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Abstract. Recently the author studied a one-parameter family of divergences and con-

sidered the related median minimization problem of finite points over these divergences in

general symmetric cones. In this article, to utilize the results practically, we deal with a

special symmetric cone called second order cone, which is important in optimization fields.

To be more specific, concrete computations of divergences with its gradients and the unique

minimizer of the median minimization problem of two points are provided skillfully.

1. Divergence and Median

A divergence, which measures discrepancy between two points, plays a cru-
cial role in many problems such as information theory, statistics, optimization,
computational vision, and neural networks [1, 2, 3]. A divergence Φ on the
Riemannian manifold M is a real valued function Φ : M ×M → R which
satisfies

(D1) Φ(a, b) ≥ 0 for all a, b ∈M with equality if and only if a = b;
(D2) the first derivative DΦ with respect to the second variable vanishes on

the diagonal;
DΦ(a, x)|x=a = 0,

(D3) its Hessian is positive definite on the diagonal;

D2Φ(a, x)|x=a(y, y) ≥ 0 for all a ∈ Ω, y ∈ V. (1.1)
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The most familiar examples include Kullback-Leibler divergence defined
between two probability distributions, Bregman divergence in optimization
and signal processing, etc. Indeed, a divergence is almost a distance function
except the symmetry with respect to its arguments and the triangle inequality.
For instance, the square of a distance function is a (symmetric) divergence.
Thus a divergence Φ gives rise to an important optimization problem on the
Riemannian manifold M :

arg min
x∈M

m∑
j=1

wjΦ(aj , x), (1.2)

where a1, . . . , am ∈ M and ω = (w1, . . . , wm) ∈ Rm is a positive probability
vector. This minimization problem looks like a lease square problem in some
sense. So a minimizer whenever it exists provides alternatively a barycenter
or averaging on M, which is called the ω-weighted Φ-median of a1, . . . , am.

In a recent work [10], this median optimization problem on a special Rie-
mannian manifold called symmetric cones is studied. The main result in [10]
is briefly summarized as follow: Let V be a Euclidean Jordan algebra and let
Ω be the symmetric cone (see section 2 for basic facts regarding Euclidean
Jordan algebras and symmetric cones). Consider the function Φt : Ω×Ω→ R
is defined by

Φt(a, b) = tr ((1− t)a+ tb)− tr
(
P (a

1−t
2t )b

)t
, 0 < t < 1 (1.3)

where tr is the trace functional and P is the quadratic representation of V .
Then we have:

Theorem 1.1. ([10]) For every 0 < t < 1, Φt is a divergence on Ω. Moreover,
for every m-tuple t = (t1, . . . , tm) ∈ (0, 1)m, the minimization problem:

arg min
x∈Ω

m∑
j=1

wjΦtj (aj , x) (1.4)

has a unique minimizer. For the case t := t1 = t2 = · · · = tm, (1.4) reduces to
(1.2).

Besides, the following gradient formula is also derived:

∇xΦt(a, x) = t
(
e−

(
a

1−t
t #1−tx

−1
))

. (1.5)

(See (2.3) for the definition of (1.5).) A meaningful reason to take the di-
vergence (1.3) into account comes from the followings: The term Ft(a, b) =

tr
(
P (a

1−t
2t )b

)t
in (1.3) is known as sandwiched quasi-relative entropy in the
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theory of quantum information; for positive (semi)definite matrices A and B,

Ft(A,B) = tr
(
A

1−t
2t BA

1−t
2t

)t
, t ∈ (0, 1). (1.6)

This is a parameterized version of the fidelity F 1
2
(A,B) = tr

(
A

1
2BA

1
2

) 1
2
. Fi-

delity and sandwiched quasi-relative entropies play an essential role in quan-
tum information theory and quantum computation [6, 14, 15, 16]. In addition,
the Bures distance in quantum information is defined by

dW (A,B) =

[
tr(A+B)

2
− tr

(
A

1
2BA

1
2

) 1
2

] 1
2

,

which is also known as the Wasserstein distance in statistics and the theory of
optimal transport [5, 8, 12]. Clearly, d2

W (A,B) = Φ 1
2
(A,B). This implies that

the divergence (1.3) may have a rich background in various areas mentioned
above.

2. Euclidean Jordan algebras and symmetric cones

Before stating the motivation of this work, first we briefly describe (follow-
ing mostly [7], [10]) some Jordan-algebraic concepts relevant to our purpose. A
Jordan algebra V over R is a commutative algebra satisfying x2(xy) = x(x2y)
for all x, y ∈ V. For x ∈ V, let L(x) be the linear operator defined by
L(x)y = xy, and let P (x) = 2L(x)2−L(x2). The map P is called the quadratic
representation of V. An element x ∈ V is said to be invertible if there exists
an element y (denoted by y = x−1) in the subalgebra generated by x and e
(the Jordan identity) such that xy = e. In this case, P (x)−1 = P (x−1) [7,
Proposition II.3.1].

An element c ∈ V is called an idempotent if c2 = c 6= 0. We say that
c1, . . . , ck is a complete system of orthogonal idempotents if c2

i = ci, cicj =
0, i 6= j, c1 + · · ·+ck = e. An idempotent is said to be primitive if it is non-zero
and cannot be written as the sum of two non-zero idempotents. A Jordan
frame is a complete system of orthogonal primitive idempotents.

A finite-dimensional Jordan algebra V with an identity element e is said to
be Euclidean if there exists an inner product 〈·, ·〉 such that 〈xy, z〉 = 〈y, xz〉
for all x, y, z ∈ V.

Theorem 2.1. (Spectral theorem, first version [7, Theorem III.1.1]) Let V be a
Euclidean Jordan algebra. Then for x ∈ V, there exist real numbers λ1, . . . , λk
all distinct and a unique complete system of orthogonal idempotents c1, . . . , ck
such that

x =

k∑
i=1

λici. (2.1)
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The numbers λi are called the eigenvalues and (2.1) is called the spectral de-
composition of x.

Theorem 2.2. (Spectral theorem, second version [7, Theorem III.1.2]) Any
two Jordan frames in a Euclidean Jordan algebra V have the same number of
elements (called the rank of V , denoted by rank(V )). Given x ∈ V, there exists
a Jordan frame c1, . . . , cr and real numbers λ1, . . . , λr such that

x =
r∑
i=1

λici.

The numbers λi (with their multiplicities) are uniquely determined by x.

Definition 2.3. Let V be a Euclidean Jordan algebra of rank(V ) = r. The
spectral mapping λ : V → Rr is defined by λ(x) = (λ1(x), . . . , λr(x)), where
λi(x)’s are eigenvalues of x (with multiplicities) as in Theorem 2.2 in non-
increasing order λmax(x) = λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) = λmin(x). Further-
more, det(x) =

∏r
i=1 λi(x) and tr(x) =

∑r
i=1 λi(x).

Let Q be the set of all square elements of V. Then Q is a closed convex cone
of V with Q ∩ −Q = {0}, and is the set of elements x ∈ V such that L(x) is
positive semi-definite. It turns out that Q has non-empty interior Ω := int(Q),
and Ω is a symmetric cone, that is, the group G(Ω) = {g ∈ GL(V ) | g(Ω) = Ω}
acts transitively on it and Ω is a self-dual cone with respect to the inner product
〈·, ·〉 (see [7]). Note that Ω = {x ∈ V | λi(x) ≥ 0, i = 1, . . . , r}.

On the other hand, the symmetric cone Ω in V admits a G(Ω)-invariant
Riemannian metric defined by

〈u, v〉x = 〈P (x)−1u, v〉, x ∈ Ω, u, v ∈ V. (2.2)

So Ω is a Riemannian manifold [7]. It is shown in [11, Proposition 2.6] that
the unique geodesic joining a and b is

t 7→ a#tb := P (a1/2)(P (a−1/2)b)t, (2.3)

where at =
∑r

j=1 λj(a)tcj for the spectral decomposition a =
∑r

j=1 λj(a)cj in
Theorem 2.2. The geometric mean of a and b is defined to be a#b := a#1/2b,
which is a unique geodesic middle between a and b.

3. Motivation

To utilize Theorem 1.1 practically, it is necessary to consider more tangible
settings. To this end, we pay attention to the typical symmetric cones in
optimization fields.
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• The Euclidean space of all symmetric matrices of fixed size with the Jordan
product X ◦ Y := (1/2)(XY + Y X) and the trace inner product is a stan-
dard example of Euclidean Jordan algebra. In this case, the corresponding
symmetric cone Ω is the cone of positive definite matrices Pn.

• The Euclidean space Rn (as column vectors) with the Jordan product defined
by

x ◦ y = (〈x, y〉, x1y2 + y1x2)

is a Euclidean Jordan algebra equipped with the standard inner product 〈·, ·〉
where x = (x1, x2), y = (y1, y2) ∈ R × Rn−1. In this case, the corresponding
symmetric cone is the second order cone (simply, SOC)

K :=
{

(x1, x2) ∈ R× Rn−1 | ‖x2‖ < x1

}
.

After getting Theorem 1.1, it is natural to raise the question: What is the
unique minimizer? In other words, can we obtain an explicit formula of the
minimizer? In fact, any closed form of it is not provided yet except the special
case for m = 2 and t1 = t2 = 1/2. The formula on the general symmetric cone
Ω is derived in [10] as follow:

Theorem 3.1. ([10]) Let a, b ∈ Ω and 0 < s < 1. Then the unique minimizer
of (1.4) is

W 1
2
(1− s, s; a, b) = P

(
s(a−1#b) + (1− s)e

)
a

= P (a−1/2)
(

(1− s)a+ s(P (a1/2)b)1/2
)2
.

Indeed, in the case of Pn, the formula is already computed in [4] as

W 1
2
(1− s, s;A,B) = (1− s)2A+ s2B + s(1− s)[(AB)1/2 + (BA)1/2]. (3.1)

Especially, when s = 1/2, we call it the Wasserstein mean (or barycenter) of
A and B.

Then how about the second order cone case? What is the Wasserstein-type
barycenter (or mean) of a and b, that is, the Φ1/2-median of a and b in K? In
addition, what are the divergence (1.3) and its gradient? (Gradients are crucial
for numerical implementations.) These questions are direct motivations of this
article. In general, a concrete computation of the minimizer is not so simple
even in the case of SOC.

In the next section, we deal with those questions and provide explicit for-
mulas skillfully.



654 Sangho Kum

4. Second order cones

Note that for each x = (x1, x2) ∈ R× Rn−1, the eigenvalues of x are given
by

λi(x) = x1 + (−1)i‖x2‖, i = 1, 2.

Hence the determinant and the trace of x are written as

det(x) = x2
1 − ‖x2‖2, tr(x) = 2x1.

In addition, x is said to be invertible if det(x) 6= 0. In this case, x has a
unique inverse y in the sense that x ◦ y = y ◦ x = e where e = (1, 0, · · · , 0)
is the unit element of the Euclidean Jordan algebra V = (Rn, ◦). In fact, we
have

y = x−1 =
1

x2
1 − ‖x2‖2

(x1,−x2) =
1

det(x)
(x1,−x2). (4.1)

Moreover, for x ∈ K, there exists a unique x1/2 ∈ K represented by

x1/2 =

(
κ,

x2

2κ

)
where κ =

√(
x1 +

√
det(x)

)
/2. (4.2)

From the definition of Jordan product, it is seen [13] that

L(x) =

(
x1 xT2
x2 x1I

)
and P (x) =

(
‖x‖2 2x1x

T
2

2x1x2 det(x)I + 2x2x
T
2

)
. (4.3)

Lemma 4.1. For a = (a1, a2) (a2 6= 0) ∈ K,

P (a
1
2 ) =

(
a1 aT2

a2

√
det(a)I +

(
a1 −

√
det(a)

)
a2aT2
‖a2‖2

)
. (4.4)

Thus, for x ∈ K,

P (a
1
2 )x =

 〈a, x〉√
det(a)x2 +

(
x1 +

(
a1 −

√
det(a)

)
〈a2, x2〉
‖a2‖2

)
a2

 . (4.5)

Proof. By (4.2) and (4.3), we get

P (a
1
2 ) =

(
‖a

1
2 ‖2 aT2

a2

√
det(a)I +

a2aT2
2κ2

)

=

‖a 1
2 ‖2 aT2

a2

√
det(a)I +

a2aT2
a1+
√

det(a)


=

(
‖a

1
2 ‖2 aT2

a2

√
det(a)I +

(
a1 −

√
det(a)

)
a2aT2
‖a2‖2

)
.



Computation of divergences and medians in second order cones 655

Also

‖a
1
2 ‖2 = s2 +

‖a2‖2

4κ2

=
a1 +

√
det(a)

2
+

‖a2‖2

2(a1 +
√

det(a))

=
(a1 +

√
det(a))2 + ‖a2‖2

2(a1 +
√

det(a))
= a1.

This completes the proof. �

In the following lemma, we introduce a simple but clever way to get the

formula of λi

(
P (a

1
2 )x
)

without a direct computation.

Lemma 4.2. For a = (a1, a2)(a2 6= 0) ∈ K and x ∈ K,

λi

(
P (a

1
2 )x
)

= 〈a, x〉+ (−1)i
√
〈a, x〉2 − det(a)det(x), i = 1, 2. (4.6)

Proof. By the definition of eigenvalues, (4.5) and [7, Proposition III.4.2], we
have

λ1

(
P (a

1
2 )x
)

+ λ2

(
P (a

1
2 )x
)

= 2 〈a, x〉,

λ1

(
P (a

1
2 )x
)
· λ2

(
P (a

1
2 )x
)

= det
(
P (a

1
2 )x
)

=
(

det(a
1
2 )
)2

det(x)

= det(a)det(x).

This implies that λ1 and λ2 are solutions of the elementary quadratic equation:

t2 − 2 〈a, x〉t+ det(a)det(x) = 0.

This yields the conclusion. �

Remark 4.3. Since for i = 1, 2,

λi

(
P (a

1
2 )x
)

= 〈a, x〉

+ (−1)i
∥∥∥∥√det(a)x2+

(
x1+

(
a1−

√
det(a)

) 〈a2, x2〉
‖a2‖2

)
a2

∥∥∥∥ ,
it follows from Lemma 4.2 that∥∥∥∥√det(a)x2 +

(
x1 +

(
a1 −

√
det(a)

) 〈a2, x2〉
‖a2‖2

)
a2

∥∥∥∥=√〈a, x〉2 − det(a)det(x).

Actually, this can be checked by a rather long calculation.
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Theorem 4.4. For a ∈ K and x ∈ K,

λi

(
P (a

1
2 )x
)

= 〈a, x〉+ (−1)i
√
〈a, x〉2 − det(a)det(x), i = 1, 2.

Proof. By Lemma 4.2, we have only to check the case a2 = 0. Indeed, by (4.2)
and (4.3) with the proof of Lemma 4.1, we get

P (a
1
2 ) = a1I, P (a

1
2 )x = a1x =

(
〈a, x〉
a1x2

)
. (4.7)

So, for i = 1, 2,

λi

(
P (a

1
2 )x
)

= 〈a, x〉+ (−1)i‖a1x2‖

= 〈a, x〉+ (−1)i
√
a2

1x
2
1 − (a2

1 − 0)(x2
1 − ‖x2‖2)

= 〈a, x〉+ (−1)i
√
〈a, x〉2 − det(a)det(x).

This completes the proof. �

As a direct consequence, we obtain

Corollary 4.5. For t = 1/2 and a ∈ K, the map Φ 1
2
(a, ·) : K → R

Φ 1
2
(a, x) =

1

2
tr (a+ x)− tr

(
P (a

1
2 )x
) 1

2

= a1 + x1 −
(
〈a, x〉+

√
〈a, x〉2 − det(a)det(x)

) 1
2

−
(
〈a, x〉 −

√
〈a, x〉2 − det(a)det(x)

) 1
2

= a1 + x1 −
√

2

(
〈a, x〉+

√
det(a)det(x)

) 1
2

.

Proof. The second equality immediately comes from Theorem 4.4 and the third

one follows from (4.2) and the fact that the first coordinate of P (a
1
2 )x is 〈a, x〉

(see (4.5) and (4.7)) and det
(
P (a

1
2 )x
)

= det(a)det(x) by [7, Proposition

III.4.2]. �

For an estimation of the gradient ∇xΦ 1
2
(a, x) as a particular case of (1.5),

we adopt (6.7) in [9]:

a#b = a# 1
2
b =

1√
2
√
αβ + a1b1 − 〈a2, b2〉

(
βa1 + αb1
αb2 + βa2

)
, (4.8)
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where a = (a1, a2), b = (b1, b2) ∈ R × Rn−1 and α =
√

det(a), β =
√

det(b).
Then we obtain the following from this and (1.5).

Theorem 4.6. For a, x ∈ K, we have

∇xΦ 1
2
(a, x) =

1

2
(e− a#x−1)

=
1

2

e− 1
√

2
√
〈a, x〉+

√
det(a)det(x)

(
a+

√
det(a)det(x)x−1

) .

Proof. By (4.8)and (4.1), we have

a#x−1 =
1

√
2

√√
det(a)
det(x) + a1 · x1

det(x) − 〈a2,
−x2

det(x)〉

 a1√
det(x)

+

√
det(a)

det(x) x1

a2√
det(x)

−
√

det(a)

det(x) x2


=

1

√
2

√√
det(a)
det(x) + 〈a,x〉

det(x)

· 1

det(x)

(√
det(x)a1 +

√
det(a)x1√

det(x)a2 −
√

det(a)x2

)

=
1

√
2
√√

det(a)det(x) + 〈a, x〉
· (a+

√
det(a)det(x)x−1).

This completes the proof. �

Remark 4.7. By the third equality of Corollary 4.5, Theorem 4.6 is rephrased
as

∇xΦ 1
2
(a, x) =

1

2

e− 1

tr
(
P (a

1
2 )x
) 1

2

[
a+ det

(
P (a

1
2 )x
) 1

2
x−1

] .

Let’s go back to Theorem 3.1 and compute the unique minimizer for the
case of SOC in comparison to (3.1).

Theorem 4.8. Let a, b ∈ K and 0 < s < 1. Then the unique minimizer of
(1.4) is

W 1
2
(1− s, s; a, b) = P (a−1/2)

(
(1− s)a+ s(P (a1/2)b)1/2

)2

= (1− s)2a+ s2b+
s(1− s)

κ
(ab+

√
det(a)det(b) e).



658 Sangho Kum

Proof. We first expand the term(
(1−s)a+ s(P (a

1
2 )b)

1
2

)2
= (1−s)2a2 + s2P (a

1
2 )b+ 2(1−s)s [(P (a

1
2 )b)

1
2 a].

Hence, letting α = 2(1− s)s,

P (a−1/2)
(

(1− s)a+ s(P (a1/2)b)1/2
)2

= (1− s)2a+ s2b+ αP (a−1/2)[(P (a1/2)b)1/2 a]. (4.9)

Case 1. a2 6= 0.

By (4.2) and (4.5), we have

(P (a1/2)b)1/2 =
(
κ,

x2

2κ

)
(4.10)

where

κ =

(
〈a, b〉+

√
det(a)det(b)

2

)1/2

and

x2 =
√

det(a)b2 +

(
b1 +

(
a1 −

√
det(a)

) 〈a2, b2〉
‖a2‖2

)
a2. (4.11)

Thus

(P (a1/2)b)1/2a =

(
〈a, (P (a1/2)b)1/2〉

a1
2κx2 + κa2

)
.

Appealing to (4.1) and (4.4) yields that

P (a−1/2) =
1

det(a)

(
a1 −aT2
−a2

√
det(a)I +

(
a1 −

√
det(a)

)
a2aT2
‖a2‖2

)
. (4.12)

So

P (a−
1
2 )[(P (a

1
2 )b)

1
2a] =

1

det(a)

(
a1 −aT2
−a2

√
det(a)I +

(
a1 −

√
det(a)

)
a2aT2
‖a2‖2

)

×
(
〈a, (P (a

1
2 )b)

1
2 〉

a1
2κx2 + κa2

)
.

The first coordinate of the above vector is

1

det(a)

[
a1

(
a1κ+

〈a2, x2〉
2κ

)
− a1

2κ
〈a2, x2〉 − κ‖a2‖2

]
=

κ

det(a)
(a2

1 − ‖a2‖2)

= κ.
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The other is

1

det(a)

[
−
(
a1κ+

〈a2, x2〉
2κ

)
a2 +

a1

√
det(a)

2κ
x2

]

+
1

det(a)

[
(a1 −

√
det(a))

‖a2‖2
· a1〈a2, x2〉

2κ
a2 + κa1a2

]

=
1

det(a)

[
a1

√
det(a)

2κ
x2 +

〈a2, x2〉
2κ

(
a1(a1 −

√
det(a))

‖a2‖2
− 1

)
a2

]

=
1

det(a)

[
a1

√
det(a)

2κ
x2 +

〈a2, x2〉
2κ

·
det(a)− a1

√
det(a)

‖a2‖2
a2

]

=
1

2κ
√

det(a)

[
a1x2 − 〈a2, x2〉 ·

a1 −
√

det(a)

‖a2‖2
a2

]
.

Therefore

P (a−
1
2 )[(P (a

1
2 )b)

1
2a] =

 κ

1

2κ
√

det(a)

[
a1x2 − 〈a2, x2〉 ·

a1−
√

det(a)

‖a2‖2 a2

] .(4.13)

Moreover, by (4.11),

〈a2, x2〉 = b1‖a2‖2 + a1〈a2, b2〉.

Hence

〈a2, x2〉 ·
a1 −

√
det(a)

‖a2‖2
= (a1 −

√
det(a))

(
b1 +

〈a2b2〉
‖a2‖2

a1

)
,

and

a1x2 − 〈a2, x2〉 ·
a1 −

√
det(a)

‖a2‖2
a2

=

[
a1b1 +

a1(a1 −
√

det(a))

‖a2‖2
〈a2, x2〉

−(a1 −
√

det(a))

(
b1 +

〈a2, b2〉
‖a2‖2

a1

)]
a2 + a1

√
det(a)b2

= b1
√

det(a)a2 + a1

√
det(a)b2

=
√

det(a) (b1a2 + a1b2).
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Substituting this into (4.13) yields that

P (a−1/2)[(P (a1/2)b)1/2a] =

(
κ

1

2κ
√

det(a)
·
√

det(a) (b1a2 + a1b2)

)

=
1

2κ

(
2κ2

b1a2 + a1b2

)
=

1

2κ

(
〈a, b〉+

√
det(a)det(b)

b1a2 + a1b2

)
=

1

2κ

[(
〈a, b〉

b1a2 + a1b2

)
+

(√
det(a)det(b)

0

)]
=

1

2κ
(ab+

√
det(a)det(b) e).

Plugging this into (4.9) shows that the conclusion of the theorem holds true.

Case 2. a2 = 0.

By (4.7) and (4.2), we get

P (a−1/2) = P (a1/2)−1 =
1

a1
I,

(P (a1/2)b)1/2 =

(
κ

a1
2κb2

)
where κ is the same as (4.10). Hence as above

P (a−1/2)[(P (a1/2)b)1/2a] =
1

a1

(
a1κ
a21
2κb2

)
=

1

2κ

(
2κ2

a1b2

)
=

1

2κ

(
2κ2

a1b2 + b1a2

)
=

1

2κ
(ab+

√
det(a)det(b) e).

Again plugging this into (4.9) finishes the proof. �

When s = 1/2, we get a Wasserstein-type barycenter (or mean) in K.

Corollary 4.9.

W 1
2
(1/2, 1/2; a, b) =

1

4

(
a+ b+

1

κ
(ab+

√
det(a)det(b) e)

)
.
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Remark 4.10. The above formula appears to be different from the corre-
sponding one in the case of Pn. In that case, the Wasserstein barycenter (or
mean) of A and B is

W 1
2
(1/2, 1/2;A,B) =

1

4

(
A+B + (AB)1/2 + (BA)1/2

)
.

5. Final remark

As mentioned in the introduction, for A, B ∈ Pn,

dW (A,B) = Φ 1
2
(A,B)

1
2

is a metric on Pn. In the case of second order cone K, the symmetry, that is,

Φ 1
2
(a, b)

1
2 = Φ 1

2
(b, a)

1
2 is obvious from Corollary 4.5. However, the triangle

inequality is not proved yet. That is why the Φ1/2-median of a and b in
Corollary 4.9 is just named by a Wasserstein-type barycenter. So we close this
section with the challenging problem:

Is Φ 1
2
(a, b)

1
2 a metric on K?
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(2013), 122201.
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