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Abstract. If p(z) is a polynomial of degree n having all its zeros in |z| < k, k < 1, then for
pR > k? and p < R, Aziz and Zargar [4] proved that

(R+E)" 1 {
(p+ k)"

We prove a generalized L" extension of the above result for a more general class of polyno-

masx ()] + i (2}

/
>
max /()] > n max

lzl=

mials p(2) = anz™ + > an—z" ", 1 < p < n. We also obtain another L" analogue of a
v=p
result for the above general class of polynomials proved by Chanam and Dewan [6].

1. INTRODUCTION

For a polynomial p(z) of degree n having all its zeros in |z| < 1, Turan [12]
proved that

max [p/(2)] > = max |p(z)]. (1.1)
|z|=1 2 |z|=1
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The result is sharp and equality holds in (|L.1]) for polynomials having all their
zeros on the unit circle.

By involving |n|11n Ip(2)|, Aziz and Dawood [2] improved (1.1) under the
z|=1
same hypotheses of p(z) that

np§|<>r>h¢§m<>w+ngwp<n (12)

Equality occurs in or the polynomial p(z) = az™ + B, where |a| = |3].
-

Malik [§] generahzed ) by considering polynomials having all zeros in |z| <
k, k < 1. He proved

maxc|p'(2)] > {1 max |p(2)]. (13)

The result is best possible and the extremal polynomial is p(z) = (z + k)™.

Inequality (1.2)) was further generalized by Aziz and Zargar [4].

Theorem 1.1. If p(z) is a polynomial of degree m having all its zeros in

|z| <k, k<1, then for pR>k? and p < R

(R+ k)"t [
|z|=1

ax|p(z)| + min |p(z)]] . (1.4)

max |p/(2)] > n min

J21=1 (o + k)
Equality holds in (L.4) for p(z) = (z + k)™.

Chanam and Dewan [6] proved the following result which improves Theorem
by considering the more general class of polynomials

n
p(z) = an2" + Z An_p2" V1< pu<n
v=p

and involving certain coefficients of the polynomial.

n
Theorem 1.2. If p(z) = apz" + > an—0p2" 7, 1 < p < n and ag # 0, is

v=p
a polynomial of degree n > 2 having all its zeros in |z| < k, k > 0, then for
pR > k2 and p<R

ma. ’ z)| > Rin|an| k"~ 14‘“’“ | RET !
X
BRI N2 P BT T T a2 + (R + )
R+ k) { ) }
N\ T max |p(z)| + min |p(z . 1.5
() {maxlote)l + i o) (1.5
Equality holds in (L.5) for p =1 and p(z) = (z + k)™.
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For a polynomial p(z) of degree n and for every r > 0, we know

r

2 Iy 2m
/ P <n / p(e®)rdo S . (1.6)
0 0

Zygmund [13] proved inequality (1.6) for r > 1 for all trigonometric poly-
nomials of degree n and not only for those which are of the form p(e*®). The
validity of (1.6]) for 0 < r < 1 was proved by Arestov [1].

From a well-known fact of analysis [10, [IT], we know that

T

2
1 .
lim 27T/|p(ew)v“de = max [p(2)). (1.7)
0

r—00 |z|=1

In view of (|1.7)), inequality (/1.6 is the L" analogue of the famous Bernstein’s
inequality [5]. This important fact shows that L" inequalities of a polynomial
generalize ordinary inequalities of polynomials.

2. LEMMAS

We need the following lemmas to prove our results.

n
Lemma 2.1. ([9)) If p(z) = ap + > az”, 1 < p < n, is a polynomial of

v=p
degree n having no zero in |z| < k, k > 1, then

MMk“‘l +1
n |ag
¢ (2)] = ﬁ!ﬂ(@l on [z =1 (2.1)
14+ ﬁaiukqul
n |ao
and
ploud e g, (2.2)
n |aol
where

n
Lemma 2.2. If p(z) = apz™ + > an—p2™ %, 1 < p < mn, is a polynomial of
v=p
degree n having all its zeros in |z| <k, k < 1, then for |z| =1

nlan k"1 + plan—|
P (2)] = ld (2], (2.3)

nlan |k + plag,—, kPt
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q(z) = znp(i).

Proof. Since p(z) has all its zeros in |z| < k, k < 1, ¢(z) has no zero in

where

1 1
|z| < Al > 1. Hence, applying Lemma [2.1| to the polynomial ¢(z), we have

by inequality ([2.1])

—1

plan—p| (1\"
H - 1
1)“1 n Jan| (k +

/ > (2= ! =1
= (4 ey O =1
o e \&

Blanl 1+ rlan_|
nlan |k + plan—,| kPt

which simplifies to

P'(2)] > ' (2)].

g

Lemma 2.3. ([4]) If p(z) = > a,z” is a polynomial of degree n having all
v=0
its zeros in |z| < k, k > 0, then for pR > k? and p < R, we have for |z| = 1
R+ E\"
> — . 24
) = (250 ) boe) 2.4)

Equality in (2.4) holds for the polynomial p(z) = (z + k)™.

n
Lemma 2.4. ([3]) If p(z) = anz" + > an—2" Y, 1 < p <n, is a polynomial
v=p

of degree n having all its zeros in |z| <k, k <1, then for |z| =1

K (2)] = 14 (2)]- (2.5)

3. MAIN RESULTS

In this paper, we first prove a generalized L" extension of Theorem
Secondly, we obtain an L" analogue of Theorem We find that our results
have significant influences on other well-known inequalities.

The following result is a generalized L" version of Theorem
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n
Theorem 3.1. If p(z) = anz"+ > an—p2"7, 1 < p <mn, is a polynomial of
v=p
degree n having all its zeros in |z| < k, k > 0, then for pR > k? and p < R,

1
and s,q > 1 such that — 4+ — =1, and for each r >0
s q

1
H 21 sT
10 i\ 1" Brky" 1 / AN
do > - — 1 — do
P (Re )‘ _n<p+k:> = + =) €
0
27 '
<3 [ (o) +m) a0 (3.1)

0

where m = lrr‘nlr]l~C Ip(2)].

Proof. Let @ be any real or complex number such that |a| < 1. Since p(z)
has all its zeros in |z| < k, k > 0, by Rouche’s theorem, the polynomial
G(z) = p(z) + am, where m = min ]p( )|, has all its zeros in |z| < k, k > 0.

|2|=k
Let H(z) = G(Rz). Then
H(z) = apR"2" + ap_, R" " "2""F + .-+ a1 Rz + (ap + am),
where pR > k% and p < R (it also implies R > k). Consequently, H(z) has

E k
all its zeros in |z| < R < 1. Applying Lemma to H(z), we obtain for
2| =1

( ) Gz e 32)
kK ,
where I(z) = 2"H . Since H(z) has all its zeros in |z| < — TR <1, H(2)

also has all its zeros in |z| < < 1. Hence by Gauss-Lucas theorem, the

= =

<k
R’

LHY (

):M@—J@
R

R
has all its zeros in |z| > —, z > 1.

From (3.2)), we have for |z =1
I
7'(2)] < (R) (). (33)

polynomial

| =
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We also know that for |z| = 1, |[H'(z)| = [nI(z) — zI'(z)|, and thus, inequal-
ity (3.2)) gives
E\H
|I'(2)] < <R> |nl(z) — 2I'(2)] . (3.4)

Let
2I'(2)
nl(z) —2I'(z)"

Then w(z) is analytic in |z] < 1, |w(z)] < 1 for |z| = 1 and w(0) = 0.
i

w(z) =

k k"
Therefore, the function 1 + <R> w(z) is subordinate to 1 + <R> z for

|z| < 1. Hence, by a well-known property of subordination [7], we have for

every 7 > 0
2 2w
B\ s EN ol
/‘H <R> w(e) d0§/‘1+ <R> e de. (3.5)
0 0
Now,
ENY 2I'(2)
1 il —
* <R> w(z) nl(z) — zI'(z)
nl(z)
nl(z) —zI'(z)
This implies for |z| =1
E\*
Inl(z)| = ‘1 + (R) w(z) ‘n[(z) — Z[’(z)‘
E\* ,
=1+ = w(z) ‘H(z)‘
Thus, for r >0 and 0 < 0 < 27
LT kE\* A" T
‘n[(e’e)‘ < ’1+ <R> w(e®)| |H )]
which implies
2m 2
T k\H 0 r N
nT/‘I(ew)‘ d0§/‘1+ (R> w(e') ‘H’(el )‘ df.
0 0
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By (3.5), the above inequality becomes

2 , . 2w I " ,
T 7 < v 7
n/’n[(e )‘ d@_/‘1+<R> e
0 0

Applying Holder’s inequality, for ¢ > 1 and s > 1 with s + ¢! = 1 and
r > 0, we get

27 % 2T
LT ENF .
n /‘I(e’g)‘ o , < /‘14—() e
R
0 0

' (H’(eif’) do.

‘ s

qr
r q

1
s 27
df / ‘H’(ew)‘qr df
0

(3.6)
Since H(z) = G(Rz) = p(Rz) + am, therefore, H'(z) = Rp'(Rz). Then,
27 qr 27 q%o
’ =N 1 poioy |1
/H(e )‘ % =R /p(Re )‘ do

0 0
Also, for |z| =1, |I(2)| = |H(z)| = |G(Rz)|. Then by Lemmafor pR > k?
and p < R
R+E\"

1 > |GR2)| > ——— ] |G

e 2 6 = () 6,
which implies

R+ k

1= (555 olo) + . (3.7

Using (3.6) and (3.7)) in (3.5)), we obtain

27

EN\™ . r

n(ﬂ) /‘p(pe"g)—i-am‘ do
0

T

2 I nogrs
< /‘1+<R> el do
0
1
2T qr
% R /p/(Rew)‘q oy de. (3.8)

0
Choosing the argument of « suitably such that

p(pe”) +am‘ = ‘p(pew)‘ +|am,
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which on letting || — 1 gives
‘p(pew) + am) = ‘p(pew)‘ +m.
Inequality (3.8) thus reduces to

21

n (m)" / ()p(pew)‘ + am)r do
O 2w ,IC 17 ) TS
< 0/‘1 + <R> e

do
27 rTlr
x R / p’(Rew)‘QT A
0
This completes the proof of Theorem [3.1] O

Remark 3.2. Taking x4 = 1 and letting » — oo in Theorem we have

oy AR (RN
e R TP (H R> {M:p [p(2)] + min |p( )!},

which simplifies to inequality ((1.4)) of Theorem This verifies that Theorem
is a generalized L" version of Theorem proved by Aziz and Zargar [4].

Remark 3.3. Again, if we let  — oo and taking 4 = 1 along with p =R =1
in Theorem we have the following result which is an improvement of (|1.3))
due to Malik [g].

Corollary 3.4. If p(z) is a polynomial of degree n having all its zeros in
|z| <k, k<1, then

()] = 2 {ma )]+ i 2] (3.9)

It is obvious that (3.9) is an improvement of inequality (1.3)). Consequently,
Theorem is an improvement and a generalization of (1.3]) due to Malik [g].

Remark 3.5. For k = 1, inequality (3.9) of Corollary [3.4{reduces to inequality
(1.2) due to Aziz and Dawood [2]. Thus, Theorem is an improved and a

generalized L" version of (|1.1)) due to Turdn [12].

Next, we prove the L" analogue of Theorem which further gives a re-
finement of Theorem More precisely, we prove:
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n
Theorem 3.6. If p(z) = anz"+ > an—p2"", 1 < p<mn, is a polynomial of
v=p
degree n having all its zeros in |z| < k, k > 0, then for pR > k? and p < R,

1 1
and s > 1, ¢ > 1 such that — + — =1, and for each r > 0,
s q

1
27 qr

2 o
O/p’(Rew)‘quQ >n <]§++l]§> % 0/’1+Aei9 " a0
2m I
X /(‘p(pew)’ —I—m)rdﬂ , (3.10)
0

where
n|an|k* + plan—,|k* 1R

= A1
nlan|kH=L R 4+ play,— | RP (3:-11)

and m = min |p(2)|.
|z|=k

Proof. Since p(z) has all its zeros in |z| < k, k > 0, by Rouche’s theorem, for
real or complex number a with |a| < 1, the polynomial G(z) = p(z) + am,
where m = min |p(z)| has all its zeros in |z| < k, k > 0. Therefore,

H(z)=G(Rz)

=apR"2" +ap_ R"H2"M -+ a1 Rz + ag + am,

k
where pR > k? and p < R (implies R > k also), has all its zeros in |z| < R

k
bl < 1. Applying Lemma to H(z), it follows from inequality (2.3) that

kA
ol () + bl

\H'(2)| |1'(2)]

k2
alanlr () 4 nlan v

nlan R 4 pla, R
= I 12
a7+ plan o TR T (312

)

where

| =

u@:wH<
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k k
Since H(z) has all its zeros in |z| < R < 1, H'(z) also has all its zeros in

k k

|z] < R < 1. Hence by Gauss-Lucas Theorem, the polynomial

1
Py L <> =nl(z) — zI'(2)
z
has all its zeros in |z| > E, R > 1.

From (3.12]), we have for |z| =1,
n|an|k* + plan—, k"1 R

] < e H )
= A|H'(2)|, (3.13)
where
Ao nlan|k?* + plan—, |k* 1 RH

- nlap|kFLREY + play, | RE
Since, for |z| = 1, |H'(2)| = |nl(z) — zI'(z)|, inequality equivalently
gives
II'(2)| < Anl(2) — 2I'(2)). (3.14)
Using the fact , we have
2I'(2)
A(nl(z) —2I'(2))
is analytic in |z| < 1, |w(z)] < 1 for |z] = 1 and w(0) = 0. Therefore, the

function 14 Aw(z) is subordinate to 14+ Az for |z| < 1. Hence, by a well-known
property of subordination [7], we have for » > 0

w(z) =

r

27 27
/‘1+Aw(ei9)‘rd9§/‘1+Aei9 do. (3.15)
0 0
Now,
2I'(z)
1+ A =14+ ——"
+Aw(z) + nl(z) — zI'(z)
nl(z)

Hence, for |z| = 1, it implies from |H'(z)| = |nI(z) — zI'(z)| that
[nl(z)] = |1+ Aw(z)] ‘n[(z) — zI’(z)’
= |1+ Aw(2)||H'(2)]-
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Which gives for r > 0 and 0 < 0 < 27
[n1(e®)|" < |1+ Aw(e®)| ()],

which implies

' 7’1(&%( o < 7‘1 n Aw(eie)‘r ‘H’(eie)‘r d.
0 0

Using (3.15)), the above inequality gives

2m 2m
nT/’I(ew)‘rdﬁg/ll—i—AewT‘H’(eie)‘rdﬁ.
0 0

1 1

Applying Holder’s inequality, for ¢ > 1 and s > 1 with — + - =1 and r > 0,
s q

we get

1
ST

2
" a6 / ’H’(eie)‘qr df
0

T

qr

2T 27
n /’I(eie)‘rdé? < /‘1+Aei9
0 0
(3.16)
Since H(z) = G(Rz) = p(Rz) + am, H'(z) = Rp/(Rz). Then, the factor

27 % 27 q%
/’H’(ew)‘q S —R /p’(Rew)’q s (3.17)
0 0

Also, since |I(2)| = |H(z)| = |G(R?)| for |2| = 1, by Lemma [2.3] for pR > k?
and p < R

16 2 GG = () (GGl

that is,

uwwz<fjf)\mWy+mm. (3.18)
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Making use of (3.17) and (3.18]) in (3.16)), we have
1

1
27 T 27 sT
n <m> / ‘p(pew) + am‘r g ; < / )1 + Ae'? " a6
0 0
1
27 qr

<ni [

7 (Re?) )qr df

0
(3.19)
Choosing the argument of « suitably such that
‘p(pew) + am’ = ‘p(pew)‘ +alm
and letting |a| — 1, we have
‘p(pew) + oam’ = ‘p(pew)’ +m.
Inequality (3.19]) thus reduces to
R I n 2 % 2w SL?
. T . ST
n<r:k> /(‘p(pew)’—i—m) o ; < /‘l—l—Ae’H de
0 0
1
2T qr
i\ |47
x R / P (Ré’ )‘ s
0
from which inequality (3.10)) follows. O

Letting r — oo in inequality (3.10)), we have the following result.

n
Corollary 3.7. If p(z) = anz"+ > an—2"7", 1 < p <n, is a polynomial of
v=p
degree n having all its zeros in |z| < k, k > 0, then for pR > k? and p < R

/ R+k\" 1 _
Eﬁ}é P’ (2)] ZN<p+k> RO+ 4) {Iﬁi}ﬂp(z)'—i_ﬁnﬁ |p(z)|}, (3.20)

where A is given by (3.11)).

Remark 3.8. Since
1 nlan| REEPY + plagn,— | RF!

R(1+A) nlay|RFFIEFL + nlay| k2 + plan—,| (RE#F—1 + RE)’
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Corollary [3.7]shows that Theorem [3.6]is L" analogue of Theorem Further,
as explained by Chanam and Dewan [6], Corollary is an improvement
of Theorem and hence, correspondingly, Theorem [3.6] is a refinement of
Theorem B.11

Remark 3.9. In view of Corollary 3.7, Theorem [3.6]is L" version of Theorem
in a richer form for restrictions concerning the polynomial p(z), namely
ag # 0, 4 # n and n # 1 in the hypotheses of Theorem have all been
dropped in Theorem and consequently in Corollary In other words,
Corollary is a better version of Theorem

Remark 3.10. Letting » — oo in inequality (3.10), and taking u = 1 along
with p = R = k = 1, it reduces to inequality (1.2]) as in Remark and hence
same consequences of Remark follow.

Further, if we take gy =1 and p = R =1 in Corollary we have:

n
Corollary 3.11. If p(z) = > a,z” is a polynomial of degree n having all its
v=0

zeros in |z| <k, k <1, then

o (21| 1 {max ()| + i (21} (3:21)

nlan|k? + |an_1|
nlan| + |an—1]

where A =

Remark 3.12. Inequality (3.21]) of Corollary is an improvement of (1.3
due to Malik [8]. To see this it is sufficient to show that 1 > 1o which
is equivalent to showing A < k, where A is defined as in Corollary

1

%)

> 1.

S

1 n
If g(z) = 2"p (), then ¢(z) = > @,2" has no zero in |z| <
z v=0
Applying Lemma to q(z), it follows from ({2.2]) that for u =1

1lap—1|1
— —<1. 22
n la,| k (3:22)

Now, as k < 1, in view of (3.22), it is easy to verify that A < k.
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