
Nonlinear Functional Analysis and Applications
Vol. 26, No. 4 (2021), pp. 701-716

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2021.26.04.04
http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2021 Kyungnam University Press

KUPress

ESSENTIAL SPECTRUM OF A WEIGHTED GEOMETRIC
REALIZATION

Khalid Hatim1 and Azeddine Baalal2
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Abstract. In this present article, we construct a new framework that’s we call the weighted

geometric realization of 2 and 3-simplexes. On this new weighted framework, we construct a

nonself-adjoint 2-simplex Laplacian L and a self-adjoint 2-simplex Laplacian N . We propose

general conditions to ensure sectoriality for our new nonself-adjoint 2-simplex Laplacian L.

We show the relation between the essential spectra of L and N . Finally, we prove the absence

of the essential spectrum for our 2-simplex Laplacians L and N .

1. Introduction

Recently, the sectorial operators are given special attention in view of later
applications to the spectral theory and to the analytic and the asymptotic
perturbation theory ([4], [9], [11]). The interest in spectral properties of non
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self-adjoint operators has already led to a variety of new results. The nonself-
adjoint operators are more difficult to study than the self-adjoint ones. This
can be explained by the complicated structure of the resolvent of such an
operator seen as an analytic function and by the absence of the general spectral
theorems.

In this article, we construct a new framework that’s we call the weighted
geometric realization of 2 and 3-simplexes. On this new weighted framework,
we construct a nonself-adjoint 2-simplex Laplacian L and a self-adjoint 2-
simplex Laplacian N . We propose general conditions to ensure sectoriality for
our new non self-adjoint 2-simplex Laplacian L. We show the relation between
the essential spectra of L and N . Finally, we prove the absence of the essential
spectrum for our 2-simplex Laplacians L and N .

This current paper is organized as follows: In Section 1 (Introduction), we
introduce what we want prove in this article. In Section 2 (Weighted geomet-
ric realization), we construct our new framework that’s we call the weighted
geometric realization of 2 and 3-simplexes. In Section 3 (Nonself-adjoint 2-
simplex Laplacians), on the weighted geometric realization, we construct a
new nonself-adjoint 2-simplex Laplacian and we define its Dirichlet 2-simplex
Laplacian and its adjoint 2-simplex Laplacian. We give the Green’s formula of
our new nonself-adjoint 2-simplex Laplacian. In Section 4 (Sectoriality of the
2-simplex Laplacians), we prove that the nonself-adjoint 2-simplex Laplacian
L is sectorial. After that, we characterize the essential spectrum by using the
notion of sectoriality. In Section 5 (Absence of the essential spectrum), we
present necessary conditions for the operator L + L′ to be self-adjoint. After
that, we study the relation between the essential spectra of L and N . Finally,
we prove the absence of the essential spectrum for our 2-simplex Laplacians L
and N by using the comparison Theorem of Lewis.

2. Weighted geometric realization

In this section, we construct a new framework that’s we call the weighted
geometric realization of 2 and 3-simplexes.

Let V the set of vertices at most countable, E the set of oriented edges and
(V,E) a graph. We take E symmetric, that is, if (x, y) ∈ E, then (y, x) ∈ E.
We take E irreflexive, that is, if x ∈ E, then (x, x) /∈ E. Let (E+, E−) the
partition of E. If (x, y) ∈ E, then (x, y) ∈ E+ or (x, y) ∈ E−. We have
(x, y) ∈ E+ if and only if (y, x) ∈ E−. Orient the graph (V,E) means define
the partition (E+, E−) of E. For e = (x, y), we set e− = x and e+ = y. The
path between x and y is a finite set of oriented edges e1, e2, e3, ..., ek such that
k ∈ N∗, e−1 = x, e+

k = y and for all i ∈ {1, 2, 3, ..., k − 1} , e+
i = e−i+1. The

simple path is a path where each edge appears only once time. The cycle is
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a path where the origin and the end are identical. The connected graph is a
graph such that for all x, y ∈ V , there exists a path between x and y. The
locally finite graph is a graph such that each vertice belongs to a finite number
of edges.

In our paper, we work with a graph that’s oriented, connected, irreflex-
ive, symmetric and locally finite. The oriented 2-simplex is a surface sur-
rounded by a simple cycle of length equals 3 and it is an element of V 3.
F =

{
(x, y, z) ∈ V 3 | (x, y, z) is an oriented 2-simplex

}
is the set of oriented

2-simplexes. The oriented 3-simplex is a volume surrounded by four oriented
2-simplexes and it is an element of V 4. T ={(x, y, z, t) ∈ V 4 | (x, y, z, t) is
an oriented 3-simplex} is the set of oriented 3-simplexes. The odd permuta-
tion means we change the positions of two vertices an odd number of times.
The even permutation means we change the positions of two vertices an even
number of times. Let (α, β) ∈ F 2 or (α, β) ∈ T 2. We have α = β if we use
the even permutation to pass from α to β. We have α = −β if we use the
odd permutation to pass from α to β. The geometric realization of 2 and
3-simplexes, denoted by R, is the pair (F, T ). We define the weight on F by
wF : F → R∗+. We define the weight on T by wT : T → R∗+. The weighted
geometric realization of 2 and 3-simplexes, denoted by Rw, is the quadruplet
(F, T,wF , wT ) that’s equals to (R,wF , wT ).

3. Nonself-adjoint 2-simplex Laplacians

On our weighted geometric realization, we construct a new nonself-adjoint
2-simplex Laplacian L and we define its Dirichlet 2-simplex Laplacian and
its adjoint 2-simplex Laplacian. After that, we establish the Green’s formula
associated to our new nonself-adjoint 2-simplex Laplacian L.

We define the following functional spaces associated to our weighted geo-
metric realization Rw:

The cochains set of dimension 2, denoted by CF , is defined as

CF = {f : F → C | f(− (x, y, z)) = −f(x, y, z)} .

We set

CFs =
{
f ∈ CF | f has a finite support

}
.

For (f, g) ∈ CF × CF , we define an inner product on CF as

〈f, g〉F =
1

6

∑
(x,y,z)∈F

wF (x, y, z) f (x, y, z) g (x, y, z).

Then

‖f‖F =
√
〈f, f〉F .
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The Hilbert space associated to F , denoted by B (F ), is given by

B (F ) =
{
f ∈ CF | ‖f‖F <∞

}
.

Now, we give the definition of our new nonself-adjoint 2-simplex Laplacian.

Definition 3.1. The 2-simplex Laplacian, denoted by L, is defined as

L : CFs → CFs ,

such that for all f ∈ CFs and (x, y, z) ∈ F ,

Lf(x, y, z) =
1

wF (x, y, z)

∑
t∈V

wT (x, y, z, t) (f (x, y, z)− f (y, z, t)) .

Dirichlet operator: Let Ω be a subset of F , f ∈ CΩ
s and g : F → C be the

extension of f to F by setting g = 0 outside Ω. For any operator A on CΩ
s ,

the Dirichlet operator ADΩ is defined as

ADΩ (f) = A (g) |Ω .

In the next Theorem, we introduce the adjoint 2-simplex Laplacian L′ of
the 2-simplex Laplacian L.

Theorem 3.2. The adjoint 2-simplex Laplacian L′ of the 2-simplex Laplacian
L is given by

L′ : CFs → CFs ,

such that for all f ∈ CFs and (x, y, z) ∈ F,

L′f(x, y, z) =
1

wF (x, y, z)

×

(∑∑
t∈V

wT (x, y, z, t)f (x, y, z)−
∑
t∈V

wT (t, x, y, z)f (y, z, t)

)
.

Proof. For all f, g ∈ CFs , we have

〈Lg, f〉F =
1

6

∑
(x,y,z,t)∈T

wT (x, y, z, t) (g (x, y, z)− g (y, z, t)) f (x, y, z)

=
1

6

∑
(x,y,z)∈F

g (x, y, z)
∑
t∈V

wT (x, y, z, t) f (x, y, z)

− 1

6

∑
(t,x,y,z)∈T

wT (t, x, y, z) g (x, y, z) f (y, z, t)
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=
1

6

∑
(x,y,z)∈F

g (x, y, z)

×

∑
t∈V

wT (x, y, z, t) f (x, y, z)−
∑

(t,x,y,z)∈T

wT (t, x, y, z) f (y, z, t)

 .

Since

〈Lg, f〉F =
〈
g, L′f

〉
F

,

we obtain

L′f(x, y, z) =
1

wF (x, y, z)

×

(∑
t∈V

wT (x, y, z, t) f (x, y, z)−
∑
t∈V

wT (t, x, y, z) f (y, z, t)

)
.

This completes the proof. �

We develop a condition based on the weight of 3-simplexes F , this condition
will be important for the sequel of our paper.

Condition 1: We take

w+ (x, y, z) = w− (x, y, z) , ∀ (x, y, z) ∈ F

such that

w+ (x, y, z) =
∑
t∈V

wT (x, y, z, t) and w− (x, y, z) =
∑
t∈V

wT (t, x, y, z) .

Corollary 3.3. We suppose that the Condition 1 is satisfied. Then the 2-
simplex Laplacian L′ is simply given by

L′f(x, y, z) =
1

wF (x, y, z)

∑
t∈V

wT (t, x, y, z) (f (x, y, z)− f (y, z, t)) .

Next, we introduce the symmetric 2-simplex Laplacian ∆ with a symmetric
3-simplex weight function.

Definition 3.4. The symmetric 2-simplex Laplacian, denoted by ∆, is defined
as

∆ : CFs → CFs ,
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such that for all f ∈ CFs and (x, y, z) ∈ F,
∆f(x, y, z) =

(
L+ L′

)
f(x, y, z)

=
1

wF (x, y, z)

∑
t∈V

a(x, y, z, t) (f (x, y, z)− f (y, z, t)) ,

with
a(x, y, z, t) = wT (x, y, z, t) + wT (t, x, y, z)

the symmetric 3-simplex weight function.

For the symmetric 2-simplex Laplacian ∆, we define its quadratic form
denoted by QL as

QL (f) = 〈Lf, f〉F + 〈Lf, f〉F , f ∈ CFs .

Moreover, we have
QL (f) = 2Re 〈Lf, f〉F .

Then, we obtain

inf
‖f‖F =1

QL (f) = inf
‖f‖F =1

2Re 〈Lf, f〉F . (3.1)

Theorem 3.5. (Green’s Formula) We suppose that the Condition 1 is satis-
fied. Then

〈Lf, g〉F + 〈Lg, f〉F =
1

6

∑
(x,y,z,t)∈T

wT (x, y, z, t) (f (x, y, z)− f (y, z, t))

× (g (x, y, z)− g (y, z, t)),

for all f, g ∈ CFs .

Proof. Let f, g ∈ CFs . We have

〈Lf, g〉F + 〈Lg, f〉F
= 〈∆f, g〉F

=
1

6

∑
(x,y,z,t)∈T

wT (x, y, z, t) (f (x, y, z)− f (y, z, t)) g (x, y, z)

+
1

6

∑
(t,x,y,z)∈T

wT (t, x, y, z) (f (x, y, z)− f (y, z, t)) g (x, y, z)

=
1

6

∑
(x,y,z,t)∈T

wT (x, y, z, t) (f (x, y, z)− f (y, z, t)) g (x, y, z)

+
1

6

∑
(x,y,z,t)∈T

wT (x, y, z, t) (f (x, y, z)− f (y, z, t)) g (y, z, t).
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Then, we get

〈Lf, g〉F + 〈Lg, f〉F =
1

6

∑
(x,y,z,t)∈T

wT (x, y, z, t) (f (x, y, z)− f (y, z, t))

× (g (x, y, z)− g (y, z, t)).

This completes the proof. �

4. Sectoriality of the 2-simplex Laplacians

In this section, we propose general conditions to ensure sectoriality for our
self-adjoint 2-simplex Laplacian L. After that, we analyze the essential spec-
trum via the notion of sectoriality. In order to study the notion of sectoriality
for the 2-simplex Laplacian L, we present the following condition:

Condition 2: There exists a positive constant P such that for all (x, y, z) ∈ F,
we have ∑

t∈V
|wT (x, y, z, t)− wT (t, x, y, z)| ≤ PwF (x, y, z) .

We define the following operator on CFs :(
L− L′

)
f (x, y, z) =

1

wF (x, y, z)

∑
t∈V

(wT (x, y, z, t)− wT (t, x, y, z))

× (f (x, y, z)− f (y, z, t)) ,

for all f ∈ CFs and (x, y, z) ∈ F .

Theorem 4.1. We suppose that the Conditions 1 and 2 are satisfied. Then
the operator (L− L′) extends to a unique bounded operator on B (F ).

Proof. Let f, g ∈ CFs . We use the Condition 1, then we get

〈Lf, g〉F −
〈
L′f, g

〉
F

=
1

6

∑
(x,y,z)∈F

w+ (x, y, z) f (x, y, z) g (x, y, z)

− 1

6

∑
(x,y,z)∈F

w− (x, y, z) f (x, y, z) g (x, y, z)

+
1

6

∑
(x,y,z)∈F

g (x, y, z)

×
∑
t∈V

(wT (x, y, z, t)− wT (t, x, y, z))f (y, z, t) .
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By the Cauchy-Schwarz inequality, we have

∣∣〈(L− L′) f, g〉
F

∣∣
≤

∑
(x,y,z)∈F

∣∣∣g (x, y, z)
∣∣∣∑
t∈V
|wT (t, x, y, z)− wT (x, y, z, t)| |f (y, z, t)|

≤
∑

(x,y,z)∈F

∣∣∣g (x, y, z)
∣∣∣(∑

t∈V
|wT (t, x, y, z)− wT (x, y, z, t)|

) 1
2

×

(∑
t∈V
|wT (t, x, y, z)− wT (x, y, z, t)| |f (y, z, t)|2

) 1
2

.

From the Condition 2, we obtain

∣∣〈(L− L′) f, g〉
F

∣∣
≤

P ∑
(x,y,z)∈F

wF (x, y, z)
∣∣∣g (x, y, z)

∣∣∣2
 1

2

×

 ∑
(x,y,z)∈F

∑
t∈V
|wT (t, x, y, z)− wT (x, y, z, t)| |f (y, z, t)|2

 1
2

≤

P ∑
(x,y,z)∈F

wF (x, y, z)
∣∣∣g (x, y, z)

∣∣∣2
 1

2

×

∑
t∈V

∑
(x,y,z)∈F

|wT (t, x, y, z)− wT (x, y, z, t)| |f (y, z, t)|2
 1

2

≤

P ∑
(x,y,z)∈F

wF (x, y, z)
∣∣∣g (x, y, z)

∣∣∣2
 1

2

×

∑
t∈V
|f (y, z, t)|2

∑
(x,y,z)∈F

|wT (t, x, y, z)− wT (x, y, z, t)|

 1
2
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≤

P ∑
(x,y,z)∈F

wF (x, y, z)
∣∣∣g (x, y, z)

∣∣∣2
 1

2

×

(
P
∑
t∈V

wF (y, z, t) |f (y, z, t)|2
) 1

2

.

Therefore, we find ∥∥(L− L′) f∥∥
F
≤ P ‖f‖F , ∀f ∈ C

F
s .

Then, we conclude by the Hahn-Banach Theorem. �

Definition 4.2. (1) The numerical range of an operator T with domain
D(T ), denoted by W (T ), is the nonempty set

W (T ) = {〈Tf, f〉 | f ∈ D (T ) and ‖f‖ = 1} .

(2) Let B be a Hilbert space, an operator T : D(T ) → B is said to be
sectorial if W (T ) lies in a sector

Sa,θ = {z ∈ C | arg (z − a) ≤ θ} ,

for some a ∈ R and θ ∈
[
0, π2

)
.

In the next Theorem, we propose general conditions to ensure sectoriality
for our self-adjoint 2-simplex Laplacian L.

Theorem 4.3. We suppose that the Conditions 1 and 2 are satisfied. Then
2-simplex Laplacian L is sectorial.

Proof. We apply the Green’s formula, then we find

2Re 〈Lf, f〉F = 〈Lf, f〉F +
〈
L′f, f

〉
F

=
∑

(x,y,z,t)∈T

wT (x, y, z, t) |f (x, y, z)− f (y, z, t)|2

≥ 0.

We use the Theorem 4.1, we get that Im(f, f) is bounded by P
2 . So, the

imaginary part is bounded and the real part of the numerical range is positive.
Then 2-simplex Laplacian L is sectorial such that a is any point in the open
half line of the negative real part. �

Remark 4.4. A sectorial operator is closable as an operator if it is densely
defined, see Theorem V − 3.4 in [9].

We use the Theorem 4.1 with the Remark above, we get the following result.
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Corollary 4.5. If the Conditions 1 and 2 are satisfied, then 2-simplex Lapla-
cian L is closable.

5. Absence of the essential spectrum

In this section, we consider a self-adjoint 2-simplex Laplacian N . After
that, we study the relation between the essential spectra of L and N . Finally,
we show the absence of the essential spectrum for our 2-simplex Laplacians L
and N .

Definition 5.1. The closure of L is the operator L, defined by

• D
(
L
)

=
{
f ∈ B (F ) | ∃ (fn)n∈N ∈ CFs , fn → f and Lfn converges

}
,

• L (f) = lim
n→∞

Lfn, f ∈ D
(
L
)

and (fn)n ∈ CFs such that fn → f .

Definition 5.2. The 2-simplex Laplacian N is defined on D
(
L
)
∩D (L′) as:

Nf (x, y, z) =
1

2

(
L+ L′

)
f (x, y, z)

=
1

wF (x, y, z)

∑
t∈V

wT (x, y, z, t) + wT (t, x, y, z)

2

× (f (x, y, z)− f (y, z, t)) ,

for all f ∈ CFs and (x, y, z) ∈ F .

Theorem 5.3. The 2-simplex Laplacian N is a symmetric extension of the
symmetric operator G such that G = 1

2 (L+ L′).

Proof. For all f ∈ CFs , we have

Nf = Gf

and
L
′
+
(
L′
)′ ⊂ (L+ L′

)′
.

Since N ′ is an extension of 2-simplex Laplacian N , 2-simplex Laplacian N is
symmetric. Moreover, we have

N =
1

2

(
L+ L′

)
=

1

2

((
L′
)′

+ L
′
)

⊂ 1

2

(
L′ + L

)′
= N ′.
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Therefore the 2-simplex Laplacian N is a symmetric extension of the symmet-
ric operator G such that G = 1

2 (L+ L′). �

Proposition 5.4. We suppose that the Conditions 1 and 2 are satisfied. Then

D
(
L
)
⊂ D

(
L′
)

and
(
N,D

(
L
))

is a closed operator.

Proof. From the Condition 2, we get that L − L′ is extended to a unique
bounded operator π = L− L′ on B (F ). Since

L =
(
L− L′

)
+ L′,

we obtain L = π + L′. So, we find

D
(
L
)
⊂ D

(
L′
)
⊂ D

(
L′
)

.

As N = L− 1
2π, we have N is closed. �

Proposition 5.5. We suppose that the Conditions 1 and 2 are satisfied. If G
is essentially self-adjoint, then

(
N,D

(
L
))

is a self-adjoint operator.

Proof. We have N is a symmetric closed extension of G. �

Definition 5.6. The essential spectrum of a closed operator T , denoted by
σess (T ), is the set of all complex numbers λ for which the range R (T − λ) is
not closed or dim ker (T − λ) =∞.

We define the following numbers:

m (T ) = inf {Re (λ) |λ ∈W (T )} ,

βess (T ) = inf {Re (λ) |λ ∈ σess (T )} .

If T is a bounded operator, then the spectrum is always a subset of the closure
of the numerical range but this is not true in general. In fact, the essential
spectrum of a closed operator is a subset of the closure of the numerical range.
Therefore, for the 2-simplex Laplacian L we get

βess
(
L
)
≥ m

(
L
)

.

The next theorem follows from part (IV ), Theorem 1.11 in [4]. We compare
the essential spectrum of L and the essential spectrum of its real part by using
the sectoriality of L.

Theorem 5.7. We suppose that the Conditions 1 and 2 are satisfied. If G is
essentially self-adjoint, then

βess
(
L
)
≥ inf σess (T ) .
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We define the Cheeger constants on Ω ⊂ F as:

h (Ω) = inf
U⊂Ω
finite

wT (∂TU)

wF (U)

and

h̃ (Ω) = inf
U⊂Ω
finite

wT (∂TU)

w+ (U)
,

where for a subset U of F

wT (∂TU) =
∑

(x,y,z,t)∈∂TU

wT (x, y, z, t) ,

w+ (U) =
∑

(x,y,z)∈U

w+ (x, y, z) and wF (U) =
∑

(x,y,z)∈U

wF (x, y, z)

∂TU = {(x, y, z, t) ∈ T |((y, z, t) ∈ U and (t, z, x),(x, y, t),(z, y, x) /∈ U)
or ((t, z, x) ∈ U and (y, z, t),(x, y, t),(z, y, x) /∈ U) or ((x, y, t) ∈ U and
(y, z, t),(t, z, x),(z, y, x) /∈ U) or ((z, y, x) ∈ U and (y, z, t),(t, z, x), (x, y, t) /∈ U)}.

Definition 5.8. A weighted geometric realization K = (FK , TK) is called
a subweighted geometric realization of Rw = (FRw , TRw) if FK ⊂ FRw and
TK = {(x, y, z, t) | (y, z, t) , (t, z, x) , (x, y, t) , (z, y, x) ∈ FK} .

Definition 5.9. A filtration of Rw = (F, T ) is a sequence of finite subweighted
geometric realizations {Rnw = (Fn, Tn) | n ∈ N} such that Rnw ⊂ Rn+1

w and
∪n≥1Fn = F .

Let Rw be a weighted geometric realization and {Rnw | n ∈ N} a filtration
of Rw. We set

PF c
n

= sup

{
w+ (x, y, z)

wF (x, y, z)
| (x, y, z) ∈ F cn

}
.

The isoperimetric constant at infinity is defined by:

h∞ = lim
n→∞

h (F cn) .

Theorem 5.10. The bottom of the real part of W (LDΩ ) satisfies the following
inequality:

h2 (Ω)

8
≤ PΩm

(
LDΩ
)
≤ 1

2
PΩh (Ω) , (5.1)

with Ω ⊂ F .
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Proof. Let Ω ⊂ F . We use the works of Dodziuk [3] and Grigoryan [7], we can
deduce the following bounds of the symmetric quadratic form QLD

Ω
on CΩ

s :

h2 (Ω)

8
≤ PΩ inf

‖f‖F =1
QLD

Ω
(f) ≤ 1

2
PΩh (Ω) .

We apply the equality (3.1), then, we obtain

h2 (Ω)

8
≤ PΩm

(
LDΩ
)
≤ 1

2
PΩh (Ω) .

�

In the sequel, we suppose that the Conditions 1 and 2 are satisfied and G
is essentially self-adjoint.

Lemma 5.11. Let Rw be a weighted geometric realization. Then the bottom
of the spectrum λ1

(
ND

Ω

)
of ND

Ω satisfies

λ1

(
ND

Ω

)
= m

(
LDΩ
)

,

for all subset Ω of F .

Proof. Let Ω be a subset of F . We have λ1

(
ND

Ω

)
the bottom of the spectrum

λ1 of the Dirichlet 2-simplex Laplacian ND
Ω on Ω, satisfies the variational

definition:

λ1

(
ND

Ω

)
= λ1

(
G
D
Ω

)
= inf

f∈CΩ
s

‖f‖F =1

〈
GDΩf, f

〉
F

= inf
f∈CΩ

s
‖f‖F =1

Re
〈
LDΩf, f

〉
F

= m
(
LDΩ
)

.

Then
λ1

(
ND

Ω

)
= m

(
LDΩ
)

,

for all subset Ω of F . �

In the next Theorem, we give the Cheeger’s Theorem associated to the
self-adjoint Laplacian N .

Theorem 5.12. Let Rw be a weighted geometric realization. Then

PΩλ1

(
ND

Ω

)
≥ h2 (Ω)

8
,

for all subset Ω of F .
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Proof. We apply the Lemma 5.11, we get

λ1

(
ND

Ω

)
= m

(
LDΩ
)

.

By using inequality (5.1), we obtain that

PΩλ1

(
ND

Ω

)
≥ h2 (Ω)

8
,

for all subset Ω of F . �

Our aim in the following is to express the dependence of the essential spec-
trum of N to the geometry at infinity.

Theorem 5.13. Let Rw be a weighted geometric realization and {Rnw | n ∈ N}
be a filtration of Rw. Then, we get

lim
n→∞

 lim
k→∞
k≥n+1

λ1

(
ND
Rk

w\Rn
w

) = λess1 (N) .

Proof. We set

l = lim
n→∞

 lim
k→∞
k≥n+1

λ1

(
ND
Rk

w\Rn
w

) .

We have the sequences
(
Rkw \Rnw

)
k≥n+1

and ((Rnw)c)n are monotone. Then our

limits exist. Moreover, we have for all n ∈ N,
(
Rkw \Rnw

)
k≥n+1

is a sequence of

finite subweighted geometric realizations whose union is equal to (Rnw)c. By
using Theorem 2.3.6 [1], we obtain

λ1

(
ND

(Rn
w)c

)
= lim

k→∞

(
λ1

(
ND
Rk

w\Rn
w

))
.

We apply Proposition 1 [10], we get

l = λess1 (N) .

�

Now, we show the absence of the essential spectrum.

Theorem 5.14. Let Rw be a weighted geometric realization and {Rnw | n ∈ N}
be a filtration of Rw. If there exists a sequence (cn)n such that for all k ≥ n+1

h2
(
Rkw \Rnw

)
8PRk

w\Rn
w

≥ cn and lim
n→∞

cn =∞ (5.2)

then σess (N) is empty.
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Proof. We apply Theorem 5.12, we get

λ1

(
ND
Rk

w\Rn
w

)
≥ cn,

for all k ≥ n+ 1. Therefore, we find

lim
n→∞

 lim
k→∞
k≥n+1

λ1

(
ND
Rk

w\Rn
w

) ≥ lim
n→∞

cn.

Now, we use Theorem 5.13, we obtain that σess (N) is empty. �

In order to study the relationship between the essential spectrum of L and
the essential spectrum of its real part. We will use The Comparison Theorem
of Lewis [4]. Now, we begin by giving the definition considered by Lewis:
The essential spectrum of a closed operator densely defined T is the set of all
complex number λ for which T − λI has a singular sequence.

Theorem 5.15. (Comparison Theorem of Lewis) Let T be a closed linear
operator in a Hilbert space B with dense domain D(T ). Let A be a self-adjoint
operator in B bounded from below and with D(T ) ⊂ D(A). If

Re 〈Tu, u〉 ≥ 〈Au, u〉 ,∀u ∈ D(T )

then

σess (T ) ⊆ {λ ∈ C |Re (λ) ≥ inf σess (A)} .

If σess (A) = ∅, then σess (T ) = ∅.

We apply the Comparison Theorem of Lewis, we find the following conse-
quence:

Proposition 5.16. Let Rw be a weighted geometric realization. Then, we
have

σess
(
L
)
⊆ {λ ∈ C |Re (λ) ≥ inf σess (N)}

and if σess (N) = ∅, then σess
(
L
)

= ∅.

Theorem 5.17. Let Rw be a weighted geometric realization which satisfies
the Hypothesis (5.2). Then σess

(
L
)

= ∅.

Proof. We use Theorem 5.14 and Proposition 5.16, we obtain the result. �
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Doctorat, Université de Bordeaux, 2010.

[2] Y. Arlinskii and V. Zagrebnov, Numerical range and quasi-sectorial contractions. J.
Math. Anal. Appl., 366 (2010), 33-43.

[3] J. Dodziuk, Elliptic operators on infinite graphs. World Sci. Publ., Hackensack, (2006),
353-368.

[4] W.D. Evans, R.T. Lewis and A. Zettl, Nonself-adjoint operators and their essential
spectra. In form local times to global geometry, control and physics, D. Ellworthy, ed.,
Differential Equation and Operators, Lecture Notes in Math., 1032 (1983), 123-160.

[5] D.L. Ferrario and R.A. Piccinini, Simplicial Structures in Topology, CMS Books in
Mathe-matics, p.243, 2011.

[6] K. Fujiwara, The Laplacian on rapidly branching trees. Duke Math. J., 83 (1996), 191-
202.

[7] A. Grigoryan, Analysis on graphs, Lecture Notes, University of Bielefeld, WS (2011/12).
[8] K. Jahedi and B. Yousefi, Numerical ranges of operators acting on Banach spaces.

Czechoslovak Math. J., 62 (2012), 495-503.
[9] T. Kato, Perturbation theory for linear operators. Springer-Verlag, Berlin, Heidelburg

and New York, 1976.
[10] M. Keller, The essential spectrum of the Laplacian on rapidly branching tessellations.

Mathematische Annalen, 346 (2010), 51-66.
[11] M. Khanalizadeh, Sectorial forms and m-sectorial operators. Seminararbetit zum fach

funktionalanalysis, Technische Universitat Berlin, 2013.


