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Abstract. In this paper, we study well-posed problems and variational inequalities in

locally convex Hausdorff topological vector spaces. The necessary and sufficient conditions

are obtained for the existence of solutions of variational inequality problems and quasi-

variational inequalities even when the underlying set K is not convex. In certain cases,

solutions obtained are not unique. Moreover, counter examples are also presented for the

authenticity of the main results.

1. Introduction

The theory of variational inequalities has become a rich source of inspira-
tion in both mathematical and engineering sciences, which has begun with the
works of Fichera [8] and Hartmann and Stampacchia [11]. Variational inequal-
ities and its various generalizations have been very effective and quite powerful
tool in studying the existence of solutions of constrained problems arising in
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mechanics, optimization and control, operations research, general equilibrium
problems in economics and transportation, and so on. It also provides us uni-
fied and general framework for studying boundary value problems arising out
of contact problems in electrostatics, fluid flow through porous media etc.

The study of variational inequality problems has been carried out by sev-
eral mathematicians, see Anh et al. [1], Baiocchi and Capelo [4], Crank [6],
Glowinski, Lions and Tremoliers [9], Kikuchi and Oden [15], Kim [16], Kim et
al. [17, 18, 19, 20], Kinderlehrer and Stampacchia [21], Noor [27].

The work is also generalized in several directions like quasi-variational in-
equality [3], vector variational inequality [2, 19], generalized vector variational
inequalities [26, 34], variational-like inequalities for multivalued maps [29],
Stampacchia variational inequality with weak convex mappings [5], and so on.

There are several notion of well-posedness related to optimization prob-
lems, see for example, [7], [13], [14], [24], [25], [28], [30], [31], [33] and the
references therein. These notions of well-posedness can be divided into three
classes, namely, Tykhonov type [32], Levitin-Polyak type [23] and Hadamard
type [10]. Generally speaking, in the study of Tykhonov well-posedness of
a problem one induces the notion of approximate sequence for the solution
requires some convergence of such sequences to a solution of the problem,
Levintin-Polyak well-posedness of a problem means the convergence of the
approximating solution sequence to the problem with some constraints, while
Hadamard well-posedness of a problem means the continuous dependence of
the solutions on the data or the parameter of the problem, see for example,
[7], [13], [14], [24], [25], [28], [30], [31], [33] and the reference therein.

In this paper, we study well-posed problems in locally convex Hausdorff
topological vector spaces. The necessary and sufficient conditions are obtained
for the existence of optimal solutions of variational and quasi-variational in-
equality problems by using Cauchy-Schwartz inequality and Theorem 5.1.1 in
[22].

The rest of this article is structured as follows: In section 2, we recall
some preliminary material on functional analysis and then introduce notion of
well-posedness, variational inequality problem (VIP) and quasi-variational in-
equality problem (QVIP). In section 3, we study well-posed problem for locally
convex Hausdorff topological vector space and and gave some examples to il-
lustrate the result. The necessary and sufficient conditions for the variational
inequality problem(VIP) and quasi-variational inequality problem (QVIP) to
get optimal solution are established in section 4.
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2. Formulations and preliminaries

Let (X, τ) be a locally convex topological vector space over field Φ(= R). A
subset B of X is called balanced if aB ⊆ B whenever |a| ≤ 1, a ∈ Φ. A subset
B of X is known as absorbing if for every x ∈ X, there exists a > 0 such that
x ∈ aB.

Let B be a convex, balanced, absorbing set in X. The Minkowski functional
(gauge) pB : X −→ R is defined as pB(x) = inf {a > 0 : x ∈ aB} . Since gauge
of a convex balanced absorbing set in topological vector space is a seminorm,
it follows that pB is a seminorm.

Consider P = {pB : B is convex balanced absorbing set}. Then P is a
family of seminorms on X.

For each p ∈ P and U(x, ε, p) = {y ∈ X : p(y − x) < ε}, let

S = {U(x, ε, p) : x ∈ X, ε > 0, p ∈ P} .
Then the topology generated by S as a subbase is denoted by τP . It is well
known that if τ is a locally convex topology on X then τ = τP .

Let I : X −→ (−∞,∞] be a proper extended real valued function defined on
a topological space X. Consider the problem to minimize I(x) subject to x ∈ X
is denoted by (X, I). If I(x0) ≤ I(x), for all x ∈ X, then x0 is called a global
minimizer of (X, I). The set of all global minimizer is denoted by argmin(X, I).
For argmin(X, I) = {x0} , we say that (X, I) is well-posed if I(xn) −→ I(x0)
then xn −→ x0. In other words, the problem (X, I) is Tykhonov well-posed if
and only if I has a unique global minimum point on X towards which every
minimizing sequence converges.

Now we shall work under the following settings, unless otherwise specified:

Let X be a topological vector space with its topological dual X∗ and K be
a nonempty convex subset of X. The value of l ∈ X∗ at x is denoted by 〈l, x〉 .
Let F : K −→ X∗ be a mapping. Then the variational inequality problem (in
short,VIP) is to find x ∈ K such that

〈F (x), y − x〉 ≥ 0, for all y ∈ K (2.1)

or equivalently

〈F (x), x〉 ≤ 〈F (x), y〉, for all y ∈ K.

Suppose K : X → 2X , where 2X is the power set of X, be a set-valued map
such that K(x) is nonempty. Then the quasi-variational inequality problem
(in short, QVIP) consists in finding a vector x ∈ K(x) such that

〈F (x), y − x〉 ≥ 0, for all y ∈ K(x). (2.2)

Now we need following results to prove the main results of the paper.
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Theorem 2.1. ([22], Theorem 5.3.1) Let X be a vector space over Φ, let
L ⊂ X be a real hyperplane, and let K ⊂ X be convex. Then the following
statements are equivalent:

(i) K lies strictly on one side of L.
(ii) K ∩ L = φ.

Theorem 2.2. ([22], Theorem 13.1.1) Let (X, 〈., .〉) be an inner product space
over Φ. Then

|〈x, y〉| ≤ ‖x‖‖y‖, (x, y ∈ X).

Moreover,
|〈x, y〉| = ‖x‖‖y‖, (x, y ∈ X)

if and only if x, y are linear independent.

3. Well-posed problem for locally convex Hausdorff t.v.s

In this section, we shall give a formulation for well-posed problem in a
locally convex Hausdorff topological vector space.

Theorem 3.1. Let (X, τ) be a locally convex Hausdorff topological vector
space. Then I : X −→ (−∞,∞) is well-posed if and only if

(i) there exists x0 ∈ X such that I(x0) ≤ I(x), for all x ∈ X,
(ii) for every ε > 0, there exists δ > 0 with |I(x)− I(x0)| < δ such that

p(x− x0) < ε, for all p ∈ P and x ∈ X.

Proof. Since (X, τ) is a locally convex Hausdorff topological vector space, there
exists a family of seminorms P on X such that τ = τP . Suppose that I :
X −→ (−∞,∞) is well-posed. We first prove that the condition (ii) is true.
If the condition (ii) is false, then there exists ε > 0 such that for every δ >
0, |I(x)− I(x0)| < δ but p(x−x0) ≥ ε, for some p ∈ P and x ∈ X. Choose δ =
1
n . Then we can find xn ∈ X such that |I(xn)− I(x0)| < 1

n and p(xn−x0) ≥ ε,
for some seminorm p. This means that I(xn) −→ I(x0) as n −→ ∞. But
xn 6−→ x0. Hence the condition (ii) must be true.

Next we prove that the condition (i) is true. If the condition (i) is false,
then there exists y ∈ X such that I(y) < I(x0) so that |I(y)− I(x0)| < δ, for
all δ > 0. Hence by the condition (ii) y ∈ U(x0, ε, p), for every p ∈ P, ε > 0
and hence y belongs to every neighborhood of x0, which is a contradiction,
since (X, τ) is a Hausdorff space. Therefore I(x0) ≤ I(x), for all x ∈ X.

Conversely, suppose that (i) and (ii) are true. From condition (ii), for every
ε > 0, there exists δ > 0 with |I(xn) − I(x0)| < δ such that p(xn − x0) < ε.
This implies that whenever {xn} is a sequence and I(xn) −→ I(x0), we have
xn −→ x0 in (X, τp). That is, arg min (X, I) = {x0} . Hence I is well-posed. �
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Example 3.2. Let X = lp(N), the space of all pth summable sequence of real

numbers. Define I : X −→ R by I(x) =

( ∞∑
k=1

|xk|p
) 1

p

. For each n ∈ N, define

pn : lp(N) −→ R by pn(x) =

(
n∑

k=1

|xk|p
) 1

p

. Then, each pn is a seminorm on

X. Let P = {pn : n ∈ N} . Then (X, τP) is a locally convex topological vector
space. Let x0(k) = 0, for every k ∈ N. Then x0 ∈ lp and I(x0) = 0. Now for
each n ∈ N,

pn

(
xk
)
≤ I

(
xk
)
. (3.1)

Suppose I
(
xk
)
−→ 0 in (X, τP). Then from (3.1) as pn

(
xk
)
−→ 0 as

k −→ ∞. This is true for every n ∈ N. Hence xk −→ 0 as k −→ ∞. Also
I(x0) ≤ I(x), for every x ∈ lp(N). Thus I is well-posed.

Example 3.3. Let X = Cb(R), the space of all bounded continuous real
valued functions defined on R. Let I : X −→ R be a function defined as
I(x) = inf{|x(t)| : t ∈ R} . For m ∈ N, set pm(x) = sup

|t|≤m
|x(t)|. Then pm is a

seminorm. If we take P = {pm : m ∈ N} , then P is a family of seminorms.
Then for n ∈ N, let xn : R −→ R be defined by

xn(t) =

{
|t|, when |t| ≤ n,
n, when |t| > n.

Then xn ∈ Cb(R) for every n ∈ N. Define x0 : R −→ R by x0(t) = 0, for every
t ∈ R. Now I(x0) = inf {|xo(t)| : t ∈ R} = 0 and I(xn) = 0, for every n ∈ N.
Consider |I(xn)− I(x0)| = 0 so that I(xn)→ I(x0). But

p1(xn − x0) = sup
|t|≤1
{|xn(t)− x0(t)|} ≥ 1,

for every n ∈ N. This shows that xn 6−→ x0 in (X, τP). Hence I is not well-
posed.

4. Optimal solution of variational inequality problems

In this section, we shall obtain the necessary and sufficient conditions for
the variational inequality problem and quasi-variational inequality problem to
have optimal solutions.

Theorem 4.1. Let H be a real Hilbert space and let K be a nonempty convex
subset of H. For x ∈ K, let F : K −→ H∗ be defined by F (x) = fx, where
fx : H −→ R is given by fx(y) = 〈x, y〉 , for all y ∈ H. Then
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(i) if 0 ∈ K, then for all y ∈ K, VIP-(2.1) has a solution if and only if
x = 0.

(ii) if 0 /∈ K, then for all y ∈ K, VIP-(2.1) has a solution if and only if
K contains a vector of smallest norm and K ⊂ H \ kerF (x).

Proof. (i) Suppose VIP-(2.1) has a solution x ∈ K. Then

〈F (x), x〉 ≤ 〈F (x), y〉, for all y ∈ K. (4.1)

For y = 0, we have

‖x‖2 ≤ | 〈x, y〉 | ≤ ‖x‖ ‖y‖ ,

which implies that x = 0.

Conversely, if x = 0, then clearly (4.1) is satisfied. Therefore variational
inequality problem has a solution.

(ii) Let 0 /∈ K. Suppose the VIP-(2.1) has a solution for all y ∈ K. We
prove that K contains a vector of smallest norm. Now there exists x ∈ K such
that

〈F (x), x〉 ≤ 〈F (x), y〉, for all y ∈ K. (4.2)

Since 〈F (x), x〉 = ‖x‖2, we can see that 〈F (x), x〉 = 0 if and only if x = 0.
Therefore from (4.2), we have

‖x‖2 ≤ | 〈x, y〉 | ≤ ‖x‖ ‖y‖ , for all y ∈ K,

which implies that ‖x‖ ≤ ‖y‖ for all y ∈ K, because x 6= 0 by hypothesis.
Thus x ∈ K is a vector of smallest norm.

Next we prove that K ∩ kerF (x) = φ. In this case, there exists z ∈ K ∩
kerF (x). Thus 〈F (x), z〉 = 0 so that 〈F (x), x〉 ≤ 〈F (x), z〉, which is a contra-
diction that VIP-(2.1) has a solution. Hence K ∩ kerF (x) = φ.

Conversely, suppose K contains a vector x ∈ K of smallest norm and K ∩
kerF (x) = φ, that is, K ⊂ H \ kerF (x). But kerF (x) is a maximal subspace
of H, it is easy to see that y1, y2 ∈ K are linearly dependent. For, if y1 and y2
are linearly independent, then span{y1 ∪ kerF (x)} is a maximal subspace of H
which contradicts the maximality of kerF (x). This proves that all vectors of K
are linearly dependent. In view of Theorem 2.2, if x, y are linearly dependent
then the equality holds in Cauchy-Schwartz inequality, that is,

| 〈x, y〉 | = ‖x‖ ‖y‖ , for all y ∈ K.

Since 0 /∈ K and K is convex, so F (K) is convex. Now kerF (x) is a hyperplane
and K is a convex set such that K ∩ kerF (x) = φ. In view of Theorem 2.2,
K lies strictly on one side of the kerF (x) . Since 0 /∈ K, so 〈F (x), x〉 > 0.
Therefore 〈F (x), y〉 > 0, for all y ∈ K.
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Now ‖x‖ ≤ ‖y‖ implies that

‖x‖2 ≤ ‖x‖ ‖y‖ = |〈x, y〉| = 〈x, y〉 ,

that is, 〈F (x), x〉 ≤ 〈F (x), y〉, for all y ∈ K. Thus x is a solution of VIP(2.1).
This completes the proof. �

Example 4.2. Let X = R3 and K be the region bounded by the lines x =
1, z = 0; y = 0, z = 0; x = 3, z = 0; 2x− y = 2, z = 0. Then K is a convex set
and ‖K‖ = [1, 5] . Define F : K −→ (R3)∗ by

〈F (x), y〉 = x · y.

Let x = (1, 0, 0) ∈ K. Then

〈F (x), y〉 = x · y = (1, 0, 0) · (a, b, c) = a.

Clearly kerF (x) = Y Z plane and kerF (x) ∩ K = φ. Now 〈F (x), x〉 = x.x =

‖x‖2 = 1 and 〈F (x), y〉 = a, but 1 ≤ a ≤ 3. Thus 〈F (x), x〉 ≤ 〈F (x), y〉, for all
y ∈ K. Therefore x is a solution of VIP-(2.1).

In the next theorem, we shall make use of the following notations:

Let H be a Hilbert space. For x∗ ∈ H∗ and K ⊂ H, let

K− = {y ∈ K : 〈x∗, y〉 < 0} ,

K+ = {y ∈ K : 〈x∗, y〉 > 0}
and

K0 = {y ∈ K : 〈x∗, y〉 = 0} .
Clearly that K = K− ∪K0 ∪K+.

Now we shall consider the main result of this paper.

Theorem 4.3. Suppose K is a subset of a Hilbert space H. Let F : K −→ H∗

be a mapping. Consider the variational inequality problem to find x ∈ K such
that

〈F (x), y − x〉 ≥ 0, for all y ∈ K. (4.3)

Then we have the following statements:

(a) Suppose K− 6= φ. Then VIP-(4.3) has a solution x ∈ K if and only if
x is a vector of greatest norm in K−.

(b) Suppose K− = φ and K0 = φ. Then VIP-(4.3) has a solution x ∈ K
if and only if x is a vector of smallest norm in K.

(c) Suppose K− = φ and K0 6= φ. Then VIP-(4.3) has a solution x if and
only if x ∈ K0.
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Proof. If K is a finite set or F (x) = 0, for x ∈ K, then the proof is trivial.
Suppose F (x) 6= 0 and the cardinality of K is an infinite set. For the sake of
convenience, we denote F (x) by x∗ then the inequality (4.3) can be written as

〈x∗, x〉 ≤ 〈x∗, y〉, for all y ∈ K. (4.4)

Now by using Riesz-Representation theorem [22], there exists z ∈ H such
that 〈x∗, y〉 = 〈y, z〉 , for every y ∈ H. We claim that z 6= 0. If z = 0, then we
get x∗ = 0, which is not true. Next we see that 〈x∗, z〉 6= 0. This can be seen

from the relation 〈x∗, z〉 = ‖z‖2 . Let u, v ∈ H \ ker x∗. We prove that u, v
are linearly dependent. For M = span ({v} ∪ ker x∗) is a proper subspace of
H which properly contains ker x∗. This contradicts the fact that ker x∗ is a
maximal subspace of H. Hence u, v are linearly dependent.

Now we shall begin with the proof of the main theorem.

(a) In this case, there exists x ∈ K such that 〈x∗, x〉 < 0. If x0 is a solution
of variational inequality problem, then 〈x∗, x0〉 ≤ 〈x∗, y〉, for all y ∈ K and
hence

〈x∗, x0〉 ≤ 〈x∗, y′〉, for all y′ ∈ K−. (4.5)

As proved above, z, x0, y
′ ∈ H \ ker x∗ are linearly dependent for every

y′ ∈ K−. In view of Theorem 2.2, equality holds in Cauchy-Schwartz inequality
|〈x, y〉| ≤ ‖x‖ ‖y‖ for x, y ∈ H if and only if x and y are linearly dependent.
Hence from (4.5), we have

〈x0, z〉 ≤ 〈y′, z〉, for all y′ ∈ K−,

−〈y′, z〉 ≤ −〈x0, z〉, for all y′ ∈ K−,

|〈y′, z〉| ≤ |〈x0, z〉| , for all y′ ∈ K−

or
‖y′‖ ‖z‖ ≤ ‖x0‖ ‖z‖ , for all y′ ∈ K−.

This yields that x0 is a vector of greatest norm in K−.
Conversely, suppose that x0 ∈ K is an element of greatest norm in K−.

Then we have ∥∥y′∥∥ ‖z‖ ≤ ‖x0‖ ‖z‖ , for all y′ ∈ K−.
By reversing the arguments, we have 〈x∗, x0〉 ≤ 〈x∗, y′〉, for all y′ ∈ K−. Since
for y ∈ K0 ∪K+ we have 〈x∗, y〉 ≥ 0. Thus 〈x∗, x0〉 ≤ 〈x∗, y〉, for all y ∈ K.
Thus x0 is a solution of VIP-(4.3).

(b) In this case 〈x∗, y〉 > 0, for all y ∈ K. Let x ∈ K be a solution of
VIP-(4.3). Then 〈x∗, x〉 ≤ 〈x∗, y〉, for all y ∈ K which implies that |〈x, z〉| ≤
|〈y, z〉| , for all y ∈ K. Hence ‖x‖ ‖z‖ ≤ ‖y‖ ‖z‖ , for all z ∈ K. Thus ‖x‖ ≤
‖y‖ , for all y ∈ K so that x is a vector of smallest norm in K.
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The converse follows by reversing the arguments.

(c) Suppose K− = φ and K0 6= φ. Then 〈x∗, y〉 ≥ 0, for all y ∈ K and
〈x∗, y0〉 = 0, for some y0 ∈ K. Now if x ∈ K is a solution of VIP-(4.3) then
〈x∗, x〉 ≤ 〈x∗, y〉, for all y ∈ K. This implies that 0 ≤ 〈x∗, x〉 ≤ 〈x∗, y0〉 = 0.
Hence 〈x∗, x〉 = 0. Thus x ∈ K0.

Conversely, suppose x ∈ K0. Then we show that x is a solution of VIP-
(4.3). Now 〈x∗, x〉 = 0 and 〈x∗, y〉 ≥ 0, for all y ∈ K. Therefore we can
conclude that 〈x∗, x〉 ≤ 〈x∗, y〉, for all y ∈ K. This proves that x is a solution
of VIP-(4.3). �

Corollary 4.4. Suppose K is a closed convex subset of H and x∗(K) ⊆ R+.
Then VIP-(4.1) has a unique solution.

Proof. By Theorem 4.3-(b), x ∈ K is a solution of variational inequality prob-
lem VIP-(4.3) if and only if x is a vector of smallest norm in K. But K has a
unique vector of smallest norm. Thus x is a unique solution of VIP-(4.1). �

Example 4.5. Let H = R2 and K be the region defined by −2 ≤ x ≤ 2; 1 ≤
y ≤ 2. For x = (x1, x2) ∈ K, define F : K −→ (R2)∗ by

〈F (x), (y1, y2)〉 = x1y2, for (y1, y2) ∈ R2.

Then, clearly kerF (x) =
{

(y1, y2) ∈ R2 : y1 = 0
}

= Y − axis. For x =
(−2, 2), K− = [−2, 2] × [1, 2] \ {(x1, y1) ∈ K : x1 = 0} , which is nonempty.
Now x = (−2, 2) is an element in K− of greatest norm. In view of Theorem
4.3(a), x = (−2, 2) is a solution of VIP-(4.1).

Example 4.6. Let H = R3 and and K be the region described by 1 ≤ x ≤
2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1. For x = (x1, x2, x3) ∈ K, define F : K −→ (R3)∗ by

〈F (x), (y1, y2, y3)〉 = x1y1, for (y1, y2, y3) ∈ R3.

Then F (x) is a bounded linear functional on R3. If (y1, y2, y3) ∈ R3 and
〈F (x), y〉 = x1y1 = 0, then y1 = 0 because x1 6= 0 for (x1, x2, x3) ∈ K. That
is, kerF (x) is Y Z plane. Clearly K ∩kerF (x) = φ. Now K0 = φ, K− = φ and
x = (1, 0, 0) is an element of smallest norm in K. In view of Theorem 4.3-(b),
x = (1, 0, 0) is a solution of VIP-(4.1).

Example 4.7. Let H = R2 and and K be the region defined by

1 ≤ x ≤ 2; 0 ≤ y ≤ 2.

For x = (x1, x2) ∈ K, define F : K −→ (R2)∗ by

〈F (x), (y1, y2)〉 = x1y2, for (y1, y2) ∈ R2.
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Then F (x) ∈ (R2)∗ and kerF (x) = {(x, y) : y = 0} = X−axis. If we take
x = (2, 0) ∈ K, then K0 = {(y1, y2) : 1 ≤ y1 ≤ 2, y2 = 0} .
Also K− = φ. Therefore in view of Theorem 4.3-(c), every element of K0 is a
solution of VIP-(4.1). Thus VIP-(4.1) can have infinitely many solutions.

In the following theorem, we characterize the existence of the solutions of
quasi variational inequality problem.

For the set-valued map K : H → 2H and for the mapping F : H → H∗, the
following notations will be used:

K−x = {y ∈ Kx : 〈F (x), y〉 < 0} ,

K+
x = {y ∈ Kx : 〈F (x), y〉 > 0}

and

K0
x = {y ∈ Kx : 〈F (x), y〉 = 0} .

Then, clearly Kx = K−x ∪K+
x ∪ K0

x.

Theorem 4.8. Let H be a Hilbert space and let K : H → 2H be a set-valued
mapping. Consider the quasi-variational inequality problem (for short, QVIP):
Find x ∈ Kx such that

〈F (x), y − x〉 ≥ 0, for all y ∈ Kx. (4.6)

Then we have the following statements:

(a) Suppose K−x 6= φ. Then QVIP-(4.6) has a solution x ∈ Kx if and only
if x is a vector of greatest norm in K−x .

(b) Suppose K−x = φ and K0
x = φ. Then QVIP-(4.6) has a solution x ∈ Kx

if and only if x is a vector of smallest norm in Kx.
(c) Suppose K−x = φ and K0

x 6= φ. Then QVIP-(4.6) has a solution x if
and only if x ∈ K0

x.

Proof. If Kx is a finite for x ∈ H or F (x) = 0, then the proof of this theorem
is trivial. Therefore we suppose that Kx is an infinite set and F (x) 6= 0.
The proof of the theorem is obtained on the same line as in the proof of the
Theorem 4.1. �

Conclusion: A criterion for well-posed problem in locally convex Hausdorff
topological vector space setting is obtained. The characterizations for the
existence of solutions of variational inequality problem and quasi-variational
inequality problem are obtained even when the underlying set K is not convex.
It has been shown that in some cases there are infinitely many solutions of
(VIP) and (QVIP).
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