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Abstract. This paper gives sufficient conditions to ensure the existence and stability of

solutions for generalized nonlinear fractional integrodifferential equations of order α (1 < α <

2). The main theorem asserts the stability results in a weighted Banach space, employing the

Krasnoselskii’s fixed point technique and the existence of at least one mild solution satisfying

the asymptotic stability condition. Two examples are provided to illustrate the theory.

1. Introduction

During the last decade, with the advent of fractional differential equations
as a frontier area of research, different concepts of fractional derivatives and
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integrals are being introduced and used by various researchers, for example,
Riemann-Lioville, Caputo, Grunwald-Letnikov, Riesz and Hadamard deriva-
tives and integrals [18, 21]. It is known that fractional derivatives essen-
tially capture the non-local nature of the dynamics. However, while dealing
with increasingly complex systems, different types of non-locality arise and
researchers try to fit in by generalizing the existing fractional derivatives.
Almeida et al. [3] introduced a generalized fractional integral and derivative
that interpolates the Caputo and Caputo-Hadamard fractional derivatives.
Here the kernel is generalized using a parameter ρ that helps in capturing a
variety of non-local phenomena and some direct applications found in the liter-
ature are image encryption and quantum mechanics related to chaos problems
arising in fractional dynamical systems. For more properties of this derivative,
we refer the readers to [2, 3, 13].

A variety of literature can be found in discussing the existence, uniqueness
and qualitative properties of the fractional integrodifferential equations, for
example, see [1, 5, 9, 14, 15]. Stability of these systems plays a crucial part
in stabilizability and controllability problems. There are many notions of sta-
bility and various methods to study stability problems. We choose the fixed
point method to establish stability results since it only requires conditions of
averaging nature which is advantageous over other methods using pointwise
conditions. Only fewer works are reported using this method, for example, see
[4, 16] and references therein. Burton and Zhang [10] generalized Schaefer’s
and Kranoselskii’s fixed point theorems suitable to study fractional differen-
tial equations (FDEs). Ge and Kou [12] adopted these fixed point theorems to
study the stability of FDEs and Makhlouf et al. [7] followed a similar method
to study the existence and stability of generalized FDEs. On the other hand,
very recently several researchers investigated the existence of solutions of gen-
eralized FDEs and some of the works discussed various notions of stability on
generalized fractional differential equations [7, 8, 17, 22, 23, 25].

Motivated by the above works, we study the existence and stability of the
following generalized nonlinear fractional integrodifferential equations

CDα,ρ

t+0
x(t) = f(t, x(t),

∫ t

t0

h(t, s, x(s))ds), t ≥ t0, (1.1)

x(t0) = x0, x′(t0) = x1, (1.2)

where 1 < α < 2, 0 < ρ 6= 1, x0, x1 ∈ R, I := [t0,∞) and the functions
f : I × R × R → R and h : I × I × R → R are continuous with f(t, 0, 0) = 0.
The nonlinear function f of this type with integral kernel h occur in math-
ematical problems concerning electromagnetic waves in dielectric media [24],
ruin probabilities in financial risk theory [11], among many more applications
found in applied physics.
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First the initial value problem (1.1)-(1.2) is converted into an equivalent
integral equation which is a sum of two operators. One is a contraction and
the other one is compact and hence Krasnoselskii’s fixed point theorem is
applied. Existence and stability results are established in a weighted Banach
space.

The rest of the paper is organized as follows. In Section 2, basic notations,
results, lemmas and theorems are stated. The weighted Banach space and
modified compactness criterion are given in this section. In Section 3, the
main results are presented. Examples are provided in section 4 to validate the
theory.

2. Preliminaries

Let us recall some basic definitions from fractional calculus needed for our
work. We adopt the definitions and other properties of generalized fractional
integrals and derivatives from [3] and [7].

Definition 2.1. (Generalized fractional integral)
Let f ∈ L1[a, b]. Then the generalized fractional integral of the function f is
defined as

Iα,ρ
a+
f(t) =

ρ1−α

Γ(α)

∫ t

a

sρ−1f(s)

(tρ − sρ)1−α
ds,

where a > 0 and α, ρ > 0.

Definition 2.2. (Generalized fractional derivative)
Let f ∈ ACn[a, b]. Then the generalized fractional derivative of the function
f is defined as

CDα,ρ
a+
f(t) =

ρα−n+1

Γ(n− α)

∫ t

a

s(ρ−1)(1−n)

(tρ − sρ)α−n+1
f (n)(s)ds,

where a > 0, α, ρ > 0 and n is the smallest integer greater than α.

The relationship between these two fractional operators is the following:

CDα,ρ
a+ f(t) = I1−α,ρa+

(
t1−ρ

d

dt
f

)
(t).

Remark 2.3. ([6])

(i) (Semigroup property) For any continuous function f , the semigroup
property for generalized fractional integral operators holds.

Iα,ρ
a+
Iβ,ρ
a+
f(t) = Iα+β,ρ

a+
f(t)

for α, β > 0 and ρ > 0.
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(ii) If f is a constant, then the generalized fractional derivative

CDα,ρ
a+
f(t) = 0.

Lemma 2.4. ([7]) For 1 < α < 2, the following relationship holds

CDα,ρ
a+
f(t) = CDα−1,ρ

a+

(∫ t

a
s1−ρf (2)(s)ds

)
.

Lemma 2.5. ([7]) Let u ∈ C(I,R), 1 < α < 2 and 0 < ρ 6= 1. Then x is a
solution of the initial value problem:

CDα,ρ

t+0
x(t) = u(t), t ≥ t0, (2.1)

x(t0) = x0, x′(t0) = x1, (2.2)

if and only if

x(t) = x0

[(
t

t0

)1−ρ
− (1− ρ)t1−ρ

tρ0

∫ t

t0

1

s2−2ρ
ds

]

+x1(tt0)
1−ρ

∫ t

t0

1

s2−2ρ
ds

+ρ(1− ρ)t1−ρ
∫ t

t0

∫ t

τ

1

s2−2ρ
x(τ)

τ1+ρ
ds dτ

+
ρ2−αt1−ρ

Γ(α− 1)

∫ t

t0

∫ t

τ

1

s2−2ρ
τρ−1

(sρ − τρ)2−α
u(τ)ds dτ. (2.3)

Using the above Lemma 2.5, we define the solution to our initial value prob-

lem (1.1)-(1.2) as follows. For simplicity we take zx(t) :=

∫ t

t0

h(t, s, x(s))ds.

Definition 2.6. The function x is defined as a mild solution of the initial
value problem (1.1)-(1.2) if it satisfies

x(t) = x0

[(
t

t0

)1−ρ
− (1− ρ)t1−ρ

tρ0

∫ t

t0

1

s2−2ρ
ds

]

+x1(tt0)
1−ρ

∫ t

t0

1

s2−2ρ
ds

+ρ(1− ρ)t1−ρ
∫ t

t0

∫ t

τ

1

s2−2ρ
x(τ)

τ1+ρ
ds dτ (2.4)

+
ρ2−αt1−ρ

Γ(α− 1)

∫ t

t0

∫ t

τ

1

s2−2ρ
τρ−1

(sρ − τρ)2−α
f(τ, x(τ), zx(τ))dsdτ.
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Definition 2.7. The generalized FDE (1.1) subject to the initial conditions
(1.2) is said to be stable in a Banach space E, if for every ε > 0, there exists a
δ > 0 (δ depends only on ε) such that |x0|+ |x1| < δ implies that there exists
a mild solution x(t) defined on I which satisfies ‖x‖ ≤ ε.

Let us introduce the following weighted Banach space and establish our
stability results in it. Let 0 < ρ 6= 1, 1 < α < 2 and g : I → R+ be the weight

function such that g(t) ≥ tαρ
2+3 and g( ts)g(s) ≤ g(t) for all t, s ≥ t0. Let us

define the weighted space as

E :=

{
x ∈ C(I,R) : sup

t≥t0

|x(t)|
g(t)

<∞
}
.

Observe that E is a Banach space equipped with the norm ‖x‖ = sup
t≥t0

|x(t)|
g(t)

.

For further details on this Banach space, refer [19]. For any ε > 0, let

F(ε) = {x ∈ E : ‖x‖ ≤ ε}.

Lemma 2.8. ([7]) Let 0 < ρ 6= 1 and 1 < α < 2. Then for all t ≥ t0, there
exist M1 := M1(t0, α, ρ) > 0, 0 < M2 := M2(ρ) < 1, M3 := M3(α, ρ) > 0 such
that ∣∣∣∣(ρ− 1)t1−ρ

g(t)

∫ t

t0

1

s2−2ρ
ds

∣∣∣∣ ≤M1, (2.5)∣∣∣∣(1− ρ)ρt1−ρ

g(t)

∫ t

t0

∫ t

τ

1

s2−2ρ
x(τ)

τ1+ρ
ds dτ

∣∣∣∣ ≤M2‖x‖, (2.6)

k(t, τ)

g( tτ )
≤M3

ταρ
2

tαρ2−αρ+1
, (2.7)

where

k(t, τ) =


ρ2−α

Γ(α− 1)

(
t

τ

)1−ρ ∫ t

τ

1

s2−2ρ
1

(sρ − τρ)2−α
ds, t− τ > 0,

0, t− τ ≤ 0.

Lemma 2.9. ([20]) Let X be a nonempty closed convex subset of a Banach
space (Y, ‖.‖). Suppose that A and B map X into Y such that

(1) Ax+By ∈ X for all x, y ∈ X,
(2) A is continuous and AX is contained in a compact set of Y ,
(3) B is a contraction with contraction constant c < 1.

Then there is an x ∈ X with Ax+Bx = x.
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Lemma 2.10. ([19]) Let F be a subset of the Banach space E. Then F is
relatively compact in E if the following conditions are satisfied:

(1) {x(t)/g(t) : x(t) ∈ F} is uniformly bounded,
(2) {x(t)/g(t) : x(t) ∈ F} is equicontinuous on any compact interval of

R+,
(3) {x(t)/g(t) : x(t) ∈ F} is equiconvergent at infinity, that is, for any

given ε > 0, there exists a T > t0 such that for all x ∈ F(ε) and
t1, t2 > T , |x(t2)/g(t2)− x(t1)/g(t1)| < ε holds.

3. Main results

Before proving the main results, let us introduce the following hypotheses:

(H1) There exist constants η1, η2 > 0 and a continuous function ψ : R+ ×
(0, η1]× (0, η2]→ R+ such that

|f(t, ug(t), vg(t))|
g(t)

≤ ψ(t, |u|, |v|) (3.1)

for all t ≥ t0, 0 < |u| ≤ η1, 0 < |v| ≤ η2.

(H2) There exists an L1([t0,∞)) integrable function m : [t0,∞)× [t0,∞)→
R such that

|h(t, s, x(s))| ≤ m(t, s)|x(s)| (3.2)

and

sup
t≥t0

∫ t

t0

m(t, s)ds <∞. (3.3)

(H3) There exists a constant β1 > 0 such that

sup
t≥t0

∫ t

t0

k(t, τ)

g(t/τ)

ψ(τ, r1, r2)

r
dτ ≤ β1 < 1−M2 (3.4)

holds for every 0 < r1 ≤ η1 and 0 < r2 ≤ η2, where r = min(r1, r2),
M2 is as defined in (2.6), ψ(t, r1, r2) is nondecreasing in r1, r2 for fixed

t and tαρ
2
ψ(t, r1, r2) ∈ L1([t0,∞)) in t for fixed r1, r2.

Theorem 3.1. Let 1 < α < 2 and 0 < ρ 6= 1. Suppose that hypotheses
(H1)− (H3) hold. Then

(i) the generalized nonlinear FDEs (1.1)-(1.2) is stable in the Banach
space E;
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(ii) there exists at least one mild solution to the generalized nonlinear FDEs
(1.1)-(1.2) such that

lim
t→∞

x(t)

g(t)
= 0.

Proof. (i) Let 0 < ε < η1, η2 and take δ <
(1−M2 − β1)ε

M4 +M1(t
−ρ
0 + t1−ρ0 )

. Let us prove

that if |x0|+ |x1| < δ then there exists a mild solution x(t) defined on [t0,+∞)
which satisfies ‖x‖ ≤ ε.

Consider the nonempty closed convex subset

F(ε) = {x : x ∈ E, ‖x‖ ≤ ε} ⊂ E,

which is also a Banach space.
We define two mappings A,B on F(ε) as follows:

Ax(t) =
ρ2−αt1−ρ

Γ(α− 1)

∫ t

t0

[∫ t

τ

1

s2−2ρ
τρ−1

(sρ − τρ)2−α
f(τ, x(τ), zx(τ))ds

]
dτ

=

∫ t

t0

k(t, τ)f(τ, x(τ), zx(τ))dτ, (3.5)

Bx(t) = x0

((
t

t0

)1−ρ
+

(ρ− 1)t1−ρ

tρ0

∫ t

t0

1

s2−2ρ
ds

)
+ x1(tt0)

1−ρ

×
∫ t

t0

1

s2−2ρ
ds+ (1− ρ)ρt1−ρ

∫ t

t0

[∫ t

τ

1

s2−2ρ
x(τ)

τ1+ρ
ds

]
dτ. (3.6)

Obviously, for x ∈ F(ε), both Ax and Bx are continuous functions on [t0,+∞).
By Hypothesis (H2), we see that

|zx(t)| ≤
∫ t

t0

|h(t, s, x(s))|ds ≤
∫ t

t0

m(t, s)|x(s)|ds ≤ c|x(t)|,

where c := sup
t≥t0

∫ t

t0

m(t, s)ds <∞. Thus we have

‖zx‖ ≤ c‖x‖. (3.7)
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Since ψ(t, r1, r2) is nondecreasing in r1, r2 for fixed t and by (3.1)-(3.4) and
(3.7), for any t ≥ t0 and x ∈ F(ε), we have

|Ax(t)|
g(t)

=
1

g(t)

∣∣∣∣∫ t

t0

k(t, τ)f(τ, x(τ), zx(τ))dτ

∣∣∣∣
≤

∫ t

t0

k(t, τ)

g(t/τ)

|f(τ, x(τ), zx(τ))|
g(τ)

dτ

≤
∫ t

t0

k(t, τ)

g(t/τ)
ψ

(
τ,
|x(τ)|
g(τ)

,
|zx(τ)|
g(τ)

)
dτ

≤
∫ t

t0

k(t, τ)

g(t/τ)
ψ (τ, ε, cε) dτ

≤ β1 min(ε, cε) ≤ β1ε.
Now,

|Ax(t)|
g(t)

≤ β1ε <∞. (3.8)

On the other hand, there exists M4 = M4(t0, α, ρ) such that

(t/t0)
1−ρ

g(t)
≤ t1−ρ

t1−ρ0 tαρ2+3
≤ 1

t1−ρ0 tαρ2+ρ+2
≤ 1

tαρ
2+3

0

:= M4. (3.9)

By (2.5), (2.6) and (3.9), we see that

|Bx(t)|
g(t)

≤ |x0|
g(t)

∣∣∣∣∣
(
t

t0

)1−ρ
+

(ρ− 1)t1−ρ

tρ0

∫ t

t0

1

s2−2ρ
ds

∣∣∣∣∣+
|x1|
g(t)

(tt0)
1−ρ

×
∫ t

t0

1

s2−2ρ
ds+

(1− ρ)ρt1−ρ

g(t)

∫ t

t0

[∫ t

τ

1

s2−2ρ
|x(τ)|
τ1+ρ

ds

]
dτ

≤ |x0|
(
M4 +

1

tρ0
M1

)
+ |x1|t1−ρ0 M1 +M2ε <∞. (3.10)

Then AF(ε) ⊆ E and BF(ε) ⊆ E.
Next, we shall use Lemma 2.9 to prove that there exists at least one fixed

point to the operator A + B in F(ε). For clarity, let us divide the proof into
three steps.

Step 1: We will prove that Ax+By ∈ F(ε) for all x, y ∈ F(ε). Let x, y ∈ F(ε),
from (3.8) and (3.10), we obtain,∣∣∣∣Ax(t) +By(t)

g(t)

∣∣∣∣ ≤ |x0|(M4 + t−ρ0 M1) + |x1|t1−ρ0 M1 +M2ε+ β1ε

≤ (M4 +M1(t
−ρ
0 + t1−ρ0 ))δ + (M2 + β1)ε ≤ ε,

which implies that Ax+By ∈ F(ε) for all x, y ∈ F(ε).
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Step 2: We will prove that A is continuous and AF(ε) is relatively compact
in E. First, we will show that A is continuous. Let (xn)n∈N be a sequence
such that xn → x in F(ε).

Using (3.1), we get

ταρ
2 |f(τ, xn(τ), zxn(τ))− f(τ, x(τ), z(τ))|

g(τ)

≤ ταρ
2 |f(τ, xn(τ), zxn(τ))|+ |f(τ, x(τ), z(τ))|

g(τ)

≤ ταρ
2

(
ψ

(
τ,
|xn(τ)|
g(τ)

,
|zxn(τ)|
g(τ)

)
+ ψ

(
τ,
|x(τ)|
g(τ)

,
|z(τ)|
g(τ)

))
≤ 2ταρ

2
ψ(τ, ε, cε) ∈ L1([t0,+∞)).

It follows from (2.7) that for any t ≥ t0,
|Axn(t)−Ax(t)|

g(t)

=
1

g(t)

∣∣∣∣∫ t

t0

k(t, τ)[f(τ, xn(τ), zxn(τ))− f(τ, x(τ), zx(τ))]dτ

∣∣∣∣
≤

∫ t

t0

k(t, τ)

g(t/τ)

|f(τ, xn(τ), zxn(τ))− f(τ, x(τ), zx(τ))|
g(τ)

dτ

≤ M3

tαρ
2−αρ+1

0

∫ t

t0

ταρ
2 |f(τ, xn(τ), zxn(τ))− f(τ, x(τ), zx(τ))|

g(τ)
dτ

≤ M3

tαρ
2−αρ+1

0

∫ ∞
t0

ταρ
2 |f(τ, xn(τ), zxn(τ))− f(τ, x(τ), zx(τ))|

g(τ)
dτ

and hence

‖Axn −Ax‖ ≤
M3

tαρ
2−αρ+1

0

∫ ∞
t0

ταρ
2 |f(τ, xn(τ), zxn(τ))− f(τ, x(τ), zx(τ))|

g(τ)
dτ.

Note that

|zxn(t)− zx(t)| =

∣∣∣∣∫ t

t0

h(t, s, xn(s))ds−
∫ t

t0

h(t, s, x(s))ds

∣∣∣∣
≤

∫ t

t0

(|h(t, s, xn(s))| − |h(t, s, x(s))|) ds

≤
∫ t

t0

m(t, s) (|xn(s)| − |x(s)|) ds

≤ c (|xn(t)| − |x(t)|) ≤ c|xn(t)− x(t)|.

Hence we see that |zxn(τ)− zx(τ)| ≤ c|xn(τ)− x(τ)|.
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Now we have for any τ ≥ t0,∣∣∣∣xn(τ)− x(τ)

g(τ)

∣∣∣∣ ≤ ‖xn − x‖,
so lim

n→∞
|xn(τ)−x(τ)| = 0 and similarly lim

n→∞
|zxn(τ)−zx(τ)| = 0 for all τ ≥ t0.

Since we know f is continuous in [t0,∞)× R× R, we have

lim
n→∞

|f(τ, xn(τ), zxn(τ))− f(τ, x(τ), zx(τ))|
g(τ)

= 0 for all τ ≥ t0.

Then by dominated convergence theorem, it follows that ‖Axn −Ax‖ → 0 as
n→∞. Thus, A is continuous in F(ε).

Secondly let us prove that AF(ε) is relatively compact in E. For all t ≥ t0,
it follows from (2.7) that there exists a constant M3 = M3(α, ρ) such that

k(t, τ)

g(t/τ)
≤M3

ταρ
2

tαρ2−αρ+1
.

Moreover, for any T ≥ t0, the function
k(t, τ)

g(t/τ)
is uniformly continuous on

{(t, τ) : t0 ≤ τ ≤ t ≤ T}.
We have for any x ∈ F(ε), t1, t2 ∈ [t0, T ] and t1 < t2,∣∣∣∣Ax(t2)

g(t2)
− Ax(t1)

g(t1)

∣∣∣∣
≤
∣∣∣∣∫ t2

t0

k(t2, τ)

g(t2)
f(τ, x(τ), zx(τ))dτ −

∫ t1

t0

k(t1, τ)

g(t1)
f(τ, x(τ), zx(τ))dτ

∣∣∣∣
≤
∫ t1

t0

∣∣∣∣k(t2, τ)

g(t2)
− k(t1, τ)

g(t1)

∣∣∣∣ |f(τ, x(τ), zx(τ))|dτ

+

∫ t2

t1

∣∣∣∣k(t2, τ)

g(t2)

∣∣∣∣ |f(τ, x(τ), zx(τ))|dτ

≤
∫ t1

t0

∣∣∣∣k(t2, τ)g(τ)

g(t2)
− k(t1, τ)g(τ)

g(t1)

∣∣∣∣ψ(τ, ε, cε)dτ

+

∫ t2

t1

∣∣∣∣k(t2, τ)g(τ)

g(t2)

∣∣∣∣ψ(τ, ε, cε)dτ

≤
∫ t1

t0

∣∣∣∣k(t2, τ)g(τ)

g(t2)
− k(t1, τ)g(τ)

g(t1)

∣∣∣∣ψ(τ, ε, cε)dτ

+
M3

tαρ
2−αρ+1

0

∫ t2

t1

ταρ
2
ψ(τ, ε, cε)dτ,
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as t2 → t1 which tells us that
{
Ax(t)
g(t) , x(t) ∈ F(ε)

}
is equicontinuous on any

compact interval of [t0,∞). To prove that AF(ε) is relatively compact in E, by

Lemma 2.9, it still remains to show that
{
Ax(t)
g(t) , x(t) ∈ F(ε)

}
is equiconvergent

at infinity. By (2.7), we have

|Ax(t)|
g(t)

≤
∫ t

t0

k(t, τ)

g(t)
|f(τ, x(τ), zx(τ)|dτ ≤

∫ t

t0

k(t, τ)

g(t/τ)
ψ(τ, ε, cε)dτ

≤ M3

tαρ2−αρ+1

∫ t

t0

ταρ
2
ψ(τ, ε, cε)dτ

→ 0 as t→∞. (3.11)

Thus, we can assert that
{
Ax(t)
g(t) , x(t) ∈ F(ε)

}
is equiconvergent at infinity.

Step 3: Let us show that B : F(ε) → E is a contraction mapping. By (2.6),
for any x1, x2 ∈ F(ε), we get that

sup
t≥t0

∣∣∣∣Bx1(t)g(t)
− Bx2(t)

g(t)

∣∣∣∣ ≤ (1− ρ)ρt1−ρ

g(t)

∫ t

t0

[∫ t

τ

1

s2−2ρ
|x1(τ)− x2(τ)|

τ1+ρ
ds

]
dτ

≤ M2‖x1 − x2‖.

Through Lemma 2.8, we can assert that there exists atleast one fixed point of
the operator A+B in F(ε), which is a mild solution of (1.1)-(1.2). Hence the
generalized nonlinear FDEs (1.1)-(1.2) is stable in the Banach space E.

(ii) For any 0 < ε < η1, η2, let us define

F∗(ε) =

{
x ∈ F(ε), lim

t→∞

x(t)

g(t)
= 0

}
.

We show that Ax+By ∈ F∗(ε) for any x, y ∈ F∗(ε), that is, we need to show

that
Ax(t) +By(t)

g(t)
→ 0 as t→∞. In fact,

Ax(t) +Bx(t)

g(t)
=

1

g(t)

[∫ t

t0

k(t, τ)f(τ, x(τ), zx(τ))dτ

+x0

((
t

t0

)1−ρ
+

(ρ− 1)t1−ρ

tρ0

∫ t

t0

1

s2−2ρ
ds

)

+x1

(
(tt0)

1−ρ
∫ t

t0

1

s2−2ρ
ds

)
+ (1− ρ)ρt1−ρ

∫ t

t0

[∫ t

τ

1

s2−2ρ
x(τ)

τ1+ρ
ds

]
dτ

]
.
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Since we know g(t) ≥ tαρ2+3, we obtain

t1−ρ

g(t)
≤ t1−ρ

tαρ2+3
=

1

tαρ2+ρ+2
→ 0 as t→∞ (3.12)

and
t1−ρ

g(t)

∫ t

t0

1

s2−2ρ
ds→ 0 as t→∞. (3.13)

Moreover, we see that

t1−ρ

g(t)

∫ t

t0

(∫ t

τ

1

s2−2ρ
x(τ)

τ1+ρ
ds

)
dτ ≤ t1−ρ

∫ t

t0

(∫ t

τ

1

g(t/τ)

1

s2−2ρ
1

τ1+ρ
x(τ)

g(τ)
ds

)
dτ,

and let us consider the following two cases.
Case 1: For ρ ∈ (0, 1), we have

t1−ρ
∫ t

t0

(∫ t

τ

1

g(t/τ)

1

s2−2ρ
1

τ1+ρ
x(τ)

g(τ)
ds

)
dτ ≤ 1

tαρ2+ρ+1

∫ t

t0

ταρ
2+ρx(τ)

g(τ)
dτ.

Since lim
τ→∞

x(τ)

g(τ)
= 0, there exists T1 > t0 such that for all t ≥ T1,

|x(t)|
g(t)

< (αρ2 + ρ+ 1)
ε

2
.

Moreover there exists a T2 > T1, such that for all t ≥ T2,
1

t

∫ T1

t0

|x(τ)|
g(τ)

dτ <
ε

2
.

Then we have for t ≥ T2,
1

tαρ2+ρ+1

∫ t

t0

ταρ
2+ρ |x(τ)|

g(τ)
dτ

=
1

tαρ2+ρ+1

∫ T1

t0

ταρ
2+ρ |x(τ)|

g(τ)
dτ +

1

tαρ2+ρ+1

∫ t

T1

ταρ
2+ρ |x(τ)|

g(τ)
dτ

≤ 1

t

∫ T1

t0

|x(τ)|
g(τ)

dτ +
1

tαρ2+ρ+1

|x(t)|
g(t)

∫ t

T1

ταρ
2+ρdτ

<
ε

2
+ (αρ2 + ρ+ 1)

ε

2

(
1

αρ2 + ρ+ 1

)
<

ε

2
+
ε

2
= ε.

Case 2: For ρ ∈ (1,∞), we have

t1−ρ
∫ t

t0

(∫ t

τ

1

g(t/τ)

1

s2−2ρ
1

τ1+ρ
x(τ)

g(τ)
ds

)
dτ ≤ 1

tαρ2−ρ+3

∫ t

t0

ταρ
2−ρ+2x(τ)

g(τ)
dτ.
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Since lim
τ→∞

x(τ)

g(τ)
= 0, there exists T1 > t0 such that for all t ≥ T1,

|x(t)|
g(t)

< (αρ2 − ρ+ 3)
ε

2
.

Moreover there exists a T2 > T1, such that for all t ≥ T2,

1

t

∫ T1

t0

|x(τ)|
g(τ)

dτ <
ε

2
.

Then we have for t ≥ T2,

1

tαρ2−ρ+3

∫ t

t0

ταρ
2−ρ+2 |x(τ)|

g(τ)
dτ

=
1

tαρ2−ρ+3

∫ T1

t0

ταρ
2−ρ+2 |x(τ)|

g(τ)
dτ +

1

tαρ2−ρ+3

∫ t

T1

ταρ
2−ρ+3 |x(τ)|

g(τ)
dτ

≤ 1

t

∫ T1

t0

|x(τ)|
g(τ)

dτ +
1

tαρ2−ρ+3

|x(t)|
g(t)

∫ t

T1

ταρ
2−ρ+2dτ

<
ε

2
+ (αρ2 − ρ+ 3)

ε

2

(
1

αρ2 − ρ+ 3

)
<

ε

2
+
ε

2
= ε.

Based on the previous calculations, we get

t1−ρ

g(t)

∫ t

t0

(∫ t

τ

1

s2−2ρ
x(τ)

τ1+ρ
ds

)
dτ → 0 as t→∞. (3.14)

Also by (3.11) we obtain

Ax(t)

g(t)
=

∫ t

t0

k(t, τ)f(τ, x(τ), zx(τ))dτ → 0 as t→∞. (3.15)

Then by using (3.12)-(3.15), we assert that

Ax(t) +By(t)

g(t)
→ 0 as t→∞. (3.16)

Hence we proved that there exists at least one mild solution to (1.1)-(1.2) such
that

lim
t→∞

x(t)

g(t)
= 0.

�
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4. Examples

Example 4.1. Consider the nonlinear fractional initial value problem:

CD
3
2
, 1
2x(t) =

1

10

[
x

t6
+

x3

1 + t12
+

1

1 + t8

(∫ t

1

x(s)

et+s
ds

)2
]
, (4.1)

x(1) = x0, x
′(1) = x1. (4.2)

Let us choose g(t) = t4 and let

E =

{
x ∈ C([1,∞),R) : sup

t≥1

|x(t)|
t4

<∞
}
.

Set

f(t, x, zx) =
1

10

(
x

t6
+

x3

1 + t12
+

z2x
1 + t8

)
where zx :=

∫ t

1

x(s)

et+s
ds. Then we have |zx(t)| ≤ 1

e2
|x(t)| and observe that

|f(t, ug(t), zug(t))|
g(t)

=
1

10

∣∣∣ut4t6 + (ut4)3

1+t12
+ (zut4)2

1+t8

∣∣∣
t4

≤ 1

10

(
|u|
t6

+
|u|3

t4
+
|zu|2

t4

)
.

So let us take

ψ(t, r1, r2) =
1

10

(
r1
t6

+
r31
t4

+
r22
t4

)
and further ∫ ∞

1
t3/8ψ(t, r1, r2)dt ≤

1

10

(
r1
4

+
r31
2

+
r22
2

)
for fixed r1, r2 and hence t3/8ψ(t, r1, r2) ∈ L1([1,∞)).

We see that

sup
t≥1

∫ t

1

k(t, τ)

g(t/τ)

ψ(t, r1, r2)

r
dτ ≤ 2

√
2√
π

(
r1
5r

+
r31
3r

+
r22
3r

)
,

where r := min(r1, r2).
Then there exist η1, η2 > 0 such that

sup
t≥1

∫ t

1

k(t, τ)

g(t/τ)

ψ(t, r1, r2)

r
dτ ≤ 4

5
< 1− 2

15
=

13

15
,

for all 0 < r1 ≤ η1 and 0 < r2 ≤ η2. Hence by Theorem 3.1, we conclude that
the nonlinear fractional integrodifferential equation (4.1)-(4.2) is stable in the
Banach space E and there exists at least one mild solution which satisfies

lim
t→∞

x(t)

g(t)
= 0.



Existence and stability results of generalized fractional integrodifferential equations 807

Example 4.2. Consider the nonlinear fractional initial value problem:

CD
4
3
,3x(t) =

1

t5
arctan

(
t3 + x1/3 +

(∫ t

1

sin(x(s))

(t− s)2
ds

)1/3
)
, (4.3)

x(1) = x0, x
′(1) = x1. (4.4)

Let us choose g(t) = t15 and let

E =

{
x ∈ C([1,∞),R) : sup

t≥1

|x(t)|
t15

<∞
}
.

Take

f(t, x, zx) =
1

t5
arctan(t3 + x1/3 + z1/3x )

where zx :=

∫ t

1

sin(x(s))

(t− s)2
ds. Note that |zx(t)| ≤ 1

4
|x(t)| and

|f(t, ug(t), zug(t))|
g(t)

=
1

t5

∣∣arctan
(
t3 + (ut15)1/3 + (zut

15)1/3
)∣∣

t15

≤

(
t3

t5
+ |u1/3|t5

t5
+ |zu|1/3t5

t5

)
t15

≤ 1

t17
+
|u|1/3

t15
+
|zu|1/3

t15
.

So let us take

ψ(t, r1, r2) =

(
1

t17
+
r
1/3
1

t15
+
r21/3

t15

)
and further ∫ ∞

1
t12ψ(t, r1, r2)dt ≤

1

4
+
r
1/3
1

2
+
r
1/3
2

2

for fixed r1, r2 and hence t12ψ(t, r1, r2) ∈ L1([1,∞)).
We see that

sup
t≥1

∫ t

1

k(t, τ)

g(t/τ)

ψ(t, r1, r2)

r
dτ ≤ 1

31/3Γ(4/3)

(
1

16r
+
r
1/3
1

14r
+
r
1/3
2

14r

)
,

where r := min(r1, r2). Then there exist η1, η2 > 0 such that

sup
t≥1

∫ t

1

k(t, τ)

g(t/τ)

ψ(t, r1, r2)

r
dτ ≤ 1

5
< 1− 1

2
=

1

2
,

for all 0 < r1 ≤ η1 and 0 < r2 ≤ η2. Hence by Theorem 3.1, we conclude that
the nonlinear fractional integrodifferential equation (4.3)-(4.4) is stable in the
Banach space E and there exists at least one mild solution which satisfies

lim
t→∞

x(t)

g(t)
= 0.
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