
Nonlinear Functional Analysis and Applications
Vol. 14, No. 1 (2009), pp. 69–80

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2009 Kyungnam University Press

STRONG CONVERGENCE OF AN ITERATIVE
SEQUENCE FOR ACCRETIVE OPERATORS

IN BANACH SPACES

Sun Young Cho1, Meijuan Shang2 and Xiaolong Qin3

1Department of Mathematics, Gyeongsang National University
Jinju 660-701, Korea

e-mail: ooly61@yahoo.co.kr

2Department of Mathematics, Shijiazhuang University
Shijiazhuang 050035, China

e-mail: meijuanshang@yahoo.com.cn

3Department of Mathematics, Gyeongsang National University
Jinju 660-701, Korea

e-mail: qxlxajh@163.com

Abstract. In this paper, we consider the problem of finding zeros of m-accretive operators

by an iterative process with errors. A strong convergence theorem is established in a real

Banach space.

1. Introduction and Preliminaries

Let E be a real Banach space, C a nonempty closed convex subset of E and
T : C → C a nonlinear mapping. Recall that T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

In this paper, we use F (T ) to denote the fixed point set of T .
It is a efficient way to to study nonexpansive mappings by using contrac-

tions. More precisely, take t ∈ (0, 1) and define a contraction Tt : C → C
by

Ttx = tu + (1− t)Tx, ∀x ∈ C, (1.1)
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where u ∈ C is a fixed point. Banach’s contraction mapping principle guar-
antees that Tt has a unique fixed point xt in C. It is unclear, in general, what
the behavior of xt is as t → 0 even if T has a fixed point. However, in the case
of T having a fixed point, Browder [1] proved that if E is a Hilbert space then
xt converges strongly to a fixed point of T which is nearest to u. Reich [15]
extended Broweder’s result to the setting of Banach spaces and proved that if
E is a uniformly smooth Banach space then {xt} converges strongly to a fixed
point of T and the limit defines the (unique) sunny nonexpansive retraction
from C onto F (T ).

Let E∗ be the dual space of a Banach space E. Let 〈·, ·〉 denote the pairing
between E and E∗. The normalized duality mapping J : E → 2E∗ is defined
by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}
for all x ∈ E. In the sequel, we use j to denote the single-valued normalized
duality mapping. Let U = {x ∈ E : ‖x‖ = 1}. E is said to be smooth or said
to be have a Gâteaux differentiable norm if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U . E is said to have a uniformly Gâteaux differentiable
norm if for each y ∈ U , the limit is attained uniformly for all x ∈ U . E is said
to be uniformly smooth or said to be have a uniformly Fréchet differentiable
norm if the limit is attained uniformly for x, y ∈ U. It is known that if E
is smooth, then J is single-valued. A Banach space E is uniformly smooth if
and only if the duality map J is the single-valued and norm-to-norm uniformly
continuous on bounded sets of E.

Recall that a (possibly multivalued) operator A with the domain D(A) and
the range R(A) in E is accretive if for each xi ∈ D(A) and yi ∈ Axi, where
i = 1, 2 there exists a j(x2 − x1) ∈ J(x2 − x1) such that

〈y2 − y1, j(x2 − x1)〉 ≥ 0.

An accretive operator A is m-accretive if R(I + rA) = E for each r > 0.
Throughout this article we always assume that A is m-accretive and has a
zero (i.e., the inclusion 0 ∈ A(z) is solvable). The set of zeros of A is denoted
by F . Hence,

F = {z ∈ D(A) : 0 ∈ A(z)} = A−1(0).

For each r > 0, we denote by Jr the resolvent of A, i.e., Jr = (I + rA)−1.
Note that if A is m-accretive, then Jr : E → E is nonexpansive and F (Jr) = F
for all r > 0. We also denote by Ar the Yosida approximation of A, i.e.,
Ar = 1

r (I − Jr). It is known that Jr is a nonexpansive mapping from E to
C := D(A) which will be assumed convex.
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The normal Mann iterative process [10] was introduced by Mann in 1976.
The normal Mann iterative process generates a sequence {xn} in the following
manner:

x0 ∈ C, xn+1 = (1− αn)xn + αnTxn, ∀n ≥ 0, (1.1)
where the sequence {αn} is in the interval (0, 1).

If T is a nonexpansive mapping with a fixed point and the control sequence
{αn} is chosen so that

∑∞
n=0 αn(1 − αn) = ∞, then the sequence {xn} gen-

erated by normal Mann’s iterative process converges weakly to a fixed point
of T (this is also valid in a uniformly convex Banach space with the Fréchet
differentiable norm [14]). In an infinite-dimensional Hilbert space, the normal
Mann’s iterative process has only weak convergence. Therefore, many authors
try to modify the normal Mann’s iterative process to have strong convergence
for nonexpansive mappings and its extensions (see [3-8,11-13] and the refer-
ences therein).

Recently, Qin and Su [13] introduced a modified Mann iterative process for
accretive operators in a Banach spaces. To be more precise, they proved the
following results.

Theorem QS. Assume that E is a uniformly smooth Banach space and A
is an m-accretive operator in E such that A−1(0) 6= ∅. Given a point u ∈ C
and given sequences {αn}, {βn} and {rn}. Suppose that {αn}, {βn} and {rn}
satisfy the following conditions

(a) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(b) rn ≥ ε for each n ≥ 0, βn ∈ [0, a) for some a ∈ (0, 1);
(c)

∑∞
n=0 |αn−αn+1| < ∞,

∑∞
n=0 |βn−βn+1| < ∞ and

∑∞
n=0 |rn−rn+1| <

∞.

Let {xn} be a sequence defined in the following iterative process:



x0 ∈ C,

yn = βnxn + (1− βn)Jrnxn,

xn+1 = αu + (1− αn)yn, ∀n ≥ 0,

(1.2)

Then the sequence {xn} converges strongly to a zero of A.

Inspired and motivated by the above results, we consider the following it-
erative process 




x0 ∈ C,

yn = βnxn + γnJrnxn + δnvn,

xn+1 = αnu + (1− αn)yn, n ≥ 0,

(1.3)

where u is an arbitrary (but fixed) element in C, {vn} a bounded sequence in
C, Jrn = (I + rnA)−1, {αn} a sequence in [0, 1] and {βn}, {γn} and {δn} are
sequences in [0, 1] such that βn + γn + δn ≡ 0.
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If δn ≡ 0 in (1.3), then the iterative process (1.3) is reduced to (1.2). If
δn ≡ βn ≡ 0 in (1.3), then the iterative process (1.3) is reduced to

x0 ∈ C, xn+1 = αnu + (1− αn)Jrnxn, n ≥ 0, (1.4)

which was considered in Kim and Xu [8] and Xu [18].
The purpose of this paper is to consider the iterative process (1.3) for

approximating a zero of accretive operators in the framework of uniformly
smooth Banach spaces. The results presented in this paper mainly improve
and extend the corresponding results in Kim and Xu [8], Qin and Su [13] and
Xu [18].

In order to prove our main results, we also need the following concepts and
lemmas.

Let C be a nonempty closed convex subset of a Banach space E and D
a nonempty subset of C. Recall that a mapping Q of C onto D is said to
be sunny if Q(Qx + t(x − Q(x))) = Q(x) for any x ∈ C and t ≥ 0 with
Q(x)+t(x−Q(x)) ∈ C; Recall that a subset D of C is said to be a nonexpansive
retract of C if there exists a nonexpansive retraction of C onto D.

The following results describe a characterization of sunny nonexpansive re-
tractions on a smooth Banach space.

Proposition 1.1 ([16]). Let E be a smooth Banach space C a nonempty subset
of E. Let Q : E → C be a retraction. Then the following are equivalent:

(1) Q is sunny and nonexpansive;
(2) ‖Qx−Qy‖2 ≤ 〈x− y, j(Qx−Qy)〉, ∀x, y ∈ E;
(3) 〈x−Qx, j(y −Qx)〉 ≤ 0, ∀x ∈ E, y ∈ C.

Proposition 1.2 ([15]). Let E be a uniformly smooth Banach space and
T : C → C a nonexpansive mapping with a fixed point. For each fixed u ∈ C
and every t ∈ (0, 1), the unique fixed point xt ∈ C of the contraction C 3
x 7→ tu + (1− t)Tx converges strongly as t → 0 to a fixed point of T . Define
Q : C → D by Qu = s− limt→0 xt. Then Q is the unique sunny nonexpansive
retract from C onto D; that is, Q satisfies the property:

〈u−Qu, J(y −Qu)〉 ≤ 0, ∀u ∈ C, y ∈ D.

Lemma 1.3. In a Banach space E, there holds the following inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀x, y ∈ E,

where j(x + y) ∈ J(x + y).

Lemma 1.4 ([17]). Let {xn} and {yn} be bounded sequences in a Banach
space E and let {βn} be a sequence in [0, 1] with

0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1.
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Suppose that xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 1.5 ([2]). Let E be a Banach space A an m-accretive operator. For
λ > 0 and µ > 0 and x ∈ E, we have

Jλx = Jµ(
µ

λ
x + (1− µ

λ
)Jλx),

where Jλ = (I + λA)−1 and Jµ = (I + µA)−1.

Lemma 1.6 ([9]). Let {an}, {bn} and {cn} be three nonnegative real sequences
satisfying

an+1 ≤ (1− tn)an + bn + cn, n ≥ 0,

where {tn} is a sequence in (0, 1). Assume that the following conditions are
satisfied

(a)
∑∞

n=0 tn = ∞ and bn = o(tn);
(b)

∑∞
n=0 cn < ∞.

Then limn→∞ an = 0.

2. Main Results

Theorem 2.1. Let E be a real smooth Banach space and A an m-accretive
operators in E. Assume that C := D(A) is nonempty and convex. Let {αn},
{βn}, {γn} and {δn} be real number sequences in [0, 1]. Let QC be the sunny
nonexpansive retraction from E onto C and {vn} a bounded sequence in C.
Let {xn} be a sequence generated in the following manner:





x0 ∈ C,

yn = βnxn + γnJrnxn + δnvn,

xn+1 = αnu + (1− αn)yn, n ≥ 0,

where u is a fixed element in C, {rn} is a positive real numbers sequence
and Jrn = (I + rnA)−1. Assume that the above control sequences satisfy the
following restrictions:

(a) βn + γn + δn = 1, for each n ≥ 0;
(b) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(d)

∑∞
n=0 δn < ∞;

(e) rn ≥ λ > 0 for each n ≥ 0 and limn→∞ |rn − rn+1| = 0.

Then the sequence {xn} converges strongly to a zero Q(u) of A.
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Proof. First, we prove that {xn} is bounded. Fixing p ∈ A−1(0), we see that

‖x1 − p‖ = ‖α0(u− p) + (1− α0)(y0 − p)‖
≤ α0‖u− p‖+ (1− α0)‖y0 − p‖
≤ α0‖u− p‖+ (1− α0)

(
β0‖x0 − p‖+ γ0‖Jr0x0 − p‖+ δ0‖v0 − p‖)

≤ α0‖u− p‖+ (1− α0)
(
(1− δ0)‖x0 − p‖+ δ0‖f0 − p‖)

≤ K,

where K = ‖u− p‖+ ‖x0 − p‖+ ‖v0 − p‖ < ∞. Next, we prove that

‖xn − p‖ ≤ M1, ∀n ≥ 1 (2.1)

where M1 = max{K, supn≥0 ‖vn − p‖}. It is easy to see that (2.1) holds for
n = 1. We assume that the result holds for some positive integer m. It follows
that

‖xm+1 − p‖
≤ αm‖u− p‖+ (1− αm)‖ym − p‖
= αm‖u− p‖+ (1− αm)

(‖βm(xn − p) + γm(Jrmxm − p) + δm(vm − p)‖)

≤ αm‖u− p‖+ (1− αm)
(
βm‖xm − p‖+ γm‖Jrmxm − p‖+ δm‖vm − p‖)

≤ αm‖u− p‖+ (1− αm)
(
(1− δm)‖xm − p‖+ δm‖vm − p‖)

≤ αmM1 + (1− αm)
(
(1− δm)M1 + δmM1

)

= M1.

This shows that (2.1) holds for all n ≥ 1. This claim that {xn} is bounded. If
rn+1 ≥ rn, from Lemma 1.5, we see from the condition (e) that

‖Jrnxn − Jrn+1xn+1‖ ≤ ‖ rn

rn+1
xn + (1− rn

rn+1
)Jrnxn − xn+1‖

= ‖ rn

rn+1
(xn − xn+1) +

rn+1 − rn

rn+1
(Jrnxn − xn+1)‖

≤ ‖xn − xn+1‖+
M2

λ
(rn+1 − rn),

(2.2)
where M2 is an appropriate constant such that

M2 ≥ sup
n≥0

{‖Jrnxn − xn+1‖}.

Put gn = xn+1−βnxn

1−βn
for every n ≥ 0. This implies that

xn+1 = (1− βn)gn + βnxn, n ≥ 0. (2.3)



Strong convergence of an iterative sequence for accretive operators in Banach spaces 75

Now, we compute ‖gn+1 − gn‖. Note that

gn+1 − gn

=
αn+1u + (1− αn+1)yn+1 − βn+1xn+1

1− βn+1

− αnu + (1− αn)yn − βnxn

1− βn

=
αn+1(u− yn+1) + (1− βn+1)Jrn+1xn+1 + δn+1(vn+1 − Jrn+1xn+1)

1− βn+1

− αn(u− yn) + (1− βn)Jrnxn + δn(vn − Jrnxn)
1− βn

.

(2.4)

It follows that

‖gn+1 − gn‖ ≤ αn+1

1− βn+1
‖u− yn+1‖+

αn

1− βn
‖yn − u‖

+ ‖Jrn+1xn+1 − Jrnxn‖+
δn+1

1− βn+1
‖vn+1 − Jrn+1xn+1‖

+
δn

1− βn
‖vn − Jrnxn‖.

(2.5)

Substituting (2.2) into (2.5), we arrive at

‖gn+1 − gn‖ − ‖xn − xn+1‖
≤ αn+1

1− βn+1
‖u− yn+1‖+

αn

1− βn
‖yn − u‖

+
M2

ε
(rn+1 − rn) +

δn+1

1− βn+1
‖vn+1 − Jrn+1xn+1‖+

δn

1− βn
‖vn − Jrnxn‖.

In view of the conditions (b), (c), (d) and (e), we can conclude that

lim sup
n→∞

(‖gn+1 − gn‖ − ‖xn − xn+1‖
) ≤ 0. (2.6)

In the case of rn ≥ rn+1, we can obtain (2.6) by a similar way. It follows from
Lemma 1.4 that

lim
n→∞ ‖gn − xn‖ = 0. (2.7)

In view of (2.3), we have

xn+1 − xn = (1− βn)(gn − xn),

which combines with (2.7) gives that

lim
n→∞ ‖xn+1 − xn‖ = 0. (2.8)
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On the other hand, we have

‖xn − Jrnxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn − Jrnxn‖
≤ ‖xn − xn+1‖+ αn‖u− yn‖+ βn‖xn − Jrnxn‖+ δn‖vn − xn‖.

This implies that

(1− βn)‖xn − Jrnxn‖ ≤ ‖xn − xn+1‖+ αn‖u− yn‖+ δn‖vn − xn‖.
By virtue of the the conditions (b)-(d) and (2.8), we conclude that

lim
n→∞ ‖xn − Jrnxn‖ = 0. (2.9)

Take a fixed number r such that ε > r > 0. From Lemma 1.5, we obtain that

‖Jrnxn − Jrxn‖ = ‖Jr

( r

rn
xn + (1− r

rn
)Jrnxn

)− Jrxn‖

≤ ‖(1− r

rn
)(Jrnxn − xn)‖

≤ ‖Jrnxn − xn‖.

(2.10)

It follows that
‖xn − Jrxn‖ = ‖xn − Jrnxn + Jrnxn − Jrxn‖

≤ ‖xn − Jrnxn‖+ ‖Jrnxn − Jrxn‖
≤ 2‖xn − Jrnxn‖.

Thanks to (2.9), we obtain that

lim
n→∞ ‖xn − Jrxn‖ = 0. (2.11)

Next, we claim that

lim sup
n→∞

〈u−Q(u), j(xn −Q(u))〉 ≤ 0, (2.12)

where
Qu = lim

t→0
zt, u ∈ C

and zt solves the fixed point equation

zt = tu + (1− t)Jrzt, ∀t ∈ (0, 1),

from which it follows that

‖zt − xn‖ = ‖(1− t)(Jrzt − xn) + t(u− xn)‖.
It follows From Lemma 1.3 that

‖zt − xn‖2 ≤ (1− t)2‖Jrzt − xn‖2 + 2t〈u− xn, j(zt − xn)〉
≤ (1− 2t + t2)‖zt − xn‖2 + fn(t)

+ 2t〈u− zt, j(zt − xn)〉+ 2t‖zt − xn‖2,

(2.13)
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where
fn(t) = (2‖zt − xn‖+ ‖xn − Jrxn‖)‖xn − Jrxn‖ → 0. (2.14)

In view of (2.1), we see that fn(t) → 0 as n →∞. It follows that

〈zt − u, J(zt − xn)〉 ≤ t

2
‖zt − xn‖2 +

1
2t

fn(t). (2.15)

Let n →∞ in (2.15) yields that

lim sup
n→∞

〈zt − u, j(zt − xn)〉 ≤ t

2
M3, (2.16)

where M3 > 0 is a constant such that M3 ≥ ‖zt − xn‖2 for all t ∈ (0, 1) and
for all n ≥ 0. In view of (2.16), we can obtain that

lim sup
t→0

lim sup
n→∞

〈zt − u, j(zt − xn)〉 ≤ 0.

So, for any ε > 0, there exists a positive number δ1 such that, for t ∈ (0, δ1)
we get that

lim sup
n→∞

〈zt − u, j(zt − xn)〉 ≤ ε

2
. (2.17)

On the other hand, since zt → q as t → 0, we see there exists δ2 > 0 such that,
for t ∈ (0, δ2) we have

|〈u− q, J(xn − q)〉 − 〈zt − u, j(zt − xn)〉|
≤ |〈u− q, J(xn − q)〉 − 〈u− q, J(xn − zt)〉|

+ |〈u− q, j(xn − zt)〉 − 〈zt − u, j(zt − xn)〉|
≤ |〈u− q, j(xn − q)− J(xn − zt)〉|+ |〈zt − q, j(xn − zt)〉|
≤ ‖u− q‖‖j(xn − q)− j(xn − zt)‖+ ‖zt − q‖‖xn − zt‖
<

ε

2
.

Choosing δ = min{δ1, δ2}, ∀t ∈ (0, δ), we have

〈u−Q(u), j(xn −Q(u))〉 ≤ 〈zt − u, j(zt − xn)〉+
ε

2
,

that is,

lim sup
n→∞

〈u−Q(u), j(xn −Q(u))〉 ≤ lim sup
n→∞

〈zt − u, j(zt − xn)〉+
ε

2
.

It follows from (2.17) that

lim sup
n→∞

〈u−Q(u), j(xn −Q(u))〉 ≤ ε.

Since ε is chosen arbitrarily, we obtain that (2.12) holds.
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Finally, we show that xn → Q(u) as n → ∞ and this concludes the proof.
Note that

‖yn −Q(u)‖ = ‖βnxn + γnJrnxn + δnvn −Q(u)‖
≤ βn‖xn −Q(u)‖+ γn‖Jrnxn −Q(u)‖+ δn‖vn −Q(u)‖
≤ ‖xn −Q(u)‖+ δnM1.

It follows from Lemma 1.3 that

‖xn+1 −Q(u)‖2

= ‖(1− αn)(yn −Q(u)) + αn(u−Q(u))‖2

≤ (1− αn)2‖yn −Q(u)‖2 + 2αn〈u−Q(u), j(xn+1 −Q(u))〉
≤ (1− αn)(‖xn −Q(u)‖+ δnM1)2 + 2αn〈u−Q(u), j(xn+1 −Q(u))〉
= (1− αn)(‖xn −Q(u)‖2 + 2δnM1‖xn −Q(u)‖+ δ2

nM2
1 )

+ 2αn〈u−Q(u), j(xn+1 −Q(u))〉
≤ (1− αn)‖xn −Q(u)‖2 + ηnM3 + 2αn〈u−Q(u), j(xn+1 −Q(u))〉,

(2.18)

where M3 is an appropriate constant such that

M3 ≥ sup
n≥0

{2M1‖xn −Q(u)‖+ δnM2
1 }.

Let ρn = max{〈u−Q(u), j(xn−Q(u))〉, 0}. Next, we show that limn→∞ ρn = 0.
Indeed, from (2.12), for any give ε > 0, there exists a positive integer n1 such
that

〈u−Q(u), J(xn −Q(u))〉 < ε, ∀n ≥ n1.

This implies that 0 ≤ ρn < ε ∀n ≥ n1. Since ε > 0 is arbitrary, we see that
limn→∞ ρn = 0. It follows from (2.18) that

‖xn+1 −Q(u)‖2 ≤ (1− αn)‖xn −Q(u)‖2 + ηnM3 + 2αnρn+1.

Put an = ‖xn − Q(u)‖2, tn = αn, bn = 2αnρn+1 and cn = ηnM3 for every
n ≥ 0. In view of Lemma 1.6, we can obtain the desired conclusion. ¤

Remark 2.2. The proof of Theorem 2.1 is different from Theorem 2.1 of Qin
and Su [13]. From computation point of view, Theorem 2.1 can be viewed
as an improvement of Theorem 2.1 of Qin and Su [13]. Furthermore, the
restrictions imposed on the control sequences are also mild.

As an application, we have the following results.

Corollary 2.3. Let E be a real smooth Banach space and A an m-accretive
operators in E. Assume that C := D(A) is nonempty and convex. Let {αn}
and {βn} be real number sequences in [0, 1]. Let QC be the sunny nonexpansive
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retraction from E onto C and {xn} a sequence generated in the following
manner: 




x0 ∈ C,

yn = βnxn + (1− βn)Jrnxn,

xn+1 = αu + (1− αn)yn, ∀n ≥ 0,

where u is a fixed element in C, {rn} is a positive real numbers sequence
and Jrn = (I + rnA)−1. Assume that the above control sequences satisfy the
following restrictions:

(a) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;
(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(c) rn ≥ λ > 0 for each n ≥ 0 and limn→∞ |rn − rn+1| = 0.

Then the sequence {xn} converges strongly to a zero Q(u) of A.
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