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Abstract. In this paper, we have introduced a generalized class Sk (m,n,7, ¢, ¢;q), i €
{0,1} of harmonic univalent functions in unit disc U, a sufficient coefficient condition for the
normalized harmonic function in this class is obtained. It is also shown that this coefficient
condition is necessary for its subclass 7 S% (m,n,~, ¢, ;). We further obtained extreme
points, bounds and a covering result for the class 7S% (m,n,, ¢,¥;a). Also, show that
this class is closed under convolution and convex combination. While proving our results,
certain conditions related to the coefficients of ¢ and v are considered, which lead to various

well-known results.

1. INTRODUCTION

A continuous complex-valued function f = u 4+ iv defined in a simply con-
nected domain I is said to be harmonic in D if both u and v are real harmonic
in D. In any simply connected domain D, we can write f = h + g. We call h
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the analytic part and g the co-analytic part of function f. A necessary and
sufficient condition for function f to be locally univalent and sense-preserving

in D is that ‘h/(z)‘ > ‘g'(z)‘, z €D (see [4]).

Denote by Sy the class of functions f = h + g which are harmonic, uni-
valent and sense-preserving in the open unit disk U = {z : |z| < 1} for which
f(0) = f,(0) =1 =0. Then for f = h+ g € Sy, we may express the analytic
functions h and g as

hz) =2+ a2, g(z) =) 2" zel. (1.1)
k=2 k=1

Therefore

o o0
f(z)=z+ Z ap2® + Z bpzk, ] < 1.
k=2 k=1

Note that Sy reduces normalized analytic univalent functions to the class
if the co-analytic part of function f is identically zero, i.e. g = 0. For this
class, f(z) may be expressed as

f(2) :z—l—Zakzk. (1.2)
k=2

For more basic results on harmonic functions one may refer to the following
book by Duren [8] (see also [1],[13],[14],[15]). For f = h+g with h and g are of
the form (1.1), [2] defined the Al-Oboudi operator D for n € Ng = NU {0},
by

DI f(=) = D2h(z) + (~1)" Dig(2), (1.3)

where

o o0
Drh(z)=z+ Y [+ (k—1)y"arz®, Dlg(z) = [1+ (k—1)7]" b,
k=2 k=1

Several authors such as [5],[6],[7],[9],[12] and [16] introduced and studied
various new subclasses of analytic univalent as well as harmonic univalent
functions with the help of convolution.

We motivated by the earlier work of Jahangiri et al. [11] and Sharma et
al. [17] for subclasses of Sy, in this paper, we define a generalized class
St (m,n, 7y, ¢, ;) of functions f = h + g € Sy satisfying for i € {0,1}, the
condition

E)C{e{Dg%h(z) * () + (—1)’””1)319(2)“!)(2)} > a, (1.4)
Drh(z) + (~=1)"D3g(2)
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where, m,n € No, m > n, 0 < a < 1,7 > 1, ¢(2) = 2 + Y noy M2" and
Y(2) = 2+ 322, w2k are analytic in open unit disk U with the conditions
Mg > 1, p > 1. The operator ”*” stands for the Hadamard product or convo-
lution of two power series.

We further denote by TS%; (m,n,v, ¢,; a), asubclass of Sty (m,n, 7, ¢, ¥; a)
consisting of functions f = h +g € Sy such that h and g are of the form

h(z)=2=) lalz¥, g(z) = (=1)"77' Y |oil=", | <1 (15)
k=2 k=1

Interestingly, we obtain the following known subclasses of Sy studied earlier
by various researchers by specializing the parameters.

(i) Yalcin [20] has studied the subclasses

0 1 2 Z . — .
Sy | m,n, ,1_2,1_Z,a) = Su(m,n; a)
and
789 (m,n,1, ——, —=—:a =T Su(m,n;a);
H s Iy 71_271_27 s 1Yy I

(ii) Jahangiri et al [11] has studied the subclasses

SY, <n +1,n,1, &, ﬁ;a = Sp(n;«)
and
TS?{ (” +1,n,1, ﬁa 1iz§a> =T Su(n;a);

(iii) Jahangiri [10] has studied the subclasses
z z .
and
z z .
(iv) Jahangiri [10] has studied the subclasses
0 z 0\
SH <271717 1 _Zv 1 _Z7a> - ’CH(OZ)
and

0 A F )= :
7dSH (Qa]-a]-a 1_27 1—Z’a> _ICH(OK),

(v) Frasin [9] has studied the subclasses
S}{ (0507 17¢7¢;O‘) = SH (Cbﬂ/),a)

and

TS} (0,0,1,¢,¢;a) = TSy (6,95 a);
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(vi) Silverman [18], Silverman and Silvia [19] (also see [3]) has studied the
subclasses S% <2, 1,1, _E Z‘O) =Ky,

1—2"1—-2’
TS%<11J”1iz’1iZWOEETKH,
and
TSY (1,0, L 1ZZ;O> _ TS

(vii) Sharma et al [17] has studied the subclasses

S}{ (m7 n, 17 ¢a ,¢) Oé) = S}—[ (m, ’I’Z, ¢7 1/]7 O[)
and ‘
TSy (m,n,1,¢,¢;a) = TSy (m,n, ¢,9; ).
In the present paper, we prove some sharp results including, coefficient
inequality, bounds, extreme points, convolution and convex combination for

functions in TS% (m,n, ¢,v,v; «) under certain conditions on the coefficients
of ¢ and .

2. MAIN RESULTS

‘We begin with a sufficient coefficient condition for functions to be in class
S}I (ma n,m, ¢7 @ZJ, Oé).

Theorem 2.1. Let the function f = h+ g, where h and g are of the form
(1.1), satisfies

(e}

Z Ak [+ (k- 1)7}:1_—(104 1+ (k—1)y]" |
= 00 m m-+i—n n (2.1)
I e Ul il ) LR L 1 Y
k=1

where, 1 € {0,1}, me Ny, neNy,m>n, 0<a<l,y>1, A\ > 1, pup > 1,
k>1. Incasem=n=0, Ay >k, py, > k, k > 1. Then [ is sense-preserving,
harmonic univalent in U and f € Sy (m,n,v, ¢, ;).

Proof. Under the given hypothesis, we note that for
A1+ (k=D —al+ (k- 1)]"
11—«
pe [+ (k= 1y]™ = (=)™ "L + (k= 1)9]"
1—« '

k>1, k<

9

(2.2)
k<
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Hence, for f = h 4+ g, where h and g are of the form (1.1), we get that

W )] 2 1= 3 Kl > 1= klay]
k=2 k=2

i A[1+ (B =1 =l + (k= 1)4]"

l—«

>1-

|a|
k=2

[ — " = (=)™ a1+ (k= 1)y)"
Z 2L l-«a

> Zk|bk\ > Zk|bkyrk 1> ‘g

which proves that f is sense preserving in U. To show that f is univalent in
U, suppose z1, zo € U such that z; # 25, then

|bg |

‘f(21) — f(z2)| _ 1 9(z1) — g(22)
— h(Zg) h(zl) — h(ZQ)
Zbk — 22
=1—
ZQ — 21 Z ak — 2’2
Zk\bkr
>1— | =
k=2
Z Kk [1 + (k — 1),}/]171 — (;i);l+2—na [1 + (k — 1),}/]11 ‘bk’
Z 1 oo m n
LSS M E " el s (E DT,
k=2
> 0.

Now, to show that f € S% (m,n,v, ¢,¥;a), we use the fact that Re {w} > a,
if and only if |1 —a+w| > |1 +a —w|.
Hence, it suffices to show that

Q(z) = [A(z) + (1 = ) B(2)| = [A(z) — (1 + @) B(2)| > 0, (2.3)
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where, A(z) = DI'h(z) * ¢(2) + (
B(z) = DIh(z) + (—1)"Drg(2).

Substituting the corresponding series expansions in the expressions of A(z)
and B(z), we obtain from (2.3), that

1) Dmg(z) x ¢(z) and

Ak [+ (k= 1)9]
() 2—@2+Z{ 1_@ —i—(k—l)fy]”}akzk
Q(z) = - m
mi Z {Mk 1+ (k _ 1)7] }bkzk
o EDTTTM A e [+ (-1
)‘k (k 7] k
“0 3 e o
- i e [ 1 LA (k= 1)4]™ T
;{ L (L4 a) [L+ (k= 1)A)" et
= (k—=1)7)
]_*Oé z_:)\k (k—l)’)/)n] |al€|
>2 (1+ (k- 1) ym
Z,Uk _ m—f—z na(l + (k‘— 1)7)7;] |bk‘
>0.

Hence inequality (2.3) satisfied. This proves the Theorem 2.1.
Sharpness of the coefficient inequality (2.1) can be seen by the function

> 1—« k
=z+
) kzzmm F— 1) —a(l+ (k= 1))
£y Lo Y2k
S (1 + (k= 1y)m = ()™ ma(l+ (k= 1))

where, i € {0,1},meN,neNy,m>n0<a <1, \>1,u >1,k>1.

Incase m=n=0, \, >k, pux >k, k>1,3 270, [zr] + > pey |yx] = 1. O

Next, we have show that the above sufficient coefficient condition is also
necessary for functions in the class 7Sy (m,n,v, ¢,9¥; a).
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Theorem 2.2. Let the function f = h+ g, be such that h and g are given by
(1.5). Then, f € TSy (m,n,v,¢,¢;a) if and only if

— AL+ (k=D —a[l+ (k—1)1]"
11—«

|ak|
k=1

N ki e [14 (k= 1)y]™ = (;i);"“_”a [1+ (k= 1)]"
=1

(2.4)

k| < 2,
where, ay =1, meNneNyym>n0<a<1l,y>1,A\>1u,>1k>1.
Incase m=n=0,\p >k, >k, k> 1.

Proof. The if part, follows from Theorem 2.1. To prove the ”only if” part, let
[ €TS8y (m,n,vy,0,v;a), then from (1.4), we have

e { DZ'h(z) * ¢(2) + (—DmHW
Drh(z) + (=1)"Drg(z)

—a}>0, z €U,

which is equivalent to

(1-a)z - Z [+ (k=D —al+ (k= 1))"} ax|2*
1)2m+2i-1 px [1 1)7] Sk
Z{ m—H n&[1+(k—1)y]n}|bk|
Re = > 0.
2= [+ (k= 1] farlz" + (=)™ 1+ (k= D] by 2
k=2
If we choose z to be real and z — 1, we get
(1-a) Z{)\k 1+ (k=" —al+ (k—1)7]"} |ax]
1-> [+ I ] + (=)™ 14 (k= 1)7]" (b
o >0
S {4 (k=D = (=)™ " [L+ (k= 1)7]" } [bx|
| k=1
1-> [+ I ] + (=)™ L4 (k= 1)7]" (b
\ k=2
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or, equivalently,

DAL+ k=" —al+ (k= 1)]"} x|
k=2

<1l-—-«
[e'e) — 9
+ 3 Am [+ (k=17 = (=)™ " [L+ (k= 1)7]" } [bg]
k=1
which is the required condition (2.4). This completes the proof. O

For the classes TSy (m,n,v;«) and T Sy(p,1;a) mentioned in the main
results, Theorem 2.2 yields the following results, which include the results for
other known classes discussed in main results.

Corollary 2.3. ([16]) Let the function f = h+ g, be such that h and g are
given by (1.5). Then, f € TSy (m,n,v;«) if and only if

i [+ (k= 1Dy]" = [1 4 (k = 11]"

l—«o

|ak|
k=1

i 1+ (k—1)1]" - (Il_)Z‘”a [1+ (k—1)"

=1

k
wherea; =1, meN neNy, m>n, 0<a<1.

Corollary 2.4. ([17]) Let the function f = h+ g, be such that h and g are
gwen by (1.5). Then, f € TS} (m,n,¢,¢;a) if and only if

o0

A k™ — k™ ko (=1 m+i—n kn
Zkliamﬂ_i_:u’k (1 ) - ‘bk| SQ,
k=1 B @

where, ap = 1,m e Nn e Ngyom >n,0 < a< 1, > 1Lur > 1, k>1. In
casem=n=0,\p > k,ur >k, k>1.

Corollary 2.5. Let the function f = h + g, be such that h and g are given by
(1.5). Then, f € TSy (¢,;a) if and only if

(o]
A — @ ko
3 ] + EET Sy b < 2,
P l—« 11—«

where a1 = 1, \g > k,ue > k,k>1,0<a< 1.
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3. BOUNDS

Our next theorem provides the bounds for the functions in
TSy (m,n,v, ¢,1; ) which is followed by a covering result for this class.

Theorem 3.1. Let f = h+ g, with h and g are of the form (1.5) belongs
to the class T S%(m,n,~y,d, ;) for functions ¢ and ¢ with non-decreasing
sequences {\r} and {pp} satisfying Ao > «, u1 > (2 — «), pr > A2, k > 2,
v > 1, then

lz|=r <1 (3.1)

_ (1M i—na —OéT‘2
|f(2)1§(1+\b1|)r+[1—1 ey, |] (1-a)

2m)\2 - a2”’

and

£ = (b yr— [1 _

1-— (—l)m”*”aw } (1 a)r2

. g 271,|z|:7“<1. (3.2)

Proof. We only prove the result for upper bound. The result for the lower
bound can similarly be obtained.

Let TS}{(m, n,v, ®,1; a), then on taking the absolute value of function f,
we get for |z| =r < 1,

|f(2) < (1 +[ba]) T‘+Z |ak] + be[] ™ < (14 [b1]) T+T22 [lax| + |bkl]
=2

k=2
(1
(14 [by] T+[2m)\2—a2"]
Z (A [L+ (E—1)y ]1_—aa[1+(k 1)7] )!ak!

. i pu [+ (k= 1DA]™ = (=)™ "o [1 4 (k — 1)]")

b
T—a bk |

1— (-1)m+i—ng (1—a)r?
< (1 1-— 2.4).
<+ b+ { L g w2

The bounds (3.1) and (3.2) are sharp for the function given by

1- (—1)m+i—"a’b | (1—a)z?
1- 2m Ny — 2"

f(z) =z+|bi|Zz + {1—

for |b1] < % A covering result follows from (3.2). The proof of

the theorem is complete. Il
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Corollary 3.2. Let f € St (m,n,~,d, ;) and for functions ¢ and ¢ with
non-decreasing sequences { A} and {ux} satisfying o > o, p1 > (2 — a), pg >
Ao, k>2,v>1. Then

(1—-a) 1 — (=1)mti-ng
: 1-— —1 .
{w lw| < [ Ay — 2" + g — a2n b1] p € f(U)
Further, for the classes T Sg(m,n,v;a) and TSgo,v;«), Theorem 3.1

yields following results which include the results for other known classes dis-
cussed in main results.

Corollary 3.3. ([16]) Let f = h+g with h and g are of the form (1.5) belongs
to the class TSg(m,n,v;a), v > 1,0 < a < 1 with non-decreasing sequences
{\k} and {p} satisfying Ao > a, 1 > (2 — &), pg > Ao,k > 2,7 > 1. Then

_(_1ym—n _ 2
1< @ e+ 1= FE S L 2O
and
1— (—1)mn 1— a)r?
|f(z)|2(1—|bl|)7“—{1— (1_)a albll}ém_oggn, 2| =r < 1.
Further,
1— 1—(=1 m+i—n
T e

Corollary 3.4. Let f = h+ g with h and g are of the form (1.5) belongs to
the class TSy (¢, v¥; ), for function ¢ and ¢ with non-decreasing sequences
{\k} and {ug} satisfying Ao > o, pu1 > (2—a), pp > Aoy, k>2, v > 1. Then

o —a)r?
’f(zﬂ§(1+|b1|)r+{1_ii—a|b1|} (1 )

|zl =r <1 (3.3)

)\2—04 ’
and
1+« (1—a)r?
>(1—-1b —<1- b = 1. 4
@1z @l 1= 2 G2t @
Further,

{w w| < )\21_(1 A2 — 14 (1 — A2+ 2] |b1|} C f(U).
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4. EXTREME POINTS

In this section we determine the extreme points of TSk (m,n,~, ¢, ;).

Theorem 4.1. Let

hi(z) = z,
he(z) = 7 — L—a (k> 2)
g M1+ (k—11]" —a[l+ (k=1 -
and
gk(2) =z + ()™ (1 o) ZF (k>1).

i [1+ (b = Dy)™ = (=)™ a1+ (k= 1)y]"

Then f € TS (m,n, 7y, $, ;) if and only if it can be expressed as

NE

f(z) =) [zrhi(2) + yrgr(2)], (4.1)

e
Il
—

where, x>0, yr >0 and Y 5o (z +yr) = 1.
In particular, the extreme points of TSt (m,n,v, ¢, ;) are {hy} and {gi} -

Proof. Suppose that

F(z) = lewhi(z) + yrgr(2)] -

k=1

Then,

o] o -«
f(z) :; [k + yk] 2 — ; M1+ (k= D)™ — el + (k- 1)7]”Wk

_ymtie1 = l1-a z°
NS Do e oy e oy v

k
)

> 11—«
D DS v Ly e

_qym+i—1 > 1 -« =k
A G P = i DR
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We show that the function f(z2) € TS4(m,n,, ¢, ;).

Since,
<)\k 1+ (k=14]" —a[l + (k- 1)7]”)
© 1—a
— l—« Tk
L <Ak<1 +(k— 1)y —a(l+ (k- 1)7)”)
oo (uk L+ (k=Dy" = (=)™ " a1+ (k- 1)%”)
N Z l1—«

=2l ( 1— o ) Yk
e+ (k= 1)y)m = (=1 ma(l + (k = 1)y)"

oo [e.9]
—Z$k+zyk
k=2 k=1
= 1—1‘1

<1

Thus f(z) € TSL(m,n, v, ¢, ;).
Conversely, If f € TS%(m,n,~,$,1; ), then

lag| < L-a k> 2
a 9 —
HE N =Dy —al+ (k- 1)y)"
and
1—«
bl < - , k>1.
T 2 L o e Gy Gy
Setting
A1 E—1D9™ —all k—1)y|"
Ty = k[ +( )7] Oé[ +( )7] ‘ak‘; k?ZQ
11—«
and
11—«

Yk —[bg|, k>1.

~ k(L (k= D)) = (DmFra(+ (k- 1))

Then, by Theorem 2.2,
oo oo
S ot Ymst
k=2 k=1
We define
o o
xlzl—Zxk—ZykZO.
k=2 k=1

Consequently, we can see that f(z) can be expressed in the form (4.1). This
completes the proof. O
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5. CONVOLUTION AND CONVEX COMBINATION

In this section, we show that the class TS (m,n,, ¢,9;a) is invariant
under convolution and convex combination of harmonic functions of the form

F(2)=2=> lagle" + (1)1 " |y [2F
k=2 k=1
and
F(z) =2 =Y |Ag|2" + (=1)™" 1> " |By[z".
k=2 k=1

We define the convolution

(f*F)(2) = f(z)x F(2) = 2= Y _ |agAgl2" + (=1)™ 71 " [b, By 2"
k=2 k=1

Theorem 5.1. If f € TS (m,n,v,¢,v;a) and F € TSy (m,n, 7, $, ;)
then f* F € TSy (m,n,v,d,;a), where ag = Ay = 1,m € Nyn € Ng,m
n0<a<l,y>1LA>1Lur>1k>1 Incase m=n=0 >k, ur
bk > 1.

Proof. Let

>
>

f(z) =2 =) laglz" + (1)) by
=2 k=1

and
[ee]

F(z)=2z—> [Ag|F + (=1)™"1 > " |By[
k=2 k=1
be in TS%(m,n, 7, d,1; ). Then by Theorem 2.2, we have

o0

M1+ (=14 —al+ (k= 1)y]"
E : 11—«

|ak|

n i pe[1+ (k= 1)y]™ = (=)™ "a [l + (k — 1)y]"

bl <1
l1—« ‘k|_

3oL (] = ()L (k= 1))

n
Byl < 1.
1l -« ‘ k|_
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From (5.2), we conclude that |Ax| < 1,K =2,3,...and |Bg| < 1,K =1,2,....
So, for f x F', we may write

i AL+ (k= 19" —a[l+ (k= 1)]"

11—« jax A
k=2
o ik [1+ (B = 10" = (=)™ a1+ (k= 1)1]"
+y° — |by, Br|
k=1
Ak [L+ (k= 11]" —a[l+ (k- 1)y)"
<
- Z 11—« o
k=2
o i [L+ (B = 10" = (=)™ a1+ (k= 1)1]"
<1.
+y T = o] <1
k=1
Thus f * F € TS (m,n,v,$,;«). This completes the proof. O

In the following theorem, we prove that T.S% (m,n, 7, ¢, 1; @) is closed under
convex combination.

Theorem 5.2. The class TS}I(m,n,'y, ¢, ;) is closed under conver combi-
nation, where m e Nn e Ngym>n,0<a<1l,y> 1, >1,ux >1,k>1.
Incase m=n=0,\p > k,up >k, k> 1.

Proof. For j = 1,2,..., suppose that f; € TS (m,n,~,$, ;) where f;(z) is
given by

—z—zmz + (-1 1Z|b Kl

Then, by Theorem 2.2, we have

o~ AL+ (k=11 —afl+ (k- 1)y)"
11—«

|ajkl
k=1

- . i N (5.3)
LN LA (R = DA™ = (1) Hal+ (k- 1))

o |bjx| < 2.

For >22,t; =1,0 <t; < 1, the convex combination of f;(z) may be written
as

thfj(z):z—zz:t |aJk|Z +( mﬂ 1ZZt ’bjk‘z
j=1

k=2 j=1 k=1 j=1
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Now

S Ae[L+ (k=)™ —al+ (k= Da)" ¢,
Z ;J‘J:k‘

l1-«a
k=1
— ik [L+ (B = 10" = (=)™ a1+ (k- D] &
k=1 j=1
2 & N[+ (k=D —al+ (k= 1)4]"
RS A" —olit k=1l
j=1 k=1
2 &k [+ (k=)™ = (=)™ a1 4 (k= 1)5]"
Y U e oIl
j=1 k=1
SQZti
j=1
= 2.

and so, by Theorem 2.2, we have Z;; tifi(z) € TSL(m,n,~,d, ;). This
completes the proof. O
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