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Abstract. If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1, then for
ρR ≥ k2 and ρ ≤ R, Aziz and Zargar [4] proved that

max
|z|=1

|p′(z)| ≥ n (R+ k)n−1

(ρ+ k)n

{
max
|z|=1

|p(z)|+ min
|z|=k

|p(z)|
}
.

We prove a generalized Lr extension of the above result for a more general class of polyno-

mials p(z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n. We also obtain another Lr analogue of a

result for the above general class of polynomials proved by Chanam and Dewan [6].

1. Introduction

For a polynomial p(z) of degree n having all its zeros in |z| ≤ 1, Turán [12]
proved that

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)|. (1.1)
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The result is sharp and equality holds in (1.1) for polynomials having all their
zeros on the unit circle.

By involving min
|z|=1
|p(z)|, Aziz and Dawood [2] improved (1.1) under the

same hypotheses of p(z) that

max
|z|=1

|p′(z)| ≥ n

2

[
max
|z|=1

|p(z)|+ min
|z|=1
|p(z)|

]
. (1.2)

Equality occurs in (1.2) for the polynomial p(z) = αzn + β, where |α| = |β|.
Malik [8] generalized (1.1) by considering polynomials having all zeros in |z| ≤
k, k ≤ 1. He proved

max
|z|=1

|p′(z)| ≥ n

1 + k
max
|z|=1

|p(z)|. (1.3)

The result is best possible and the extremal polynomial is p(z) = (z + k)n.

Inequality (1.2) was further generalized by Aziz and Zargar [4].

Theorem 1.1. If p(z) is a polynomial of degree n having all its zeros in
|z| ≤ k, k ≤ 1, then for ρR ≥ k2 and ρ ≤ R

max
|z|=1

|p′(z)| ≥ n(R+ k)n−1

(ρ+ k)n

[
max
|z|=1

|p(z)|+ min
|z|=k

|p(z)|
]
. (1.4)

Equality holds in (1.4) for p(z) = (z + k)n.

Chanam and Dewan [6] proved the following result which improves Theorem
1.1 by considering the more general class of polynomials

p(z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ < n

and involving certain coefficients of the polynomial.

Theorem 1.2. If p(z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ < n and a0 6= 0, is

a polynomial of degree n ≥ 2 having all its zeros in |z| ≤ k, k > 0, then for
ρR ≥ k2 and ρ ≤ R

max
|z|=R

|p′(z)| ≥ n

{
Rµn|an|kµ−1 + µ|an−µ|Rµ−1

Rµ+1n|an|kµ−1 + n|an|k2µ + µ|an−µ|(Rkµ−1 +Rµ)

}
×
(
R+ k

ρ+ k

)n{
max
|z|=ρ

|p(z)|+ min
|z|=k

|p(z)|
}
. (1.5)

Equality holds in (1.5) for µ = 1 and p(z) = (z + k)n.
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For a polynomial p(z) of degree n and for every r > 0, we know
2π∫
0

|p′(eiθ)|rdθ


1
r

≤ n


2π∫
0

|p(eiθ)|rdθ


1
r

. (1.6)

Zygmund [13] proved inequality (1.6) for r ≥ 1 for all trigonometric poly-
nomials of degree n and not only for those which are of the form p(eiθ). The
validity of (1.6) for 0 < r < 1 was proved by Arestov [1].

From a well-known fact of analysis [10, 11], we know that

lim
r→∞

 1

2π

2π∫
0

|p(eiθ)|rdθ


1
r

= max
|z|=1

|p(z)|. (1.7)

In view of (1.7), inequality (1.6) is the Lr analogue of the famous Bernstein’s
inequality [5]. This important fact shows that Lr inequalities of a polynomial
generalize ordinary inequalities of polynomials.

2. Lemmas

We need the following lemmas to prove our results.

Lemma 2.1. ([9]) If p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zero in |z| < k, k ≥ 1, then

|q′(z)| ≥ kµ+1

µ

n

|aµ|
|a0|

kµ−1 + 1

1 +
µ

n

|aµ|
|a0|

kµ+1

|p′(z)| on |z| = 1 (2.1)

and

µ

n

|aµ|
|a0|

kµ ≤ 1, (2.2)

where

q(z) = znp

(
1

z

)
.

Lemma 2.2. If p(z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having all its zeros in |z| ≤ k, k ≤ 1, then for |z| = 1

|p′(z)| ≥ n|an|kµ−1 + µ|an−µ|
n|an|k2µ + µ|an−µ|kµ−1

|q′(z)|, (2.3)
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where

q(z) = znp

(
1

z

)
.

Proof. Since p(z) has all its zeros in |z| ≤ k, k ≤ 1, q(z) has no zero in

|z| < 1

k
,

1

k
≥ 1. Hence, applying Lemma 2.1 to the polynomial q(z), we have

by inequality (2.1)

|p′(z)| ≥
(

1

k

)µ+1
µ

n

|an−µ|
|an|

(
1

k

)µ−1
+ 1

1 +
µ

n

|an−µ|
|an|

(
1

k

)µ+1 |q
′(z)| on |z| = 1,

which simplifies to

|p′(z)| ≥ n|an|kµ−1 + µ|an−µ|
n|an|k2µ + µ|an−µ|kµ−1

|q′(z)|.

�

Lemma 2.3. ([4]) If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having all

its zeros in |z| ≤ k, k > 0, then for ρR ≥ k2 and ρ ≤ R, we have for |z| = 1

|p(Rz)| ≥
(
R+ k

ρ+ k

)n
|p(ρz)|. (2.4)

Equality in (2.4) holds for the polynomial p(z) = (z + k)n.

Lemma 2.4. ([3]) If p(z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, is a polynomial

of degree n having all its zeros in |z| ≤ k, k ≤ 1, then for |z| = 1

kµ|p′(z)| ≥ |q′(z)|. (2.5)

3. Main results

In this paper, we first prove a generalized Lr extension of Theorem 1.1.
Secondly, we obtain an Lr analogue of Theorem 1.2. We find that our results
have significant influences on other well-known inequalities.

The following result is a generalized Lr version of Theorem 1.1.



Lr inequalities of generalized Turán-type inequalities of polynomials 859

Theorem 3.1. If p(z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having all its zeros in |z| ≤ k, k > 0, then for ρR ≥ k2 and ρ ≤ R,

and s, q ≥ 1 such that
1

s
+

1

q
= 1, and for each r > 0


2π∫
0

∣∣∣p′(Reiθ)∣∣∣qr dθ


1
qr

≥ n

(
R+ k

ρ+ k

)n 1

R


2π∫
0

∣∣∣∣1 +

(
k

R

)µ
eiθ
∣∣∣∣sr dθ


− 1
sr

×


2π∫
0

(
|p(ρeiθ)|+m

)r
dθ


1
r

, (3.1)

where m = min
|z|=k

|p(z)|.

Proof. Let α be any real or complex number such that |α| < 1. Since p(z)
has all its zeros in |z| ≤ k, k > 0, by Rouche’s theorem, the polynomial
G(z) = p(z) + αm, where m = min

|z|=k
|p(z)|, has all its zeros in |z| ≤ k, k > 0.

Let H(z) = G(Rz). Then

H(z) = anR
nzn + an−µR

n−µzn−µ + · · ·+ a1Rz + (a0 + αm),

where ρR ≥ k2 and ρ ≤ R (it also implies R ≥ k). Consequently, H(z) has

all its zeros in |z| ≤ k

R
,
k

R
≤ 1. Applying Lemma 2.4 to H(z), we obtain for

|z| = 1 (
k

R

)µ
|H ′(z)| ≥ |I ′(z)|, (3.2)

where I(z) = znH

(
1

z

)
. Since H(z) has all its zeros in |z| ≤ k

R
,
k

R
≤ 1, H ′(z)

also has all its zeros in |z| ≤ k

R
,
k

R
≤ 1. Hence by Gauss-Lucas theorem, the

polynomial

zn−1H ′
(

1

z

)
= nI(z)− zI ′(z)

has all its zeros in |z| ≥ R

k
,
R

k
≥ 1.

From (3.2), we have for |z| = 1

|I ′(z)| ≤
(
k

R

)µ ∣∣H ′(z)∣∣ . (3.3)
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We also know that for |z| = 1, |H ′(z)| = |nI(z)− zI ′(z)|, and thus, inequal-
ity (3.2) gives

|I ′(z)| ≤
(
k

R

)µ ∣∣nI(z)− zI ′(z)
∣∣ . (3.4)

Let

w(z) =
zI ′(z)

nI(z)− zI ′(z)
.

Then w(z) is analytic in |z| ≤ 1, |w(z)| ≤ 1 for |z| = 1 and w(0) = 0.

Therefore, the function 1 +

(
k

R

)µ
w(z) is subordinate to 1 +

(
k

R

)µ
z for

|z| ≤ 1. Hence, by a well-known property of subordination [7], we have for
every r > 0

2π∫
0

∣∣∣∣1 +

(
k

R

)µ
w(eiθ)

∣∣∣∣r dθ ≤
2π∫
0

∣∣∣∣1 +

(
k

R

)µ
eiθ
∣∣∣∣r dθ. (3.5)

Now,

1 +

(
k

R

)µ
w(z) =1 +

zI ′(z)

nI(z)− zI ′(z)

=
nI(z)

nI(z)− zI ′(z)
.

This implies for |z| = 1

|nI(z)| =
∣∣∣∣1 +

(
k

R

)µ
w(z)

∣∣∣∣ ∣∣nI(z)− zI ′(z)
∣∣

=

∣∣∣∣1 +

(
k

R

)µ
w(z)

∣∣∣∣ ∣∣H ′(z)∣∣ .
Thus, for r > 0 and 0 ≤ θ < 2π∣∣∣nI(eiθ)

∣∣∣r ≤ ∣∣∣∣1 +

(
k

R

)µ
w(eiθ)

∣∣∣∣r ∣∣∣H ′(eiθ)∣∣∣r ,
which implies

nr
2π∫
0

∣∣∣I(eiθ)
∣∣∣r dθ ≤ 2π∫

0

∣∣∣∣1 +

(
k

R

)µ
w(eiθ)

∣∣∣∣r ∣∣∣H ′(eiθ)∣∣∣r dθ.
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By (3.5), the above inequality becomes

nr
2π∫
0

∣∣∣nI(eiθ)
∣∣∣r dθ ≤ 2π∫

0

∣∣∣∣1 +

(
k

R

)µ
eiθ
∣∣∣∣r ∣∣∣H ′(eiθ)∣∣∣r dθ.

Applying Holder’s inequality, for q ≥ 1 and s ≥ 1 with s−1 + q−1 = 1 and
r > 0, we get

n


2π∫
0

∣∣∣I(eiθ)
∣∣∣r dθ


1
r

≤


2π∫
0

∣∣∣∣1 +

(
k

R

)µ
eiθ
∣∣∣∣rs dθ


1
rs


2π∫
0

∣∣∣H ′(eiθ)∣∣∣qr dθ


1
qr

.

(3.6)

Since H(z) = G(Rz) = p(Rz) + αm, therefore, H ′(z) = Rp′(Rz). Then,
2π∫
0

∣∣∣H ′(eiθ)∣∣∣qr dθ


1
qr

= R


2π∫
0

∣∣∣p′(Reiθ)∣∣∣qr dθ


1
qr

.

Also, for |z| = 1, |I(z)| = |H(z)| = |G(Rz)|. Then by Lemma 2.3 for ρR ≥ k2
and ρ ≤ R

|I(z)| ≥ |G(Rz)| ≥
(
R+ k

ρ+ k

)n
|G(ρz)|,

which implies

|I(z)| ≥
(
R+ k

ρ+ k

)n
|p(ρz) + αm| . (3.7)

Using (3.6) and (3.7) in (3.5), we obtain

n

(
R+ k

ρ+ k

)n
2π∫
0

∣∣∣p(ρeiθ) + αm
∣∣∣r dθ


1
r

≤


2π∫
0

∣∣∣∣1 +

(
k

R

)µ
eiθ
∣∣∣∣rs dθ


1
rs

×R


2π∫
0

∣∣∣p′(Reiθ)∣∣∣qr dθ


1
qr

dθ. (3.8)

Choosing the argument of α suitably such that∣∣∣p(ρeiθ) + αm
∣∣∣ =

∣∣∣p(ρeiθ)∣∣∣+ |α|m,
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which on letting |α| → 1 gives∣∣∣p(ρeiθ) + αm
∣∣∣ =

∣∣∣p(ρeiθ)∣∣∣+m.

Inequality (3.8) thus reduces to

n

(
R+ k

ρ+ k

)n
2π∫
0

(∣∣∣p(ρeiθ)∣∣∣+ αm
)r
dθ


1
r

≤


2π∫
0

∣∣∣∣1 +

(
k

R

)µ
eiθ
∣∣∣∣rs dθ


1
rs

×R


2π∫
0

∣∣∣p′(Reiθ)∣∣∣qr dθ


1
qr

dθ.

This completes the proof of Theorem 3.1. �

Remark 3.2. Taking µ = 1 and letting r →∞ in Theorem 3.1, we have

max
|z|=R

|p′(z)| ≥ n(R+ k)n

R(ρ+ k)n

(
1 +

k

R

)−1{
max
|z|=ρ

|p(z)|+ min
|z|=k

|p(z)|
}
,

which simplifies to inequality (1.4) of Theorem 1.1. This verifies that Theorem
3.1 is a generalized Lr version of Theorem 1.1 proved by Aziz and Zargar [4].

Remark 3.3. Again, if we let r →∞ and taking µ = 1 along with ρ = R = 1
in Theorem 3.1 we have the following result which is an improvement of (1.3)
due to Malik [8].

Corollary 3.4. If p(z) is a polynomial of degree n having all its zeros in
|z| ≤ k, k ≤ 1, then

max
|z|=1

|p′(z)| ≥ n

1 + k

{
max
|z|=1

|p(z)|+ min
|z|=k

|p(z)|
}
. (3.9)

It is obvious that (3.9) is an improvement of inequality (1.3). Consequently,
Theorem 3.1 is an improvement and a generalization of (1.3) due to Malik [8].

Remark 3.5. For k = 1, inequality (3.9) of Corollary 3.4 reduces to inequality
(1.2) due to Aziz and Dawood [2]. Thus, Theorem 3.1 is an improved and a
generalized Lr version of (1.1) due to Turán [12].

Next, we prove the Lr analogue of Theorem 1.2 which further gives a re-
finement of Theorem 3.1. More precisely, we prove:
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Theorem 3.6. If p(z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having all its zeros in |z| ≤ k, k > 0, then for ρR ≥ k2 and ρ ≤ R,

and s ≥ 1, q ≥ 1 such that
1

s
+

1

q
= 1, and for each r > 0,


2π∫
0

∣∣∣p′(Reiθ)∣∣∣qr dθ


1
qr

≥n
(
R+ k

ρ+ k

)n 1

R


2π∫
0

∣∣∣1 +Aeiθ
∣∣∣sr dθ


− 1
sr

×


2π∫
0

(∣∣∣p(ρeiθ)∣∣∣+m
)r
dθ


1
r

, (3.10)

where

A =
n|an|k2µ + µ|an−µ|kµ−1Rµ

n|an|kµ−1Rµ+1 + µ|an−µ|Rµ
(3.11)

and m = min
|z|=k

|p(z)|.

Proof. Since p(z) has all its zeros in |z| ≤ k, k > 0, by Rouche’s theorem, for
real or complex number α with |α| < 1, the polynomial G(z) = p(z) + αm,
where m = min

|z|=k
|p(z)| has all its zeros in |z| ≤ k, k > 0. Therefore,

H(z) = G(Rz)

= anR
nzn + an−µR

n−µzn−µ + · · ·+ a1Rz + a0 + αm,

where ρR ≥ k2 and ρ ≤ R (implies R ≥ k also), has all its zeros in |z| ≤ k

R
,

k

R
≤ 1. Applying Lemma 2.2 to H(z), it follows from inequality (2.3) that

|H ′(z)| ≥
n|an|Rn

(
k

R

)µ−1
+ µ|an−µ|Rn−µ

n|an|Rn
(
k

R

)2µ

+ µ|an−µ|Rn−µkµ−1
|I ′(z)|

=
n|an|Rµ+1kµ−1 + µ|an−µ|Rµ

n|an|k2µ + µ|an−µ|kµ−1Rµ
|I ′(z)|, (3.12)

where

I(z) = znH

(
1

z

)
.
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Since H(z) has all its zeros in |z| ≤ k

R
,
k

R
≤ 1, H ′(z) also has all its zeros in

|z| ≤ k

R
,
k

R
≤ 1. Hence by Gauss-Lucas Theorem, the polynomial

zn−1H ′
(

1

z

)
= nI(z)− zI ′(z)

has all its zeros in |z| ≥ R

k
,
R

k
≥ 1.

From (3.12), we have for |z| = 1,

|I ′(z)| ≤ n|an|k2µ + µ|an−µ|kµ−1Rµ

n|an|kµ−1Rµ+1 + µ|an−µ|Rµ
|H ′(z)|

= A|H ′(z)|, (3.13)

where

A =
n|an|k2µ + µ|an−µ|kµ−1Rµ

n|an|kµ−1Rµ+1 + µ|an−µ|Rµ
.

Since, for |z| = 1, |H ′(z)| = |nI(z) − zI ′(z)|, inequality (3.13) equivalently
gives

|I ′(z)| ≤ A|nI(z)− zI ′(z)|. (3.14)

Using the fact (3.14), we have

w(z) =
zI ′(z)

A (nI(z)− zI ′(z))
is analytic in |z| ≤ 1, |w(z)| ≤ 1 for |z| = 1 and w(0) = 0. Therefore, the
function 1+Aw(z) is subordinate to 1+Az for |z| ≤ 1. Hence, by a well-known
property of subordination [7], we have for r > 0

2π∫
0

∣∣∣1 +Aw(eiθ)
∣∣∣r dθ ≤ 2π∫

0

∣∣∣1 +Aeiθ
∣∣∣r dθ. (3.15)

Now,

1 +Aw(z) = 1 +
zI ′(z)

nI(z)− zI ′(z)

=
nI(z)

nI(z)− zI ′(z)
.

Hence, for |z| = 1, it implies from |H ′(z)| = |nI(z)− zI ′(z)| that

|nI(z)| = |1 +Aw(z)|
∣∣nI(z)− zI ′(z)

∣∣
= |1 +Aw(z)| |H ′(z)|.
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Which gives for r > 0 and 0 ≤ θ < 2π∣∣∣nI(eiθ)
∣∣∣r ≤ ∣∣∣1 +Aw(eiθ)

∣∣∣r ∣∣∣H ′(eiθ)∣∣∣r ,
which implies

nr
2π∫
0

∣∣∣I(eiθ)
∣∣∣r dθ ≤ 2π∫

0

∣∣∣1 +Aw(eiθ)
∣∣∣r ∣∣∣H ′(eiθ)∣∣∣r dθ.

Using (3.15), the above inequality gives

nr
2π∫
0

∣∣∣I(eiθ)
∣∣∣r dθ ≤ 2π∫

0

∣∣∣1 +Aeiθ
∣∣∣r ∣∣∣H ′(eiθ)∣∣∣r dθ.

Applying Holder’s inequality, for q ≥ 1 and s ≥ 1 with
1

s
+

1

q
= 1 and r > 0,

we get

n


2π∫
0

∣∣∣I(eiθ)
∣∣∣r dθ


1
r

≤


2π∫
0

∣∣∣1 +Aeiθ
∣∣∣sr dθ


1
sr


2π∫
0

∣∣∣H ′(eiθ)∣∣∣qr dθ


1
qr

.

(3.16)

Since H(z) = G(Rz) = p(Rz) + αm, H ′(z) = Rp′(Rz). Then, the factor


2π∫
0

∣∣∣H ′(eiθ)∣∣∣qr dθ


1
qr

= R


2π∫
0

∣∣∣p′(Reiθ)∣∣∣qr dθ


1
qr

. (3.17)

Also, since |I(z)| = |H(z)| = |G(Rz)| for |z| = 1, by Lemma 2.3 for ρR ≥ k2

and ρ ≤ R

|I(z)| ≥ |G(Rz)| ≥
(
R+ k

ρ+ k

)n
|G(ρz)|,

that is,

|I(z)| ≥
(
R+ k

ρ+ k

)n
|p(ρz) + αm|. (3.18)
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Making use of (3.17) and (3.18) in (3.16), we have

n

(
R+ k

ρ+ k

)n
2π∫
0

∣∣∣p(ρeiθ) + αm
∣∣∣r dθ


1
r

≤


2π∫
0

∣∣∣1 +Aeiθ
∣∣∣sr dθ


1
sr

×R


2π∫
0

∣∣∣p′(Reiθ)∣∣∣qr dθ


1
qr

.

(3.19)

Choosing the argument of α suitably such that∣∣∣p(ρeiθ) + αm
∣∣∣ =

∣∣∣p(ρeiθ)∣∣∣+ |α|m

and letting |α| → 1, we have∣∣∣p(ρeiθ) + αm
∣∣∣ =

∣∣∣p(ρeiθ)∣∣∣+m.

Inequality (3.19) thus reduces to

n

(
R+ k

r + k

)n
2π∫
0

(∣∣∣p(ρeiθ)∣∣∣+m
)r
dθ


1
r

≤


2π∫
0

∣∣∣1 +Aeiθ
∣∣∣sr dθ


1
sr

×R


2π∫
0

∣∣∣p′(Reiθ)∣∣∣qr dθ


1
qr

,

from which inequality (3.10) follows. �

Letting r →∞ in inequality (3.10), we have the following result.

Corollary 3.7. If p(z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having all its zeros in |z| ≤ k, k > 0, then for ρR ≥ k2 and ρ ≤ R

max
|z|=R

|p′(z)| ≥ n
(
R+ k

ρ+ k

)n 1

R(1 +A)

{
max
|z|=ρ

|p(z)|+ min
|z|=k

|p(z)|
}
, (3.20)

where A is given by (3.11).

Remark 3.8. Since

1

R (1 +A)
=

n|an|Rµkµ−1 + µ|an−µ|Rµ−1

n|an|Rµ+1kµ−1 + n|an|k2µ + µ|an−µ| (Rkµ−1 +Rµ)
,
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Corollary 3.7 shows that Theorem 3.6 is Lr analogue of Theorem 1.2. Further,
as explained by Chanam and Dewan [6], Corollary 3.7 is an improvement
of Theorem 1.1 and hence, correspondingly, Theorem 3.6 is a refinement of
Theorem 3.1.

Remark 3.9. In view of Corollary 3.7, Theorem 3.6 is Lr version of Theorem
1.2 in a richer form for restrictions concerning the polynomial p(z), namely
a0 6= 0, µ 6= n and n 6= 1 in the hypotheses of Theorem 1.2, have all been
dropped in Theorem 3.6 and consequently in Corollary 3.7. In other words,
Corollary 3.7 is a better version of Theorem 1.2.

Remark 3.10. Letting r → ∞ in inequality (3.10), and taking µ = 1 along
with ρ = R = k = 1, it reduces to inequality (1.2) as in Remark 3.5 and hence
same consequences of Remark 3.5 follow.

Further, if we take µ = 1 and ρ = R = 1 in Corollary 3.7, we have:

Corollary 3.11. If p(z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having all its

zeros in |z| ≤ k, k ≤ 1, then

max
|z|=1

|p′(z)| ≥ n

1 +A

{
max
|z|=1

|p(z)|+ min
|z|=k

|p(z)|
}
, (3.21)

where A =
n|an|k2 + |an−1|
n|an|+ |an−1|

.

Remark 3.12. Inequality (3.21) of Corollary 3.11 is an improvement of (1.3)

due to Malik [8]. To see this it is sufficient to show that
n

1 +A
≥ n

1 + k
, which

is equivalent to showing A ≤ k, where A is defined as in Corollary 3.11.

If q(z) = znp

(
1

z

)
, then q(z) =

n∑
ν=0

aνz
n−ν has no zero in |z| < 1

k
,

1

k
≥ 1.

Applying Lemma 2.1 to q(z), it follows from (2.2) that for µ = 1

1

n

|an−1|
|an|

1

k
≤ 1. (3.22)

Now, as k ≤ 1, in view of (3.22), it is easy to verify that A ≤ k.

Acknowledgements: The authors are extremely grateful to the referees for
their valuable comments and suggestions about the paper.
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[6] B. Chanam and K.K. Dewan, Inequalities for a polynomial and its derivatives, J. Inter-
dis. Math., 11(4) (2008), 469-478.

[7] E. Hille, Analytic Function Theory, Vol. II, Ginn. and Company, New York, Toronto,
1962.

[8] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.

[9] M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115
(1992), 337-343.

[10] W. Rudin, Real and Complex Analysis, Tata Mcgraw-Hill Publishing Company
(Reprinted in India), 1977.

[11] A.E. Taylor, Introduction to Functional Analysis, John Wiley and Sons, Inc. New York,
1958.
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