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Abstract. In this paper we establish a general result for the stability of Picard iteration.

Several theorems in the literature are obtained as special cases.

1. Introduction

Let (X, d) be a complete metric space and the T be a a selfmapping of
X. Let xn+1 = f(T, xn) be some iteration procedure in X. Suppose that
F (T ), the fixed point set of T , is nonempty and that xn converges to a point
q ∈ F (T ). Let {yn} ⊂ X, and define

εn = d(yn+1, f(T, yn)).

If limn→∞ εn = 0 implies that limn→∞ yn = q, then the iteration procedure

xn+1 = f(T, xn)

is said to be T -stable. If these conditions hold for xn+1 = Txn; i.e., Picard
iteration, then we shall say that Picard iteration is T -stable.

In this paper, we shall obtain sufficient conditions that Picard iteration is
T stable for an arbitrary selfmap, and then demonstrate that a number of
contractive conditions are Picard T -stable.
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2. Main results

We shall need the following lemma from [2].

Lemma 1. Let {xn}, {εn} be nonnegative sequences satisfying

xn+1 ≤ hxn + εn

for all n ∈ N, 0 ≤ h < 1, limn→∞ εn = 0. Then limn→∞ xn = 0.

Theorem 1. Let (X, d) be a nonempty complete metric space, T a selfmap of
X with F (T ) 6= ∅. If there exist numbers L ≥ 0, 0 ≤ h < 1 such that

d(Tx, q) ≤ Ld(x, Tx) + hd(x, q) (1)

for each x ∈ X, q ∈ F (T ), and, in addition, limn→∞ d(xn+1, Txn) = 0 and

lim
n→∞ d(xn, Txn) = 0, (2)

then Picard iteration is T -stable.

Proof. Let {yn} ⊂ X, εn = d(yn+1, T yn), and limn→∞ εn = 0. We need to
show that limn→∞ yn = q. From the conditions (1) and (2), we have

d(yn+1, q) ≤ d(yn+1, T yn) + d(Tyn, q)

≤ εn + Ld(yn, T yn) + hd(yn, q).

By Lemma 1, we have limn→∞ yn = q. ¤
Theorem 2. Let (X, d) be a nonempty complete metric space, T a selfmap of
X satisfying: there exist 0 ≤ h < 1, and positive integers p, q such that, for
each x, y ∈ X,

d(T px, T qy) ≤ hmax{d(x, y), d(x, T px), d(y, T qy),

d(x, T qy), d(y, T px)}. (3)

Then Picard iteration is T -stable.

Proof. From Theorem 11 of [3], T has a unique fixed point. It remains to show
that (2) is satisfied.

Let pn be the diameter of the orbit of xn;
that is, pn = δ(O(xn, Txn, . . .)). For any i, j ≥ n, using (3),

d(T pyi, T
qyj) ≤ hmax{d(yi, yj), d(yi, T

pyi), d(yj , T
qyj),

d(yi, T
qyj), d(yj , T

pyi)}
≤ hpn.

But

d(yi, yj) ≤ d(yi, T
pyi−1) + d(T pyi−1, T

qyj−1) + d(T qyj−1, yj)
≤ εi−1 + hpn−1 + εi−1,
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which implies that
pn ≤ 2εi−1 + hpn−1,

and limn→∞ pn = 0 by Lemma 1. Since d(yn, T yn) ≤ pn, limn→∞ d(yn, T yn) =
0. The conclusion now follows from Theorem 1. ¤
Corollary 1. ([5], Theorem 1) Let (X, d) be a nonempty complete metric
space, T a selfmap of X satisfying

d(Tx, Ty) ≤ Ld(x, Tx) + ad(x, y) (4)

for all x, y ∈ X, where L ≥ 0, 0 ≤ a < 1. Suppose that T has a fixed point
p. Let x0 ∈ X and xn+1 = Txn. Let {yn} ⊂ X and define εn = d(yn+1, yn).
Then the Picard iteration is T -stable.

Proof. Since T satisfies (1) for all x, y ∈ X, T satisfies inequality (1) of our
paper. From the proof of Theorem 1 of [5], limn→∞ d(xn, Txn) = 0. Therefore,
by our Theorem 1, Picard iteration is T -stable. ¤
Remark. Definition (3) of this paper is actually definition (74) of [3]. There-
fore many contractive conditions are special cases of (3), and, for each of these,
Picard iteration is T stable. For example, Theorems 1 and 2 of [1] and Theo-
rem 1 of [4] are special cases of Theorem 2.

We shall not examine the analogues of Theorem 1 for Mann, Ishikawa, Kirk,
or any other iteration scheme since, if one obtains convergence to a fixed point
for a map using Picard iteration, there is no point in considering any other
more complicated iteration procedure.
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