0 and ¢ € .
If f'g = gf™ and g™ f = fg™, then f and g have a unique common fized point
m X.

Proof. By Corollary 2.6, f™ and g™ have a unique common fixed point in X.
That is, there exists a unique z € X such that f"(x) = ¢"(z) = =. Since
9(z) = g(g™(x)) = g™ (g(x)) and g(x) = g(f"(x)) = ["(g(2)), L.e., g(x) is fixed
point for f™, ¢ hence g(x) = z. Similarly, since f(z) = f(f"(x)) = f*(f(z))
and f(z) = f(¢g"(x)) = g"(f(2)), e, f(x) = g(x) = 2. O
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