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Abstract. In the present paper, the non-autonomous second order Hamiltonian systems

ü(t)− OF (t, u(t)) = 0 a. e. t ∈ R

are studied and some existence results of subharmonic solutions with saddle point character

are obtained by the critical point reduction method.

1. Introduction and Preliminaries

Consider the second order Hamiltonian systems

ü(t)−5F (t, u(t)) = 0 a. e. t ∈ R (1)

where F : R×RN → R is T−periodic (T > 0) in t for all x ∈ RN , that is

F (t + T, x) = F (t, x) (2)
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for all x ∈ RN and a. e. t ∈ R, and satisfies the following assumption:
(A) F (t, x) is measurable in t for each x ∈ RN and continuously differ-

entiable in x for a. e. t ∈ [0, T ], and there exist a ∈ L1(R+; R+), b ∈
L1(0, T ; R+), such that |F (t, x)| ≤ a(|x|)b(t), | 5 F (t, x)| ≤ a(|x|)b(t) for all
x ∈ RN and a. e. t ∈ R.

A solution of problem (1) is called to be subharmonic if it is kT−periodic
solution for some positive integer k.

Let

H1
kT = {u : [0, kT ] → RN | u is absolutely continuous,

u(0) = u(kT ) and u̇ ∈ L2(0, kT ; RN )}
is a Hilbert space with the norm defined by

‖u‖ = [
∫ kT

0
|u(t)|2dt +

∫ kT

0
|u̇(t)|2dt]

1
2

and ‖u‖∞ = max0≤t≤kT |u(t)| for u ∈ H1
kT .

The corresponding functional ϕk on H1
kT given by

ϕk(u) =
1
2

∫ kT

0
|u̇(t)|2dt +

∫ kT

0
F (t, u(t))dt

is continuously differentiable and weakly lower semi-continuous on H1
kT (see

[1]). Moreover one has

< ϕ′k(u), v >=
∫ kT

0
[(u̇(t), v̇(t)) + (OF (t, u(t)), v(t))]dt

for all u, v ∈ H1
kT . It is well known that the kT−periodic solutions of problem

(1) correspond to the critical points of functional ϕk.
For u ∈ H1

kT , let u = (kT )−1
∫ kT
0 u(t)dt and ũ(t) = u(t)− u. Then one has

Sobolev’s inequality

‖ũ‖2
∞ ≤ kT

12

∫ kT

0
|u̇(t)|2dt (3)

and Wertinger’s inequality
∫ kT

0
|ũ(t)|2dt ≤ k2T 2

4π2

∫ kT

0
|u̇(t)|2dt. (4)

It has been proved that problem (1) has infinitely distinct subharmonic
solutions under suitable conditions (see [1-4]). Recently, Zhao and Wu [5]
consider the existence of T−periodic solutions with saddle point character. In-
spired and motivated by the results due to Mawhin-Willem [1], F. Giannoni[2],
Tang-Wu [4] and Zhao-Wu [5], in this paper, we shall continue to consider the
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existence of subharmonic solutions with saddle point character, some new ex-
istence results are obtained by using the critical point reduction method. The
results in this paper develop and generalize the corresponding results .

2. MAIN RESULTS AND PROOF

Now we state and prove our main result.

Theorem 2.1. Suppose that F satisfies assumption (A), (2) and the following
conditions:
(i). there exists a function λ ∈ L1(0, T ; R) with

∫ T
0 λ(t)dt > 0 such that

−OF (t, ·) is λ(t)−monotone, that is

(−OF (t, x)− (−OF (t, y)), x− y) ≥ λ(t)|x− y|2; (5)

for all x, y ∈ RN and a. e. t ∈ [0, T ];
(ii). there exist g, h ∈ L1(0, T ;R),M > 1 and α ∈ [1, 2) such that

F (t, x) ≥ g(t)|x|α + h(t) (6)

for all x ∈ RN and |x| ≥ M and a. e. t ∈ [0, T ];
(iii).

F (t, x) → −∞ (7)

as |x| → +∞ uniformly for a. e. t ∈ [0, T ].
Then problem (1) has kT−periodic solutions uk with saddle point character in
H1

kT for every positive integer k such that ‖uk‖∞ → +∞ as k → +∞.

Proof. Without loss of generality, we may assume that functions b in assump-
tion(A) , λ in (5) and g, h in (6) are T− periodic and assumption (A) , (5), (6)
and (7) hold for all t ∈ R by the T− periodicity of F (t, x) in the first variable.

Set H̃1
kT = {u ∈ H1

kT |u = 0}, then H1
kT = RN

⊕
H̃1

kT , obviously. Define
the function Ψ as follows:

Ψ(u) = sup
x∈RN

ϕk(u + x) ∀u ∈ H̃1
kT .

For each fixed u ∈ H̃1
kT and any x1, x2 ∈ RN , one has

∫ kT

0
(−OF (t, u(t)+x1)−(−OF (t, u(t)+x2)), x1−x2)dt ≥ |x1−x2|2

∫ kT

0
λ(t)dt

Consequently,

〈−ϕ′k(u(t) + x1)− (−ϕ′k(u(t) + x2)), x1 − x2〉 ≥ |x1 − x2|2
∫ kT

0
λ(t)dt.
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By virtue of Theorem 2.3 in [6] there exists a continuous mapping θ : H̃1
kT →

RN such that ϕk(u + θ(u)) = Ψ(u) for all u ∈ H̃1
kT , Ψ : H̃1

kT → R is contin-
uously differentiable, and Ψ′(u) = ϕ′k(u + θ(u))|

H̃1
kT

for all u ∈ H̃1
kT . Hence,

u ∈ H̃1
kT is a critical point of Ψ implies u + θ(u) is a critical point of ϕk.

Moreover, for each u ∈ H̃1
kT , by condition (ii) and Sobolev’s inequality one

has

Ψ(u) ≥ϕk(u) =
1
2

∫ kT

0
|u̇(t)|2dt +

∫ kT

0
F (t, u(t))dt

≥ 1
2

∫ kT

0
|u̇(t)|2dt +

∫ kT

0
g(t)|u(t)|αdt +

∫ kT

0
h(t)dt

≥ 1
2

∫ kT

0
|u̇(t)|2dt− ‖u‖α

∞

∫ kT

0
|g(t)|dt +

∫ kT

0
h(t)dt

≥ 1
2

∫ kT

0
|u̇(t)|2dt− C1(

∫ kT

0
|u̇(t)|2dt)

α
2 + C2

(8)

for all u ∈ H̃1
kT and some positive constants C1 and C2. By Wertinger’s

inequality, one has
‖u‖ → +∞⇔ ‖u̇‖2 → +∞

on H̃1
kT , then (8) implies that Ψ(u) → +∞ as ‖u‖ → +∞. Consequently,

there exists a point u0 ∈ H̃1
kT such that Ψ(u0) = min

H̃1
kT

Ψ(u), and hence
uk = u0 + θ(u0) is a solution with saddle point character of problem (1) in
H1

kT .
Since F (t, x) → −∞ as |x| → +∞, so for every β > 0 there exists M ≥ 1

such that
F (t, x) ≤ −β (9)

for all |x| ≥ M , and by assumption (A), there exists γ ∈ L1(0, T ) such that

F (t, x) ≤ γ(t) (10)

for all x ∈ RN and a. e. t ∈ [0, T ]. Without loss of generality, we may assume
that (9) and (10) hold for all t ∈ [0, T ], and that γ(t) is T−periodic.

Set
ek(t) = k(cos k−1ωt)x0

for all t ∈ R and some x0 ∈ RN with |x0| = 1, where ω = 2π/T . Then we
have

ek(t) ∈ H̃1
kT

obviously and
ėk(t) = −ω(sin k−1ωt)x0
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for all t ∈ R, which implies that
∫ kT

0
|ėk(t)|2dt =

1
2
kTω2.

By the definition of uk, we have

ϕk(uk) = min
u∈H̃1

kT

sup
x∈RN

ϕk(x + u) ≤ sup
x∈RN

ϕk(x + ek) = sup
RN+ek

ϕk. (11)

Now we prove that ‖uk‖∞ → +∞ as k → +∞. For fixed x ∈ RN , set

Ak = {t ∈ [0, kT ]||x + k(cos k−1ωt)x0| ≤ M}.
Then we have

measAk ≤ kT

2
(12)

for all large k. In fact, if

measAk >
kT

2
,

then there exists t1 ∈ Ak such that
kT

8
≤ t1 ≤ 3kT

8
(13)

or
5kT

8
≤ t1 ≤ 7kT

8
. (14)

Moreover, there exists t2 ∈ Ak such that |t2 − t1| ≥ kT
8 which implies that

|1
2
k−1(t2 − t1)ω| ≥ π

8
(15)

and |t2 − (kT − t1)| ≥ kT
8 which implies that

|1
2
k−1(t2 + t1)ω − π| ≥ π

8
. (16)

By (13) and (14) one has
T

16
≤ 1

2
k−1(t1 + t2) ≤ 15T

16
which implies that

π

8
≤ 1

2
k−1(t1 + t2) ≤ 15π

8
. (17)

From (16) and (17) we obtain

| sin(
1
2
k−1(t1 + t2)ω)| ≥ sin

π

8
.

From (14), (15) and (16) we obtain

| sin(
1
2
k−1(t1 − t2)ω)| ≥ sin

π

8
.
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So we have

| cos(k−1ωt1)− cos(k−1ωt2)|
= 2| sin(

1
2
k−1(t1 + t2)ω)|| sin(

1
2
k−1(t1 − t2)ω)|

≥ 2 sin2 π

8
.

But due to t1, t2 ∈ Ak, we have

| cos(k−1ωt1)− cos(k−1ωt2)|
=

1
k
|(x + k cos(k−1ωt1)x0)− (x + k cos(k−1ωt2)x0)|

≤ 2M

k

which is a contradiction for large k. Hence (12) holds. Therefore

meas([0, kT ] \Ak) ≥ 1
2
kT

for large k. By (9) and (10) we have

k−1ϕk(x + ek) =
1
4
Tω2 − k−1

∫ kT

0
F (t, x + k(cos k−1ωt)x0)dt

≤ 1
4
Tω2 − k−1

∫

Ak

|γ(t)|dt− k−1

∫

[0,kT ]\Ak

F (t, x + k(cos k−1ωt)x0)dt

≤ 1
4
Tω2 +

∫ T

0
|γ(t)|dt− T

2
β

for all x ∈ RN and all large k. Then by the arbitrariness of β, following the
same way in [4] we complete our proof. ¤

Theorem 2.2. Suppose that F satisfies assumption (A), (2) and the following
conditions:
(i). there exists a function µ ∈ L1(0, T ; R+) with

∫ T
0 µ(t)dt > 0 such that

−F (t, ·) is µ(t)− convex for a. e. t ∈ [0, T ]. That is, for a . e. t ∈ [0, T ], the
function x → F (t, x)− µ(t)

2 |x|2 is convex;
(ii). there exist g, h ∈ L1(0, T ;R+),M > 1 and α ∈ (0, 2) such that

|F (t, x)| ≤ g(t)|x|α + h(t)

for all x ∈ RN and |x| ≥ M and a. e. t ∈ [0, T ];
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(iii).
F (t, x)dt → −∞

as |x| → +∞ uniformly for a. e. t ∈ [0, T ]. Then problem (1) has kT−periodic
solutions uk with saddle point character in H1

kT for every positive integer k
such that ‖uk‖∞ → +∞ as k → +∞.

Proof. Similarly, we may assume that functions b, γ, µ, g, h are all T− periodic.
Define the function Ψ as follows:

Ψ(u) = sup
x∈RN

ϕk(u + x) ∀u ∈ H̃1
kT .

For each fixed u ∈ H̃1
kT and any x1, x2 ∈ RN , by condition (i) and Lemma 2.1

in [6] one has
∫ kT

0
(−OF (t, u(t)+x1)−(−OF (t, u(t)+x2)), x1−x2)dt ≥ |x1−x2|2

∫ kT

0
µ(t)dt.

Similarly as in Theorem 1, u ∈ H̃1
kT is a critical point of Ψ implies u + θ(u) is

a critical point of ϕk.
Moreover, by condition (ii) and Sobolev’s inequality one has

Ψ(u) ≥ϕk(u) =
1
2

∫ kT

0
|u̇(t)|2dt +

∫ kT

0
F (t, u(t))dt

≥ 1
2

∫ kT

0
|u̇(t)|2dt−

∫ kT

0
g(t)|u(t)|αdt−

∫ kT

0
h(t)

≥ 1
2

∫ kT

0
|u̇(t)|2dt− ‖u‖α

∞

∫ kT

0
g(t)dt−

∫ kT

0
h(t)dt

≥ 1
2

∫ kT

0
|u̇(t)|2dt− C3(

∫ kT

0
|u̇(t)|2dt)

α
2 − C4

(18)

for all u ∈ H̃1
kT and some constants C3 and C4. Since ‖u‖ → +∞ ⇔ ‖u̇‖2 →

+∞ on H̃1
kT , then (18) implies that Ψ(u) → +∞ as ‖u‖ → +∞. Consequently,

there exists a point u0 ∈ H̃1
kT such that Ψ(u0) = min

H̃1
kT

Ψ(u), and hence
uk = u0 + θ(u0) is a solution with saddle point character of problem (1) in
H1

kT . Then the rest continue as same as in Theorem 1, we complete the proof
of Theorem 2. ¤
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